Introduction to Deep Learning

Lecture 19
 Transformers and LLMs

Shikhar Agnihotri
Liangze Li

11-785, Fall 2023

Part 1

Transformers

Transformers

- Tokenizaton
- Input Embeddings
- Position Encodings
- Residuals
- Query
- Key
- Value
- Add \& Norm
- Encoder
- Decoder
- Attention
- Self Attention
- Multi Head Attention
- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

Transformers

- Tokenizaton
- Attention
- Input Embeddings

- Self Attention
- Position El Codings
- Residuals
- Query
- Key
- Value
- Add \& Norm
- Encoder
- Decoder

Inputs

Inputs

Tokenizer

I ate an apple

Generate Input Emebeddings

Inputs

Generate Input Emebeddings

Encoder

WHEREISTHE CONTEXT?

Encoder

Encoder

Encoder

CONTEXTUALLY RICH EMBEDDINGS

Encoder

$\alpha_{[i j]} ?$

CONTEXTUALLY RICH EMBEDDINGS

Encoder

CONTEXTUALLY RICH EMBEDDINGS

Attention

$\alpha_{[i j]}$?

From lecture 18:
$\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$

Attention

$\alpha_{[i j]}$?

From lecture 18:
$\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$

- Query
- Key
- Value

Query, Key \& Value

Database

\{Key, Value store\}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```


Query, Key \& Value

Database

\{Key, Value store\}

\{Query: "Order details of order_104"\}
OR
\{Query: "Order details of order_106"\}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...i}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```


Query, Key \& Value

\{Key, Value store\}

\{Query: "Order details of order_104"\}
OR
\{Query: "Order details of order_106" $\}$


```
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```


Query, Key \& Value

Query, Key \& Value

\{Key, Value store\}

\{Query: "Order details of order_104"\}
OR
\{Query: "Order details of order_106" $\}$

```
{"order_100": {"items":"a1", "delivery_date":"a2", ....e}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```


Query, Key \& Value

\{Query: "Order details of order_104"\}
OR
\{Query: "Order details of order_106" $\}$
\{Key, Value store\}

