Lecture 19 Transformers and LLMs

Shikhar Agnihotri

Liangze Li

11-785, Fall 2023

Part 1

Transformers

Transformers

- Tokenizaton
- Input Embeddings
- Position Encodings
- Residuals
- Query
- Key
- Value
- Add & Norm
- Encoder
- Decoder

- Attention
- Self Attention
- Multi Head Attention
- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

Output

Machine Translation

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Output Probabilities

Inputs

Processing Inputs

Inputs

I ate an apple

Output

Inputs

Generate Input Emebeddings

Inputs

Generate Input Emebeddings

WHERE IS THE CONTEXT?

CONTEXTUALLY RICH EMBEDDINGS

$\alpha_{[ij]}$?

CONTEXTUALLY RICH EMBEDDINGS

$\alpha_{[ij]}$? $\Sigma \Pi$?

CONTEXTUALLY RICH EMBEDDINGS

$$\alpha_{[ij]}$$
?

From lecture 18:

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

$$\alpha_{[ij]}$$
?

From lecture 18:

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Query
- Key
- Value

Database

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

Database

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_1109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_110": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order 106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

Done at the same time!!

{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_100": {"items": "k1", "delivery_date": "j2", ....}},
```

Query

1. Search for info

Key

- 1. Interacts directly with Queries
- 2. Distinguishes one object from another
- 3. Identify which object is the most relevant and by how much

Value

- 1. Actual details of the object
- 2. More fine grained

Done at the same time!!

Key Value Store

Key

Value

Parallelizable!!!

Query

Q

Key Value Store

 QK^T

Key

Value

$$softmax(\frac{QK^T}{\sqrt{d}})$$

$$softmax(\frac{QK^T}{\sqrt{d}})V$$

Parallelizable!!!

Attention Filter

Query

Key Value Store

Key

Value

Q

 QK^T

 $softmax(\frac{QK^T}{\sqrt{d}})$

 $softmax(\frac{QK^T}{\sqrt{d}})V$

I₅

<eos>

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity **Attention** $\alpha_{1,2}$ $\alpha_{1,3}$ $\alpha_{1,4} \rightarrow \otimes$ softmax e_{1,1} e_{1,4} $e_{1,2}$ e_{1,3} K_3 K_5 Q_2 K_2 V_2 Q_3 V_3 K_4 Q_5 Q_1 K_1 Q_4 W_{Q} W_{K} W_{V} W_Q W_Q W_V W_{Q} W_{K} W_Q W_{K} W_{K} W_{K} W_{V} W_V W_V **I**₂ I_1 **I**₅ **I**₃ I_4 36 apple <eos> ate an

Dimensions across QKV have been dropped for brevity **Attention** $\alpha_{1,3}$ $\alpha_{1,4} \rightarrow \otimes$ $\alpha_{1,2}$ $\alpha_{\text{1,5}}$ softmax e_{1,4} $e_{1,5}$ e_{1,1} e_{1,2} e_{1,3} K_3 K_5 Q_2 K_2 V_2 Q_3 K_4 Q_5 Q_1 K_1 Q_4 W_{Q} W_{K} W_V W_Q W_Q W_V W_{Q} W_{K} W_Q W_{K} W_{K} W_{K} W_V W_V W_V I_1 **I**₂ **I**₅ I_4 I_3 37 apple

an

ate

<eos>

Dimensions across QKV have been dropped for brevity

Attention

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)

- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
 - c. We scale the QK^T product to bring attention weights in the range of [0,1]
 - d. We scale the QK^T product to allow for numerical stability

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)

- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
 - c. We scale the QK^T product to bring attention weights in the range of [0,1]
 - d. We scale the QK^T product to allow for numerical stability

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic

Requirements for Positional Encodings

- Some representation of time ? (like **seq2seq** ?)
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = e^{P_{t_{\Delta}}C}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{t_{\Delta}c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq?)
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = e^{P_{t}} \Delta^{\alpha}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{:t_{\Delta}c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq?)
- Should be unique for each position not cyclic
- **Bounded**

Possible Candidates:

$$P_{t+1} - P_t + \Delta c$$

$$P_{t+1} = e^{P_{t_{\Delta}} \alpha}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{\cdot t\Delta c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

M?

- 1. Should be a unitary matrix
- 2. Magnitudes of eigen value should be 1 -> norm preserving

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

M

- 1. The matrix can be learnt
- 2. Produces unique rotated embeddings each time

Rotary Positional Embedding

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY Position Embedding

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

MRPC SST-2 STS-B MNLI(m/mm) Model **QNLI** QQP BERTDevlin et al. [2019] 88.9 85.8 71.2 93.5 90.5 84.6/83.4 90.7 RoFormer 89.5 88.0 87.0 86.4 80.2/79.8

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Positional Encoding Input Embeddina Inputs

REF: Rotary Positional Embeddings

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Actual Candidates:

sine(**g(t)**)

cosine(g(t))

Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

pos -> idx of the token in input sentence

-> ith dimension out of d

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

pos -> idx of the token in input sentence

i -> ith dimension out of d

Positional Encoding:

Position

Encoder

 $\alpha_{[ij]}$

Σ

CONTEXTUALLY RICH EMBEDDINGS

From lecture 18:

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

The animal didn't cross the street because it was too wide

coreference resolution?

SELF

Query Inputs = Key Inputs = Value Inputs

Attention: Z

Self Attention

Sentence boundaries?

coreference resolution

Context?

Semantic relationships?

Part of Speech?

Comparisons?

Self Attention

$$d_h = \frac{d_{model}}{h}$$

for all $i \in [1, h]$

Multi Head Attention : Z

$$d_h = \frac{d_{model}}{h}$$

$$R^{T \times d_{model}}$$

Add & Norm

Normalization(Z)

- Mean 0, Std dev 1
- Stabilizes training
- Regularization effect

Add -> Residuals

- Avoid vanishing gradients
- Train deeper networks

Feed Forward

Feed Forward

- Non Linearity
- Complex Relationships
- Learn from each other

Input

Norm(Z)

Add & Norm

Add & Norm

Feed Forward

Input Norm(Z)

Encoders

Encoder

ENCODER

Encoders

Encoder

ENCODER

•

•

ENCODER

ENCODER

Input to Encoder_{i+1}

Output from Encoder_i

Transformers

- ✓ Tokenizaton
- ✓ Input Embeddings
- **✓ Position Encodings**
- ✓ Residuals
- ✓ Query
- ✓ Key
- ✓ Value
- ✓ Add & Norm
- ✓ Encoder
- Decoder

- ✓ Attention
- ✓ Self Attention
- ✓ Multi Head Attention
- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

Machine Translation

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Output

Targets

Targets

Ich have einen apfel gegessen

Targets

Mask the available attention values?

Encoder Decoder Attention ? Add & Norm

Encoder Decoder Attention?

Encoder Self Attention

- 1. Queries from Encoder Inputs
- 2. Keys from Encoder Inputs
- 3. Values from Encoder Inputs

Decoder Masked Self Attention

- 1. Queries from Decoder Inputs
- 2. Keys from Decoder Inputs
- 3. Values from Decoder Inputs

Attention

{Key, Value store}

