Slides borrowed from Abuzar Khan

Generative Adversarial
Networks — Part 2

11785 Deep Learning
Fall 2023

Jeel Shah, Harini Subramanyan

Topics for the week

 Transformers
* GNNs
 VAEs

* GANS

* Connecting the dots

The problem

Try visiting:
https://thispersondoesnotexist.com

* From a large collection of images of faces, can a
network learn to generate new portrait

— Generate samples from the distribution of “face” images
 How do we even characterize this distribution?

https://thispersondoesnotexist.com/

Discriminative vs Generative Models

Given a distribution of inputs X and labels Y.

Discriminative models

Discriminative models learn
conditional distribution P(Y | X)

Learns decision boundary between
classes.

Limited scope. Can only be used for
classification tasks.

E.g. Logistic regression, SVM etc.

Generative models

Generative models learn the joint
distribution P(Y, X)

Learns actual probability distribution of
data.

Can do both generative and
discriminative tasks.

E.g. Naive Bayes, Gaussian Mixture
Model etc.

Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

What we have seen: VAE

Generated
data

[Z~P(Z)J—> Ge(r;?;a)tor 9

The decoder of a VAE is a generator!

X - What input image X would have been encoded into the Z that | saw?
Trained by maximizing the likelihood of the data

— Likelihood maximization does not actually relate to whether the output
actually looks like a face

Can we make the training criteria a little more direct?

The problem

What’s the easiest way to check if the produced output looks like a face or not?

The problem

VAE

What’s the easiest way to check if the produced output looks like a face or not?

You could just eyeball ¢« the results and use your understanding of what
faces look like to evaluate what is generated.

Unfortunately, you are not a differentiable function <+

But what if we could, find a differentiable proxy for you and your
non-differentiable-ness?

What are GANSs

GenerativelAdversariall

Neural Networks
Generative Models which generate

data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training

GANS are made up of two competing networks (adversaries)
that are trying beat each other.

A “game” is being played between the two.

What are GANs?

Generated

Generator
G(Z)

data

_>X

Real data

X

Discriminator
D(X)

—» Real/Fake?

AN
/

The GAN formulation

Generator
Z~P(2Z) G(2)

Generated
data

— X

N

Discriminator
D(X)

— Real/Fake?

Real data /

X

*e Forreal data X, the desired output of the discriminatoris D(X) = 1
— The log probability that the instance is real, as computed by the discriminator

islog D(X)

* For synthetic data X, the desired output of the discriminatoris D(X) = 0

— The log probability that the instance is synthetic, as computed by the
discriminator, is log(1 — D (X))

* = log(1 —D(G(2)))

10

The GAN formulation

Generated

data

Generator
Z~P(2Z) G(2) —»X\

Real data /

Discriminator
D(X)

— Real/Fake?

X

*e The original GAN formulation is the following min-max optimization

minmax Ey . p,logD(x)+E, . p log(1l— D(x))

G D

* Objective of D: Optimize for D(x) = 1and D(G(z)) = 0
* Objective of G: Optimize for D(G(z)) = 1

11

The iterated Iearnmg

e
?

Discriminator learns perfect boundary

Generator moves its distribution past the boundary “into” the real distribution
Discriminator relearns new “perfect” boundary

Generator shifts distribution past new boundary

In the limit Generator’s distribution sits perfectly on “real” distribution and the
perfect discriminator is still random

12

Analysis of optimal behavior:

The optimal discriminator

Generated
data

Generator
Z~P(2Z) G(2) — X

— Real/Fake?

Real data
X

» The optimal discriminator would be a
Bayesian classifier
Py (x)
Px(x) + Ps(x)
— Assuming uniform prior

D(x) =

13

Analysis of optimal behavior:
The optimal generator

Generator
Z~P(2Z) 6(2)

Rea@/

Generate
data

I '

N

jiscriminator
D(X)

— Real/Fake?

_ Py (x)
Py (x) + Ps(x)

D(x)

X

 The optimal generator:
mGjn 2Dysp (PX (x), P, (x)) — log 4

 The optimal generator minimizes the Jensen Shannon
divergence between the distributions of the actual and

synthetic data!