Query, Key \& Value

\{Query: "Order details of order_104"\} OR
 \{Query: "Order details of order_106"\}

```
{"order_100": {"items":"a1", "delivery_date":"a2", :.in}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ... }},
{"order_105": {"items":"f1", "delivery_date":"£2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```

Key

1. Search for info
2. Interacts directly with Queries
3. Distinguishes one object from another
4. Identify which object is the most relevant and by how much

Value

1. Actual details of the object
2. More fine grained

Attention

Query

Key Value Store

Key

Value

Attention

Query

Key Value Store

Key

Value

Attention

Done at the same time !!

Query

Key Value Store

Key

Value

Attention

parallelizable!!

Query

Key Value Store

Key

Value

Attention

Query

Key Value Store

Attention Filter

Key

Value

Attention

I

I_{2}

ate
I_{3}
an

I_{4}
apple

I_{5}
<eos>

Attention

I_{1}
1

I_{2}

I_{3}
an

I_{4}
apple

I_{5}
<eos>

Attention

I_{1}
I

I_{2}

I_{3}
an

I_{4}
apple

I_{5}
<eos>

Attention

I_{1}
1

I_{2}

I_{3}
an

I_{4}
apple

I_{5}
<eos>

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)
a. To calculate attention weights for input \mathbf{I}_{2}, you would use key $\mathbf{k}_{\mathbf{2}}$, and all queries
b. To calculate attention weights for input \mathbf{I}_{2}, you would use query \mathbf{q}_{2} and all keys
c. We scale the QK^{\top} product to bring attention weights in the range of [0,1]
d. We scale the $\mathrm{Q} \mathrm{K}^{\top}$ product to allow for numerical stability

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)
a. To calculate attention weights for input \mathbf{I}_{2}, you would use key $\mathbf{k}_{\mathbf{2}}$ and all queries
b. To calculate attention weights for input I_{2}, you would use query q_{2} and all keys
c. We scale the QK^{\top} product to bring attention weights in the range of [0,1]
d. We scale the QK $^{\top}$ product to allow for numerical stability

Positional Encoding

Positional Encoding

Positional Encoding

Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic

[^0]
Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic

Possible Candidates :

$$
\begin{aligned}
& P_{t+1}=P_{t}+\Delta c \\
& P_{t+1}=e^{P_{t_{\Delta}} c} \\
& P_{t+1}=P_{t}{ }^{t \Delta c}
\end{aligned}
$$

Positional Encoding

Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic

[^1]
Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic
- Bounded

[^2]
Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic
- Bounded

Possible Candidates :

$$
\mathbf{P}\left(\mathrm{t}+\mathrm{t}^{\prime}\right)=\mathrm{M}^{\mathrm{t}^{\prime}} \mathbf{x P} \mathbf{P}(\mathrm{t})
$$

[^3]
Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic
- Bounded

Possible Candidates :

$$
P\left(t+t^{\prime}\right)=M^{t^{\prime}} \times P(t)
$$

M ?

1. Should be a unitary matrix

2. Magnitudes of eigen value should be $\mathbf{1}$-> norm preserving

Positional Encoding

Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic
- Bounded

Possible Candidates :

$$
P\left(t+t^{\prime}\right)=M^{t^{\prime}} \times P(t)
$$

M

1. The matrix can be learnt

2. Produces unique rotated embeddings each time
[^4]
Rotary Positional Embedding

RoFormer: Enhanced Transformer with Rotary Position Embedding

$$
f_{\{q, k\}}\left(\boldsymbol{x}_{m}, m\right)=\left(\begin{array}{cc}
\cos m \theta & -\sin m \theta \\
\sin m \theta & \cos m \theta
\end{array}\right)\left(\begin{array}{cc}
W_{\{q, k\}}^{(11)} & W_{\{q, k\}}^{(12)} \\
W_{\{q, k\}}^{(21)} & W_{\{q, k\}}^{(22)}
\end{array}\right)\binom{x_{m}^{(1)}}{x_{m}^{(2)}}
$$

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Model	MRPC	SST-2	QNLI	STS-B	QQP	MNLI $(\mathrm{m} / \mathrm{mm})$	
BERTDevlin et al. [2019]	88.9	93.5	90.5	85.8	71.2	$84.6 / 83.4$	
RoFormer	$\mathbf{8 9 . 5}$	90.7	88.0	$\mathbf{8 7 . 0}$	$\mathbf{8 6 . 4}$	$80.2 / 79.8$	REF: Rotary Positional Embeddings θ

Positional Encoding

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position - not cyclic
- Bounded

Actual Candidates :
sine $(g(t))$
cosine (g(t))

Positional Encoding

Positional Encoding

Requirements for $g(t)$

- Must have same dimensions as input embeddings
- Must produce overall unique encodings
pos -> idx of the token in input sentence
i $\quad->\mathrm{ith}^{\text {th }}$ dimension out of d

$$
\begin{gathered}
P E_{(p o s, 2 i)}=\sin \left(p o s / 10000^{2 i / d_{\text {model }}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(\text { pos } / 10000^{2 i / d_{\text {model }}}\right)
\end{gathered}
$$

Positional Encoding

Positional Encoding

$$
P E_{(p o s, 2 i)}=\sin \left(p o s / 10000^{2 i / d_{\text {model }}}\right)
$$

pos -> idx of the token in input sentence
i $->\mathrm{it}^{\text {th }}$ dimension out of d

Positional Encoding:

		0	1	2	3	4
Dim	1	0.000	0.841	0.909	0.141	-0.757
Dim	1.000	0.540	-0.416	-0.990	-0.654	
Dim	1.0 .000	0.025	0.050	0.075	0.100	
Dim	4	1.000	1.000	0.999	0.997	0.995
Dim	5	0.000	0.001	0.001	0.002	0.003

Positional Encoding

Encoder

$\alpha_{[i j]} \quad \Sigma$

CONTEXTUALLY RICH EMBEDDINGS

Self Attention

From lecture 18:
$\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$

Self Attention

was

Self Attention

coreference resolution?

Self Attention

Self Attention

Self Attention

Self Attention

SELF

