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Open Question

1. Say we have a data distribution p that is a mixture of two 2D gaussians as shown below in red. We want to 

approximate this with one gaussian estimate q using KL-divergence. Which of the following three will result from 

optimizing 𝐃KL (𝑝 𝑞)

2. and which from 𝐃KL 𝑞 𝑝 ? 
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Background

1. Generative Models and Discriminative models

2. Autoencoders

3. Variational Autoencoders

1. Reparameterization trick

2. ELBO



Sandcastles

How to create a sandcastle:

Step 1: Take a sandcastle

Step 2: Destroy the sandcastle

Step 3: Remember how you destroyed the sandcastle

Step 4: Reverse the process

Key Idea

Once you know how to reconstruct sandcastles, 

you can start with some different “sand”, apply 

this process, and end up with a different 

“sandcastle”
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ELBO Recap

Why use ELBO?

Directly maximizing 𝑝(𝑥) is very difficult: 

• it involves either marginalizing over the entire latent space 𝒁 (intractable for complex models) OR

• It involves having access to the ground truth latent encoder 𝑝(𝑧|𝑥)

ELBO:

log 𝑝 𝑥 ≥ 𝔼𝑞𝜙 𝑧 𝑥) log
𝑝(𝑥, 𝑧)

𝑞𝜙(𝑧|𝑥)

Question: Why does the ≥ show up here? → With the derivation in the appendix, we see a 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 𝑝 𝑧 𝑥 )

term show up which is always ≥ 0. 

Applying chain-rule of probabilities:

𝐸𝐿𝐵𝑂 = 𝔼𝑞𝜙 𝑧 𝑥) log 𝑝𝜃(𝑥|𝑧) − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 𝑝(𝑧))

Reconstruction Prior matching



Variational Autoencoder Recap

x z

𝑝(𝑥|𝑧)

q(𝑧|𝑥)

𝜃

𝜙

Latent variable sampling: 𝑧 ∼ 𝒩(𝑧; 𝜇𝜙 𝑥 , 𝜎𝜙
2 𝑥 )

Reparameterization trick:  𝑧 = 𝜇𝜙 𝑥 + 𝜎𝜙 𝑥 ⊙ 𝜖, 𝜖 ∼ 𝒩(0, 𝐼)

Training: 
• Jointly optimize 𝜃 and 𝜙
• Maximize ELBO

Empirically, we found that two things make VAEs work really well:
1. Increasing the depth of the networks
2. Introducing a hierarchy of latent variables (latent variables of latent variables)

𝑥 ← 𝑧1 ← 𝑧2 ← … ← 𝑧𝑇 , such that each latent is conditioned on all previous latents.

We are particularly interested in such HAVEs that where the process is a Markovian chain - MHVAE



Markovian Hierarchical Variational Autoencoder

Joint probability: 𝑝 𝑥, 𝑧1:𝑇 = 𝑝 𝑧𝑇 𝑝𝜃 𝑥 𝑧1)ς𝑡=2
𝑇 𝑝𝜃 𝑧𝑡−1 𝑧𝑡)

Posterior probability: 𝑞𝜙 𝑧1:𝑇 | 𝑥 = 𝑞𝜙 𝑧1 𝑥)ς𝑡=2
𝑇 𝑞𝜙 𝑧𝑡 𝑧𝑡−1)

Updated ELBO:

log 𝑝 𝑥 ≥ 𝔼𝑞𝜙 𝑧1:𝑇 𝑥) log
𝑝(𝑥, 𝑧1:𝑇)

𝑞𝜙 𝑧1:𝑇 𝑥)



Diffusion Models

Diffusion models are essentially MHVAEs with 3 restrictions:

1. Latent dimension is the same as the data dimension

2. The encoder has no parameters to be learnt. It is defined to be a linear gaussian such that the 𝑡𝑡ℎ gaussian is 

centered around the previous latent 𝑧𝑡−1

3. The parameters for the gaussians are scheduled such that the final latent is a standard gaussian.

𝑧𝑇 ∼ 𝒩(𝑧𝑇; 0, 𝑰)

The first restriction allows for some mild abuse of notation:

𝑞𝜙 𝑥1:𝑇 | 𝑥0 =ෑ

𝑡=1

𝑇

𝑞𝜙 𝑥𝑡 𝑥𝑡−1)

𝑝 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃 𝑥𝑡−1 𝑥𝑡)



Diffusion Models
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Diffusion Models – Diffusion Process

Following the second restriction, we now define the linear gaussian for the encoding (diffusion) process:

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒩 𝑥𝑡; 𝜇𝑡 𝑥𝑡−1 , Σ𝑡𝑰

𝜇𝑡 𝑥𝑡−1 = 1 − 𝛽𝑡𝑥𝑡−1 , Σ𝑡= 𝛽𝑡
We additionally define 𝛼𝑡 = 1 − 𝛽𝑡. 

𝛽𝑡 is defined to preserve variance across the diffusion steps.

We can now write 

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒩 𝑥𝑡; 𝛼𝑡𝑥(𝑡−1), (1 − 𝛼𝑡)𝑰

Using the reparameterization trick:

𝑥𝑡 = 𝛼𝑡𝑥(𝑡−1) + 1 − 𝛼𝑡 𝜖, 𝜖 ∼ 𝒩 0, 𝑰

= 𝛼𝑡𝛼𝑡−1𝑥(𝑡−2) + 1 − 𝛼𝑡𝛼𝑡−2 𝜖

= 𝛼𝑡𝛼𝑡−1𝛼𝑡−2𝑥(𝑡−3) + 1 − 𝛼𝑡𝛼𝑡−2𝛼𝑡−3 𝜖

= 𝛼𝑡𝛼𝑡−1…𝛼1𝑥(0) + 1 − 𝛼𝑡𝛼𝑡−2…𝛼1 𝜖

= 𝜶𝒕𝒙(𝟎) + 𝟏 − 𝜶𝒕 𝝐

Sum of two gaussians is another 
gaussian with mean as the sum of 
the two means and variance as the 
sum of the two variances.

1 − 𝛼𝑡 𝜖 → 𝒩(𝜖; 0, 1 − 𝛼𝑡𝑰)

Define

𝜶𝒕 = ෑ

𝒔=𝟏

𝒕

𝜶𝒔

This takes us from time step 0 to t 
in one step!

From the third restriction, we get

𝛼𝑇 → 0



Diffusion Models – Diffusion Process

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝛼𝑡𝑥(𝑡−1) + 1− 𝛼𝑡 𝜖, 𝜖 ∼ 𝒩 0, 𝑰

This formulation essentially paints a picture of this process to be incrementally adding noise till we reach 𝑥𝑇 which is 

defined to be pure noise.



Diffusion Models – Generative Process 

From the third assumption, we can write the exact prior on the final step 𝑥𝑇 :

𝑝 𝑥𝑇 = 𝒩 𝑥𝑇; 0, 𝑰

For all other steps, we can write a learned distribution:

𝑝𝜃 𝑥𝑡−1 𝑥𝑡) = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝑡𝑰)

Neural Network: U-Net
Denoising network

Exactly tractable 
variance

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)



Diffusion Models – Updated ELBO

log𝑝 𝑥 = logන𝑝 𝑥0:𝑇 𝑑𝑥0:𝑇

…∗

= 𝔼𝑞 𝑥1 𝑥0) log 𝑝𝜃(𝑥0|𝑥1) − 𝔼𝑞 𝑥𝑇−1 𝑥0)[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥𝑇−1 𝑝(𝑥𝑇))]

−෍

𝑡=1

𝑇−1

𝔼𝑞 𝑥𝑡−1 ,𝑥𝑡+1 𝑥0) 𝐷𝐾𝐿 𝑞 𝑥𝑡| 𝑥𝑡−1 ||𝑝𝜃 𝑥𝑡|𝑥𝑡+1

This has 2 random variables for each t, this makes 
the computation slightly hard. We would prefer 

for there to be need for just 1!

*Derivation in appendix!