— Tries to make the two distributions maximally similar

14

VAEs vs GANs

VAEs

Minimizing the KL divergence between
distributions of synthetic and true data

Uses an encoder to predict latent
distributions to optimize generator

More complex formulation

Simpler optimization. Trains faster and
more reliably

Results are blurry

GANSs

Minimizing the Jenson-Shannon
divergence between distributions of
synthetic and true data

Use a discriminator to optimize
generator

Simpler formulation

Noisy and difficult optimization

Sharper results

15

Training GANs

Notation

Data sample: x

Input noise vector: z

Distribution of Real Data: Py
Distribution of Generated Data: P,
Distribution of Input noise vector: P,
Generator: G(z; 6;;)

Discriminator: D (x; 6p)

Generator output: G(z), X
Discriminator output: D (x),D(G(z))

16

How to Train a GAN?

L |

Discriminator Generator
D(x) ‘ G(2)
Step 1: Step 2:
Train the Discriminator Train the Generator
using the current Generator to beat the Discriminator

Optimize: mGjn max Ep, logD(x) + Ep_log(1 —D(G(2)))

The discriminator is not needed after convergence

17

Training GANSs

Training Algorithm

Algorithm 1: Minibatch stochastic gradient descent training for GANs

for num epochs do:

for k steps do:
{z®) .. zm™} ~ P, (Sample m noise vectors)

{xM ., xm} ~ P, (Sample m data points)
L, « % ﬁl[logD(x(")) + log (1 -D (G(z(i))))]
«gBD « vep LD
Op «6p+a-gg,

end for

{z®) .. zm™} ~ P, (Sample m noise vectors)

1 .
Ly « —Xi%;log (1 —D(G(z(‘))))
96(; - VBG LG
O <6 —a-ge,
end for

Goodfellow et. al. (2014), Generative Adversarial Networks

18

Training GANSs

Training Algorithm

Algorithm 1: Minibatch stochastic gradient decent training for GANs

for num epochs do:
Hyperparameter.
for k steps do: _ Goodfell ¢ al d k=1
{Z(l)... z(m)} ~ PZ (Sample OO e OW e a . Use -
{xM ., xm} ~ P, (Sample m data points)
1 . .
Ly « — }Zl[logD(x(‘))+log(1 —D(G(z(‘))))]
9o, < Ve, Lp
GD €« BD + a- geD
end for
{z®) .. zm™} ~ P, (Sample m noise vectors) i i
1ym | (1 D(G((i)))) — In practice, this saturates
L. —ym — . .
¢ mai=108 “ early in training. We can
gﬁa ‘_Gvec Le instead maximize
¢ € Ug—a gg
end for G log(D(G(z))) for better
gradients.

min max Ep, log D(x) — Ep, log(D(G(2)))

m(’in max Ep, logD(x) — Ep, log(D(x)) .

Goodfellow et. al. (2014), Generative Adversarial Networks

Training GANSs

Theorems

’ L = ZDJS(PX(x), P, (x)) — log 4

Theorem 1: Global minima of the loss is achieved iff Py = P; where L = —log4
and D(x) =1/2

Theorem 2: if G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and P is updated so as to improve L, then P; converges
to Py . [Proofin Section 4.2]

20

Goodfellow et. al. (2014), Generative Adversarial Networks

Training GANSs

Distance Functions - KL

0.4 4

0.3 4

0.2 4

0.1 A

0.0 4

=4 =3=2=L 0 1 2 3 4

1. For Dg;(Px || Pg), red:

0.75 A

0.50 A

0.25 A

0.00 A

\ — DulPliQ)
t\ — Dxu(QIIP)

===l 0 1 2 3 4

1. High penalty (peak) where Px(x) is high but P;(x) is low.
2. Low penalty where Px(x) is low but P;(x) is high.

(It is fine to produce low quality images, but VERY BAD to drop image modes i.e. low

diversity)

2. For DKL(PG ” PX), blue:

1. High penalty (peak) where Py (x) is low but P;(x) is high.
2. Low penalty where Px(x) is high but P;(x) is low.
(It is fine to produce samples that cover fewer image modes i.e. to have low
diversity, but VERY BAD to have low quality)

Jonathan Hui, Why is it so hard to train GANs

P: Real, X
Q: Fake, G

21

Training GANSs

Distance Functions - JS

0.4 | |
P 0.08- — DsIPIIQ)

0.3 - —u

0.06 -
0.2

0.04 -
0.1 T 0702 .
0.0 0.00 -

-4-3-2-101 2 3 4 -4-3-2-10 12 3 4

D;s(Px, P;) was supposed to handle both issues: quality and diversity.