```
{Query: "Order details of order_104"}
```

{Query: "Order details of order_106"}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```

Encoder

Decoder

Keys from **Encoder Outputs**Values from **Encoder Outputs**

Queries from **Decoder Inputs**

NOTE: Every decoder block receives the same FINAL encoder output

- Non Linearity
- Complex Relationships
- Learn from each other

Add n Norm Decoder Self Attn

Norm(Z")

Decoder

DECODER

Decoder

DECODER

•

•

DECODER

DECODER

 $R^{T_d \times d_{model}}$

Decoder output

Linear

Softmax

Output Probabilities

Poll 2 (@1297)

Which of the following are true about transformers?

- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Positional encodings help parallelize the transformer encoder
- d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- e. Multiheaded attention helps transformers find different kinds of relations between the tokens
- f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1126)

Which of the following are true about transformers?

- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Positional encodings help parallelize the transformer encoder
- d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- e. Multiheaded attention helps transformers find different kinds of relations between the tokens
- f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Transformers

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Machine Translation

Output

Transformers

- ✓ Tokenizaton
- ✓ Input Embeddings
- **✓ Position Encodings**
- ✓ Residuals
- ✓ Query
- ✓ Key
- ✓ Value
- ✓ Add & Norm
- ✓ Encoder
- ✓ Decoder

- ✓ Attention
- ✓ Self Attention
- ✓ Multi Head Attention
- ✓ Masked Attention
- ✓ Encoder Decoder Attention
- ✓ Output Probabilities / Logits
- ✓ Softmax
- Encoder-Decoder models
- Decoder only models

Part 2

LLM

Input – input tokensOutput – hidden states

Representation

Input - output tokens and hidden states*
Output - output tokens

Input – input tokensOutput – hidden states

Model can see all timesteps

Representation

Input - output tokens and hidden states*
Output - output tokens

Model can only see previous timesteps

Input – input tokensOutput – hidden states

Model can see all timesteps

Does not usually output tokens, so no inherent auto-regressivity

Representation

Input - output tokens and hidden states*
Output - output tokens

Model can only see previous timesteps

Model is auto-regressive with previous timesteps' outputs

Input – input tokensOutput – hidden states

Model can see all timesteps

Does not usually output tokens, so no inherent auto-regressivity

Can also be adapted to generate tokens by appending a module that maps hidden state dimensionality to vocab size

Representation

Input – output tokens and hidden states*Output – output tokens

Model can only see previous timesteps

Model is auto-regressive with previous timesteps' outputs

Can also be adapted to generate hidden states by looking before token outputs

2018 – The Inception of the LLM Era

BERT

Oct 2018

- One of the biggest challenges in LM-building used to be the lack of task-specific training data.
- What if we learn an effective representation that can be applied to a variety of downstream tasks?
 - Word2vec (2013)
 - GloVe (2014)

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

BERT Pre-Training Results:

- BERT-Base 110M Params
- BERT-Large 340M Params

BERT Fine-Tuning:

- Simply add a task-specific module after the last encoder layer to map it to the desired dimension.
 - Classification Tasks:
 - Add a feed-forward layer on top of the encoder output for the [CLS] token
 - Question Answering Tasks:
 - Train two extra vectors to mark the beginning and end of answer from paragraph

• ...

BERT Evaluation:

- General Language Understanding Evaluation (GLUE)
 - Sentence pair tasks
 - Single sentence classification
- Standford Question Answering Dataset (SQuAD)

BERT Evaluation:

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

System	Dev			Test		
	EM	F1	EM	F1		
Leaderboard (Oct	8th, 2	018)				
Human		-	82.3	91.2		
#1 Ensemble - nlnet		-	86.0	91.7		
#2 Ensemble - QANet		-	84.5	90.5		
#1 Single - nlnet	-	_	83.5	90.1		
#2 Single - QANet	-	-	82.5	89.3		
Publishe	ed					
BiDAF+ELMo (Single)		85.8	-	-		
R.M. Reader (Single)	78.9	86.3	79.5	86.6		
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5		
Ours						
BERT _{BASE} (Single)	80.8	88.5	-	-		