Query Inputs
$=\quad$ Key Inputs
$=\quad$ Value Inputs

Self Attention

$$
R^{d_{\text {model }} \times d_{\text {model }}}
$$

W_{Q}

W_{K}
$R^{T \times d_{\text {model }}}$

Input Embeddings

W_{v}

Self Attention

Attention: Z

Self Attention

coreference resolution

Self Attention

Sentence boundaries?
coreference resolution

Self Attention

Multi-Head Attention

Input Embeddings

Multi-Head Attention

Inputs

Inputs

Inputs

$R^{d_{\text {model }} \times d_{h}}$

$$
R^{T \times d_{h}}
$$

Multi-Head Attention

Multi-Head Attention

Multi Head Attention : Z $\quad d_{h}=\frac{d_{\text {model }}}{h}$

$$
R^{T \times d_{\text {model }}}
$$

Multi-Head Attention

Sentence boundaries?
coreference resolution

Add \& Norm

Normalization(Z)

- Mean 0, Std dev 1
- Stabilizes training
- Regularization effect

Add -> Residuals

- Avoid vanishing gradients
- Train deeper networks

Feed Forward

Feed Forward

- Non Linearity
- Complex Relationships
- Learn from each other

Feed Forward

Residuals

Add \& Norm

Add \& Norm

Feed Forward

Input
Norm(Z)

Encoders

Encoder

ENCODER

Encoders

Encoder

Transformers

\checkmark Tokenizaton
\checkmark Input Embeddings
\checkmark Position Encodings
\checkmark Residuals
\checkmark Query
\checkmark Key
\checkmark Value
\checkmark Add \& Norm
\checkmark Encoder
\checkmark Attention
\checkmark Self Attention
\checkmark Multi Head Attention

- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

- Decoder

Machine Translation

Targets

Targets
Ich have einen apfel gegessen

Targets

Masked Multi Head Attention

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

Training

Masked Multi Head Attention

Masked Multi Head Attention

Masked Multi Head Attention

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

Masked Multi Head Attention

Masked Multi Head Attention

QK $^{\top}$

Attention Mask: M

Masked Attention

Masked Multi Head Attention : Z'

Masked Multi Head Attention

Masked Multi Head Attention
$R^{T \times T} \quad R^{T \times d_{h}}$

Masked Attention

Values

Masked Multi Head Attention : Z'

Encoder Decoder Attention

Encoder Decoder Attention?

Add \& Norm

Encoder Decoder Attention

Encoder Decoder Attention ?

Encoder Decoder Attention

Encoder Self Attention

1. Queries from Encoder Inputs
2. Keys from Encoder Inputs
3. Values from Encoder Inputs

Decoder Masked Self Attention

1. Queries from Decoder Inputs
2. Keys from Decoder Inputs
3. Values from Decoder Inputs

Attention

\{Key, Value store\}

\{Query: "Order details of order_104"\}
\{Query: "Order details of order_106"\}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ..in}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```


Encoder Decoder Attention

Encoder

Keys from Encoder Outputs Values from Encoder Outputs

Decoder

Queries from Decoder Inputs

NOTE: Every decoder block receives the same FINAL encoder output

Encoder Decoder Attention

$$
\begin{array}{lcc}
R^{T_{d} \times d_{\text {model }}} & Z^{\prime \prime} \\
R^{T_{d} \times T_{e}} & \operatorname{softmax}\left(\frac{Q_{d} K_{e}^{T}}{\sqrt{d_{\text {model }}}}\right) . & \mathrm{V}_{\mathrm{e}} R^{T_{e} \times d_{\text {model }}} \\
R^{T_{d} \times T_{e}} & \operatorname{softmax}\left(\frac{Q_{d} K_{e}^{T}}{\sqrt{d}}\right) & \\
R^{T_{d} \times d_{\text {model }}} & \\
& \mathrm{Q}_{\mathrm{d}} \mathrm{~K}_{\mathrm{e}} & R^{T_{e} \times d_{\text {model }}}
\end{array}
$$

Encoder Decoder Attention

Decoder

Decoder

Linear

Softmax

Output Probabilities

Poll 2 (@1297)

Which of the following are true about transformers?

a. Transformers can always be run in parallel
b. Transformer decoders can only be parallelized during training
c. Positional encodings help parallelize the transformer encoder
d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
e. Multiheaded attention helps transformers find different kinds of relations between the tokens
f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1126)

Which of the following are true about transformers?

a. Transformers can always be run in parallel
b. Transformer decoders can only be parallelized during training
c. Positional encodings help parallelize the transformer encoder
d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
e. Multiheaded attention helps transformers find different kinds of relations between the tokens
f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Transformers

\checkmark Tokenizaton
\checkmark Input Embeddings
\checkmark Position Encodings
\checkmark Residuals
\checkmark Query
\checkmark Key
\checkmark Value
\checkmark Add \& Norm
\checkmark Encoder
\checkmark Decoder
\checkmark Attention
\checkmark Self Attention
\checkmark Multi Head Attention
\checkmark Masked Attention
\checkmark Encoder Decoder Attention
\checkmark Output Probabilities / Logits
\checkmark Softmax

- Encoder-Decoder models
- Decoder only models

Transformers, mid-2017

Transformers, mid-2017

Transformers, mid-2017

Transformers, mid-2017

Input - input tokens Output - hidden states

Representation

Input - output tokens and hidden states*
Output - output tokens

Generation

Transformers, mid-2017

Input - input tokens Output - hidden states

Model can see all timesteps
Representation

Input - output tokens and hidden states* Output - output tokens

Model can only see previous timesteps

Generation