But it didn’t quite happen.

We need to look at what exactly causes this difficulty in training GANs, and why JS-Divergence
is not a good enough metric for our purpose.

Jonathan Hui, Why is it so hard to train GANs

Difficulty in Training GANs

Issues with the Discriminator

Discriminator Output Discriminator Output (confident)

Informative Informative
Gradients Gradients
Uninformative Uninformative
Gradients Gradients

As the Discriminator gets more and more confident, the region that gives us informative
gradients keeps shrinking.

Difficulty in Training GANs

Issues with the Discriminator

Discriminator Output (very confident) Discriminator Output (Step Function)

Informative Informative
Gradients Gradients
Uninformative Uninformative
Gradients Gradients

As the Discriminator gets more and more confident, the region that gives us informative
gradients keeps shrinking.

... Till we eventually achieve a step-function which tells us nothing about how G should be
changed for the desired effect on the model.

24

Difficulty in Training GANs

Uninformative Gradients

During early stages of training, when G is pretty-bad:

p(x)

Py (x) : : X(x) : : Pg (x)
X

Perfectly 1 Perfectly O

mGin max Ep, log D(x) + Ep, log(1 — D(G(2)))

~ Ep, log(1) + Ep log(1)

Not very informative..

25
RAIL, CS 182, 2021

Difficulty in Training GANs

Uninformative Gradients

How can we improve on this?

p(x)

Better D(x) ? P (x)

p(x)

Better
Py (x) and P;(x)?

/

26
RAIL, CS 182, 2021

What is the Goal?

Pg(x)
Py (x)
0.0800.0

Let us Consider the Worst case scenario,

p(x)

X

Let there be 2 distributions P and Q such that
they are only 1 for 1 value of x and 0 otherwise.
Let @ be the distance between the peaks of

these distributions.

So Far,

VAE: KL Divergence

p(x)
q(x)

DI\'L(/)K-'\) | I(/(’()/ — Z, /)/\)/II

xe X

GAN: JSD

1

e ey 1 ol 224
l)j.'\:(/’lff/)- 51)1{1. (/’H 7)*51).&'/. (7” 7)

KL Divergence =Y p 2
g KL(PIIQ)—ZP(X)Q(x)
_ P(0) PA) .
KL(PIIQ) =) P(0) o+ (D) 5y +
PQ .
1 .
2i=l0 KL(P||Q)=110g%+---O+~-O=O
x=0
P Q

670

1 0
KL(P||Q) = 110g6+ 010gI+ o0 = o

x=0

x=1

JS Divergence

P 1 1
m="7% JSD(PIIQ) = 5 KL(P|Im) + KL(QlIm)

2
_1 PO P ol 20) o) . .
JSDEPIIQ) = Z P(0) e H P s+ 5 Z QO) gy + AD ry +
PQm at x = 0, m=1;—1=
1
6=0 1 1)
JSD(PIIQ) = 5 (1log T + - 0 +--0) = 0
x=0
at x = 0, m=12L0=0.5
0+1
Pm Qm atx=1 m= %= 0.5
1
0.5 e SD(P|| —1(11 = & g 0+---o)
JSDPI|Q) =3\ Liogp ¢ + 1l0gp

= log (2)

x=0

x=1

Difficulty in Training GANs

Troubles with JS Divergence

p(x)
JSD = log(2)

Py (x) Pg(x)

006000,

X

JS Divergence is nearly identical either way
p(x) — The overlap is nearly 0.
I5D = Iog(2) The Gradients are unable to tell the model that
it should move from the first case to the second.

Py (x) Pg(x)

31
RAIL, CS 182, 2021

Improving GANs

A better distance metric than JSD

What we want: A metric to tell us how far apart the two distributions are, but

p(x) not just based on probabilities..
IlFarH
Py (x) -« o Pg(x)
0.0800.0
p(x)
“Not so far”
< >
x

RAIL, CS 182, 2021

32

Improving GANs

A better distance metric than JSD

p(x)

Py (x) Pg(x)

Imagine all the little points to be specs of dirt, and you want to move one pile
of dirt over to another.