We can arbitrarily modify the diffusion process distribution to

𝑞 𝑥𝑡| 𝑥𝑡−1 , 𝑥0 =
𝑞 𝑥𝑡−1| 𝑥𝑡, 𝑥0 𝑞 𝑥𝑡|𝑥0

𝑞 𝑥𝑡−1| 𝑥0



Diffusion Models – Updated ELBO

log𝑝 𝑥 = logන𝑝 𝑥0:𝑇 𝑑𝑥0:𝑇

…∗

= 𝔼𝑞 𝑥1 𝑥0) log 𝑝𝜃(𝑥0|𝑥1) − 𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝(𝑥𝑇)) −෍

𝑡=2

𝑇

𝔼𝑞 𝑥𝑡 𝑥0) 𝐷𝐾𝐿 𝑞 𝑥𝑡−1| 𝑥𝑡, 𝑥0 ||𝑝𝜃 𝑥𝑡−1|𝑥𝑡

*Derivation in appendix!

Reconstruction DenoisingPrior matching

• Reconstruction: Reconstruction from least noisy version (hyperparameter choice can make this arbitrarily small)

• Prior matching: Moving the posterior closer to the true prior on the final noisy step (0 for diffusion models)

• Denoising: Divergence between approximate denoising (𝑝𝜃) and true denoising (𝑞) steps

𝑞 𝑥𝑡−1| 𝑥𝑡, 𝑥0 is tractable and can be calculated exactly without any approximation:

𝑞 𝑥𝑡−1| 𝑥𝑡, 𝑥0 = 𝒩 𝑥𝑡−1; ഥ𝜇𝑡 , Σ𝑡𝑰

ഥ𝜇𝑡 =
𝛼𝑡 1 − ത𝛼𝑡−1 𝑥𝑡 + ത𝛼𝑡−1 1 − 𝛼𝑡 𝑥0

1 − 𝛼𝑡
, Σ𝑡=

1 − 𝛼𝑡 1 − ത𝛼𝑡−1
1 − 𝛼𝑡



Diffusion Models – Loss formulation

Loss can focus on the denoising term. Decomposing for each timestep, we can have the tth loss term:

𝐿𝑡 = 𝐷𝐾𝐿 𝑞 𝑥𝑡−1| 𝑥𝑡, 𝑥0 ||𝑝𝜃 𝑥𝑡−1|𝑥𝑡 + 𝐶

Since both inputs of the divergence are gaussians, this further simplifies to:

Lt = 𝔼𝑞
1

2Σ𝑡
ഥ𝜇𝑡 − 𝜇𝜃 x𝑡, 𝑡

2
+ C



Diffusion Models – Loss formulation

Further, we have 𝑥𝑡 = 𝛼𝑡𝑥(𝑡−1) + 1 − 𝛼𝑡 𝜖, 𝜖 ∼ 𝒩 0, 𝑰 from definition

This lets us rewrite the true mean of the denoising process as:

ҧ𝜇𝑡 =
1

𝛼𝑡
𝑥𝑡 −

1 − 𝛼𝑡

1 − ത𝛼𝑡
𝜖

We can also write the predicted mean as:

𝜇𝜃 𝑥𝑡, 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

1 − 𝛼𝑡

1 − ത𝛼𝑡
𝜖𝜃 𝑥𝑡, 𝑡

This lets us reformulate the loss to present a noise prediction problem:

𝐿𝑡−1 = 𝔼𝑥0,𝜖
1 − 𝛼𝑡

2

2Σ𝑡𝛼𝑡 1 − ത𝛼𝑡
𝜖 − 𝜖𝜃 𝑥𝑡 , 𝑡

2
+ 𝐶



Diffusion Models – Training and Inference

𝑥𝑡

How do we tell the model what timestep we are on?

Temporal encodings in the form or sinusoids (or anything, really)



Diffusion models - Summary

• Diffusion models are Markovian Hierarchical VAEs with extra restrictions

• The loss is the vanilla VAE ELBO loss with an added denoising term

• The encoder has 0 parameters

• The true denoising posterior can be exactly calculated

• The problem can be reformulated as a noise prediction problem

• There’s a ton of math underlying a rather simple intuition
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Normalizing Flows
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Sandcastles

How to create a sandcastle:

Step 1: Take a sandcastle

Step 2: Destroy the sandcastle

Step 3: Remember how you destroyed the sandcastle

Step 4: Reverse the process

Key Idea

Once you know how to reconstruct sandcastles, 

you can start with some different “sand”, apply 

this process, and end up with a different 

“sandcastle”



Normalizing Flows – Motivation 

• In VAEs we are faced with an intractable likelihood calculation

• We use an ELBO instead as a surrogate objective to MLE

• What if we wanted to do MLE exactly?