Transformers, mid-2017

Input - input tokens
Output - hidden states

Model can see all timesteps
Does not usually output tokens, so no inherent auto-regressivity

Representation

Input - output tokens and hidden states* Output - output tokens

Model can only see previous timesteps
Model is auto-regressive with previous timesteps' outputs

Generation

Transformers, mid-2017

Input - input tokens
Output - hidden states

Model can see all timesteps
Does not usually output tokens, so no inherent auto-regressivity

Can also be adapted to generate tokens by appending a module that maps hidden state dimensionality to vocab size

Representation

Input - output tokens and hidden states* Output - output tokens

Model can only see previous timesteps
Model is auto-regressive with previous timesteps' outputs

Can also be adapted to generate hidden states by looking before token outputs

Generation

2018 - The Inception of the LLM Era

BERT - Bidirectional Encoder Representations

- One of the biggest challenges in LM-building used to be the lack of task-specific training data.
- What if we learn an effective representation that can be applied to a variety of downstream tasks?
- Word2vec (2013)
- GloVe (2014)

Output
Probabilities

BERT - Bidirectional Encoder Representations

BERT Pre-Training Corpus:

- English Wikipedia - 2,500 million words
- Book Corpus - 800 million words

BERT - Bidirectional Encoder Representations

BERT Pre-Training Corpus:

- English Wikipedia - 2,500 million words
- Book Corpus - 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

BERT - Bidirectional Encoder Representations

BERT Pre-Training Corpus:

- English Wikipedia - 2,500 million words
- Book Corpus - 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

BERT Pre-Training Results:

- BERT-Base - 110M Params
- BERT-Large - 340M Params

BERT - Bidirectional Encoder Representations

MLM (Masked Language Modeling)

BERT - Bidirectional Encoder Representations

MLM (Masked Language Modeling)

BERT - Bidirectional Encoder Representations

BERT Fine-Tuning:

- Simply add a task-specific module after the last encoder layer to map it to the desired dimension.
- Classification Tasks:
- Add a feed-forward layer on top of the encoder output for the [CLS] token
- Question Answering Tasks:
- Train two extra vectors to mark the beginning and end of answer from paragraph
- ...

BERT - Bidirectional Encoder Representations

BERT Evaluation:

- General Language Understanding Evaluation (GLUE)
- Sentence pair tasks
- Single sentence classification
- Standford Question Answering Dataset (SQuAD)

Output
Probabilities

BERT - Bidirectional Encoder Representations

BERT Evaluation:

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {BASE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT $_{\text {LARGE }}$	$\mathbf{8 6 . 7 / 8 5 . 9}$	$\mathbf{7 2 . 1}$	$\mathbf{9 2 . 7}$	$\mathbf{9 4 . 9}$	$\mathbf{6 0 . 5}$	$\mathbf{8 6 . 5}$	$\mathbf{8 9 . 3}$	$\mathbf{7 0 . 1}$	$\mathbf{8 2 . 1}$

System	Dev		Test	
	EM	F1	EM	F1
Leaderboard (Oct 8th, 2018)				
Human	-	-	82.3	91.2
\#1 Ensemble - nlnet	-	-	86.0	91.7
\#2 Ensemble - QANet	-	-	84.5	90.5
\#1 Single - nlnet	-	-	83.5	90.1
\#2 Single - QANet	-	-	82.5	89.3
Published				
BiDAF+ELMo (Single)	-	85.8	-	-
R.M. Reader (Single)	78.9	86.3	79.5	86.6
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT ${ }_{\text {bASE }}$ (Single)	80.8	88.5	-	-
BERT ${ }_{\text {large }}$ (Single)	84.1	90.9	-	-
BERT ${ }_{\text {large }}$ (Ensemble)	85.8	91.8	-	-
$\mathrm{BERT}_{\text {large }}$ (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
$\mathrm{BERT}_{\text {Large }}$ (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

BERT - Bidirectional Encoder Representations

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
- Effective representations can be derived from a flexible regime of pre-training tasks.

BERT - Bidirectional Encoder Representations

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
- Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
- As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.

BERT - Bidirectional Encoder Representations

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
- Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
- As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.
- And scaling works!!!
- 340M is considered large in 2018

2018 - The Inception of the LLM Era

GPT - Generative Pretrained Transformer

- Similarly motivated as BERT, though differently designed
- Can we leverage large amounts of unlabeled data to pretrain an LM that understands general patterns?

GPT - Generative Pretrained Transformer

GPT Pre-Training Corpus:

- Similarly, BooksCorpus and English Wikipedia

GPT Pre-Training Tasks:

- Predict the next token, given the previous tokens
- More learning signals than MLM

GPT Pre-Training Results:

- GPT - 117M Params
- Similarly competitive on GLUE and SQuAD

GPT - Generative Pretrained Transformer

GPT Fine-Tuning:

- Prompt-format task-specific text as a continuous stream for the model to fit

QA
Summarization

Summarize this article:

The summary is:
Answer the question based on the context.

GPT - Generative Pretrained Transformer

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