Earth mover’s Distance or Optimal Transport: o
How much distance you need to cover to move all the parts of one oomos Sogees
distribution to the other? .

33
RAIL, CS 182, 2021

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

WP, Pe) = _dnf Egyeyeenlllx —]
Mapping of which x goes to whichy Distance between the points

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get.
As far as we are concerned, an alternative to min.

Goal: Find the optimal mapping, or optimal plan, of moving the specs of dirt from one place to another.

Arjovsky et al, 2017, Wasserstein GAN

34

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

WPy Po) = _inf | Egy~yanlllx =l

But...

1. Wedon’t know what Py is
2. y could be super complex itself

Which make learning y directly a very difficult problem.

This is where the Kantorovich-Rubinstein duality comes in:

W (Px,Ps) = sup lpr[f(x)] —Epc[f(x)]

lIfll,s1

Which looks a lot like the GANs we are familiar with!

minmax Ep, log D(x) — Ep, log(D(G(2)))

Arjovsky et al, 2017, Wasserstein GAN

35

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

WPy Po) = _inf | Egy~yanlllx =l

But...

Set of all 1-Lipschitz scalar functions:
1. Wedon’t know what Py is | f)—fOI<1|x —y|
2. y could be super complex itself

Basically, the function’s slope is

Which make learning y directly a very difficult problem. bounded by 1.

(K-Lipschitz is bounded by K)

This is where the Kantorovich-Rubinstein duality comes:

W(Px, PG) = Ssu

el IEPX[f(x)] —Epc[f(x)]

Which looks a lot like the GANs we are familiar with!

minmax Ep, log D(x) — Ep, log(D(G(2)))

36
Arjovsky et al, 2017, Wasserstein GAN

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

W (Px,P;) = sup]pr[f(x)] _IEPG[f(x)]

If1], =1
How?
One way (not the best way) is to clip Weights:

1. Onelayer: f(x;6) = ReLU(W;x + b,)
if Wy,;; € [—0.1,0.1], then the slope can’t be more than 0.1 (times the dimensionality)

2. Twolayer: f(x;0) = WoReLU(W;x + by) + b,
if Wi/2,i,; € [—0.1,0.1], then the slope is still bounded (not 0.1 though)

We can’t guarantee the function to be 1-Lipschitz, but some K-Lipschitz for some finite K.
And that’s enough.

Arjovsky et al, 2017, Wasserstein GAN

37

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

W (Px,Pg) = IIJ’SILIlp]pr[f(x)] — Ep, [f ()]
<1
How?

1. Update D (6p) using gradient of E, . p [D(x)] — E,.p,[D(G(2)]
(we interchange z and x in different equations for convenience, but they mean the same thing)

2. Clip all the weights in 8 to some [—c, c]

3. Update G (6;) to minimize —E, . p_[D(G(2)]
(or equivalently maximize E, . p,[D (G (2)])

Arjovsky et al, 2017, Wasserstein GAN

38

Wasserstein GAN
Graphics

1.0

— Density of real
—— Density of fake
—— GAN Discriminator

WGAN Critic

-0.2} ' Vanishing gradients]
in regular GAN

-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimaxr GAN saturates and results in vanishing
gradients. OQur WGAN critic provides very clean gradients on all parts of the space.

39

Arjovsky et al, 2017, Wasserstein GAN

Wasserstein GAN

Formulation

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

W (Px,P;) = sup]EPX[f(x)] _IEPG[f(x)]

|Ifl|,s1
How?
1. Update D (6p) using gradient of E, . p [D(x)] — E, . p,[D(G(2)]
(we interchange z and x in different equations for convenience, but they mean the same thing)

2. Clip all the weights in 8 to some [—c, c]

3. Update G (65) to minimize —E, . p,[D(G(2)]
(or equivalently maximize E, . p,[D(G(2)])

But
If the clipping parameter is too large, then it takes too long to train the Discriminator to optimality,
If too small, then the gradients vanish before reaching the generator.

Not the best way to do this..

Arjovsky et al, 2017, Wasserstein GAN

40

Wasserstein GAN
Gradient Penalty

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

W(Px, Pg) = |Ifsll|1p Ep, [f ()] — Ep, [f ()]

What if: we instead directly attempt to include the Lipschitz constraint in the equation?