• That would require us to go from sandcastle to sand, and back, without any approximation or estimation!

x z

f

g

We would need for all 

the steps we do to be 

invertible!

It follows that 

f-1 = g



Normalizing Flows – Log likelihood

Bijection (and invertibility) allow us to directly compute the likelihood:

න𝑝𝑥 𝑥 𝑑𝑥 = න𝑝𝑧 𝑔(𝑥) 𝑑𝑧

𝑝𝑥 𝑥 = 𝑝𝑧 𝑔(𝑥)
𝑑𝑔(𝑥)

𝑑𝑥
→ 𝑝𝑧 𝑔(𝑥) 𝑑𝑒𝑡. 𝐽 𝑔(𝑥)

log 𝑝𝑥 𝑥 = log𝑝𝑧 𝑔(𝑥) + log 𝑑𝑒𝑡. 𝐽 𝑔(𝑥)

x z

f

g

In multiple dimensions, 
we generalize to the 

determinant of the 
Jacobian

Intuitively

z = g(x) determines 

where a point in x-space 

maps to z-space (where 

to move grains of sand)

|det. J(g(x))| describes 

how much probability 

mass (sand) gets moved 

in a local neighborhood.



Normalizing Flows – Closer look at the Jacobian



Normalizing Flows – Compositions 

Bijections allow for composing several functions together!

This follows that we can now define:

𝑧 ∼ 𝑝 𝑧

𝑥 = 𝑓𝑇 ∘ 𝑓𝑇−1 ∘ ⋯∘ 𝑓1 (𝑧)

x z

zT-1 z1z2

f1

f2

fT

g1

g2

gT

log 𝑝𝑥 𝑥 = log𝑝𝑧 𝑧0 +෍

𝑡=1

𝑇

log 𝑑𝑒𝑡. 𝐽𝑧𝑡 𝑔 𝑧𝑡−1 , 𝑧𝑇 = 𝑥, 𝑧0= 𝑧

Inverse: 𝑧 = 𝑔1 ∘ 𝑔2 ∘ ⋯ ∘ 𝑔𝑇(𝑥)



Normalizing Flows – Characteristics 

For a good (efficient) flow, we must have functions (steps) that are:

1. Expressive

2. Invertible

3. Offer cheap to compute Jacobian determinants

Computing a determinant is a cubic operation, but some special 

cases of matrices can make it very cheap.

Especially, diagonal matrices: 

For a diagonal matrix, the determinant is simply the product of its 

diagonal elements. Same applies for any triangular matrix!



Normalizing Flows – Construction 

𝛼 𝛽

Affine transform:

𝒛𝟐 = 𝜶𝒙𝟐 + 𝜷
x

x1

x2

z1

z2

z



Normalizing Flows – Composition 

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽

Is there a problem here?



Normalizing Flows – Construction with a shuffle 

𝛼 𝛽

Affine transform:

𝒛𝟐 = 𝜶𝒙𝟐 + 𝜷
x

x1

x2

z1

z2

z' z

Shuffle

This the most popular type of flow called 

as Coupling Flow – Used in 

implementations such as NICE and GLOW



Normalizing Flows – In practice for images

• Multiscale architecture

• Split along channels

• Employ CNNs

• Perform permutations using 1x1 Conv layers

GLOW!
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Appendix



Vanilla VAE ELBO 
optimization derivation

The KL divergence term that shows up 

tries to match the learned posterior q

to the true posterior p.

Since KL divergence is always positive, 

we can ignore that term and replace 

the equality with the inequality.



Initial ELBO optimization 
derivation for diffusion 
models

Ends up with expectation calculation 

over multiple random variables



Modified ELBO 
optimization derivation for 
diffusion models

Only involves one random variable per 

expectation term!
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