- Specifically, the model seems to be able to learn from generating the language itself, rather than from any specific task we might cook up.

GPT - Generative Pretrained Transformer

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
- Specifically, the model seems to be able to learn from generating the language itself, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
- Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.

GPT - Generative Pretrained Transformer

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
- Specifically, the model seems to be able to learn from generating the language itself, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
- Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.
- And scaling works!!!

Poll

Piazza @1291

The original GPT's parameter count is closest to...
A. 117
B. 117 K
C. 117 M
D. 117B

Poll

Piazza @1291

The original GPT's parameter count is closest to...
A. 117
B. 117 K
C. 117 M
D. 117B

The LLM Era - Paradigm Shift in Machine Learning

The LLM Era - Paradigm Shift in Machine Learning

BERT - 2018
DistilBERT-2019
RoBERTa - 2019
ALBERT - 2019
ELECTRA - 2020
DeBERTa - 2020

Representation

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Since LLMs

- Feature Engineering
- How do we design or select the best features for a task?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs
Since LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs
 Since LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs
 Since LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
- How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
- How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

- Pre-training and Fine-tuning
- How do we leverage large scales of unlabeled data out there previously under-leveraged?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
- How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

- Pre-training and Fine-tuning
- How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
- How can we make models perform on tasks they are not trained on?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
- How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

- Pre-training and Fine-tuning
- How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
- How can we make models perform on tasks they are not trained on?
- Prompting
- How do we make models understand their task simply by describing it in natural language?

The LLM Era - Paradigm Shift in Machine Learning

From both BERT and GPT, we learn that...

- Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
- How do we design or select the best features for a task?
- Model Selection
- Which model is best for which type of task?
- Transfer Learning
- Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
- How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

- Pre-training and Fine-tuning
- How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
- How can we make models perform on tasks they are not trained on?
- Prompting
- How do we make models understand their task simply by describing it in natural language?
- Interpretability and Explainability
- How can we understand the inner workings of our own models?

The LLM Era - Paradigm Shift in Machine Learning

- What has caused this paradigm shift?

The LLM Era - Paradigm Shift in Machine Learning

- What has caused this paradigm shift?
- Problem in recurrent networks
- Information is effectively lost during encoding of long sequences
- Sequential nature disables parallel training and favors late timestep inputs

The LLM Era - Paradigm Shift in Machine Learning

- What has caused this paradigm shift?
- Problem in recurrent networks
- Information is effectively lost during encoding of long sequences
- Sequential nature disables parallel training and favors late timestep inputs
- Solution: Attention mechanism
- Handling long-range dependencies
- Parallel training
- Dynamic attention weights based on inputs

The LLM Era - Paradigm Shift in Machine Learning

- Attention and Transformer - is this the end?

The LLM Era - Paradigm Shift in Machine Learning

- Attention and Transformer - is this the end?
- Problem in current Transformer-based LLMs??

Poll

Piazza @1292

What might be a flaw of our current Transformer-based LLMs?

Freeform response

The LLM Era - Paradigm Shift in Machine Learning

- Attention and Transformer - is this the end?
- Problem in current Transformer-based LLMs??
- True understanding the material vs. memorization and pattern-matching
- Cannot reliably follow rules - factual hallucination e.g. inability in arithmetic

The LLM Era - Paradigm Shift in Machine Learning

- Attention and Transformer - is this the end?
- Problem in current Transformer-based LLMs??
- True understanding the material vs. memorization and pattern-matching
- Cannot reliably follow rules - factual hallucination e.g. inability in arithmetic
- Solution: ???

Looking Back

It is true that language models are just programmed to predict the next token. But that is not as simple as you might think.

In fact, all animals, including us, are just programmed to survive and reproduce, and yet amazingly complex and beautiful stuff comes from it.

\author{

- Sam Altman*
}
*Paraphrased by IDL TAs

[^0]: Positional Encoding

[^1]: Positional Encoding

[^2]: Positional Encoding

[^3]: Positional Encoding

[^4]: Positional Encoding