BERT _{LARGE} (Single)	84.1	90.9	-	-		
BERT _{LARGE} (Ensemble)		91.8	-	-		
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8		
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2		

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.
- And scaling works!!!
 - 340M is considered large in 2018

2018 – The Inception of the LLM Era

BERT

Oct 2018

Representation

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head **GPT** Feed Attention Forward $N \times$ **Jun 2018** Add & Norm N× Add & Norm Masked Multi-Head Multi-Head **Generation** Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

- Similarly motivated as BERT, though differently designed
 - Can we leverage large amounts of unlabeled data to pretrain an LM that understands general patterns?

GPT Pre-Training Corpus:

Similarly, BooksCorpus and English Wikipedia

GPT Pre-Training Tasks:

- Predict the next token, given the previous tokens
 - More learning signals than MLM

GPT Pre-Training Results:

- GPT 117M Params
 - Similarly competitive on GLUE and SQuAD

GPT Fine-Tuning:

 Prompt-format task-specific text as a continuous stream for the model to fit

Summarization

Summarize this article:

The summary is:

Answer the question based on the context.

QA

Context:

Question:

Answer:

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language itself, rather than from any specific task we might cook up.

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.
- And scaling works!!!

Poll Piazza @1291

The original GPT's parameter count is closest to...

- A. 117
- B. 117K
- C. 117M
- D. 117B

Poll Piazza @1291

The original GPT's parameter count is closest to...

- A. 117
- B. 117K
- C. 117M
- D. 117B

BERT

Oct 2018

BERT - 2018

DistilBERT – 2019

RoBERTa – 2019

ALBERT – 2019

ELECTRA – 2020

DeBERTa – 2020

. . .

Representation

GPT - 2018 GPT-2 - 2019 GPT-3 - 2020 GPT-Neo - 2021 GPT-3.5 (ChatGPT) - 2022 LLaMA - 2023 GPT-4 - 2023

Generation

• • •

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?

From both BERT and GPT, we learn that...

 Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

From both BERT and GPT, we learn that...

 Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?

From both BERT and GPT, we learn that...

 Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?

From both BERT and GPT, we learn that...

 Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?
- Prompting
 - How do we make models understand their task simply by describing it in natural language?

From both BERT and GPT, we learn that...

 Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?
- Prompting
 - How do we make models understand their task simply by describing it in natural language?
- Interpretability and Explainability
 - How can we <u>understand</u> the inner workings of our own models?

What has caused this paradigm shift?

- What has caused this paradigm shift?
 - Problem in recurrent networks
 - Information is effectively lost during encoding of long sequences
 - Sequential nature disables parallel training and favors late timestep inputs

- What has caused this paradigm shift?
 - Problem in recurrent networks
 - Information is effectively lost during encoding of long sequences
 - Sequential nature disables parallel training and favors late timestep inputs
 - Solution: Attention mechanism
 - Handling long-range dependencies
 - Parallel training
 - Dynamic attention weights based on inputs

Attention and Transformer – is this the end?

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??

Poll Piazza @1292

What might be a flaw of our current Transformer-based LLMs?

Freeform response

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??
 - True understanding the material vs. memorization and pattern-matching
 - Cannot reliably follow rules factual hallucination e.g. inability in arithmetic

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??
 - True understanding the material vs. memorization and pattern-matching
 - Cannot reliably follow rules factual hallucination e.g. inability in arithmetic
 - Solution: ???

Looking Back

It is true that language models are just programmed to predict the next token. But that is not as simple as you might think.

In fact, all animals, including us, are just programmed to survive and reproduce, and yet amazingly complex and beautiful stuff comes from it.

- Sam Altman*

*Paraphrased by IDL TAs