By [P0 = 2(/I7: DG, =1)" | ~E.—p, [DG(2)]

Weight clipping (¢ = 0.001)
Basically: Push the norm of the gradient to be close to 1 107 —— Weight clipping (c = 0.01)
Weight clipping (¢ = 0.1)

=== (Gradient penalty

0+

——

—-101

—201

Gradient norm (log scale)

13 10 7 4

Gulrajani et al, 2017, Improved Training of Wasserstein GANs Discriminator layer

Wasserstein GAN

Spectral Norm

Earth mover’s Distance or Optimal Transport:
How much distance you need to cover to move all the parts of one distribution to the other?

W(Px,P;) = sup]pr[f(x)] _IEPG[f(x)]

Ifl] <1

W,

W, « ——
Yoo

Where o (W)) is the spectral norm of W,

We won’t go into details here, but it is sufficient to know that this is a more “principled” way to
enforce the Lipschitz constraint on the weights.

It comes from the fact that the Lipschitz norm (the bound) for a composite function is upper bounded
by the product of the Lipschitz norms of the composing functions.

Miyato et al, 2018, Spectral Normalization for Generative Adversarial Networks

42

Poll (@1704)

Which of the following is True:

a. KL Divergence can avoid exploding gradient problem.

s. Wasserstein Distance can fix vanishing gradient problem
c. JS Divergence can fix vanishing gradient problem

. JS Divergence can avoid exploding gradient problem.

Poll (@1704)

Which of the following is True:

a. KL Divergence can avoid exploding gradient problem.

8. Wasserstein Distance can fix vanishing gradient problem
c. JS Divergence can fix vanishing gradient problem

. JS Divergence can avoid exploding gradient problem.

GANs GANs Everywhere
Different Types of GANs

With the advent of WGANs and some other clever ways to give us easier
training for GANs, there were several types of GANs proposed in literature:

Conditional GAN

LapGAN (Laplacian GAN, stacked Conditional GANSs)
BiGAN (Involves bothz— Xand X — z)

Recurrent Adversarial Network

Categorical GAN

InfoGAN

AAE

STAR-GAN

Pix2Pix

CycleGAN

©CONOOREWON =

[ERY
o

45

Conditional GAN
What is it?

® Provides more control in what type of images are generated by the

generator
® Are not strictly unsupervised learning algorithms because they require

labeled data as input to the additional layer
e Allows us to generate the outputs for exactly the classes or labels that we

Gscriminator D(xly) @ \

00000
\
-0000® ©0000)

@"efa‘m G(zly) [. (Y X) .} \
00000

desire

((OOOQQ] [OOOQO])

Mirza & Osindero, 2014, Conditional Generative Adversarial Nets

Conditional GAN

Injecting extra information

Mathematical expression for a simple GAN -

m(%n max V(D,G) = Eprpia(a) 108 D(2)] + Eznp, (2)[log(l — D(G(2)))]

Mathematical expression for a Conditional GAN -

m(%n max V(D,G) = Egmppua(z) 10g D(x|y)] + Ezrp, (2)[log(1 — D(G(2|y)))]

47
Implementing Conditional Generative Adversarial Networks (paperspace.com)

https://blog.paperspace.com/conditional-generative-adversarial-networks/

Conditional GAN

Applications

Image-to-image translation

Labels to Street Scene Labels to Facade BW to Color

input output

Aerial to Map

R

input oput

output
Edges to Photo

input output input output

output

https://arxiv.org/pdf/1611.07004.pdf

48

https://arxiv.org/pdf/1611.07004.pdf

Conditional GAN

Applications

This bird has a This flower has
This bird is white yellow belly and overlapping pink
with some black on tarsus, grey back, pointed petals
its head and wings, wings, and brown surrounding a ring
and has a long throat, nape with of short yellow

orange beak a black face filaments Textto image syntheSis

T —— 7

(a) StackGAN
Stage-I
64x64
images
(b) StackGAN
Stage-II
256x256 Figure 1. Comparison of the proposed StackGAN and a vanilla
images one-stage GAN for generating 256256 images. (a) Given text
descriptions, Stage-I of StackGAN sketches rough shapes and ba-
sic colors of objects, yielding low-resolution images. (b) Stage-II
of StackGAN takes Stage-I results and text descriptions as inputs,
(c) Vanilla GAN and generates high-resolution images with photo-realistic details.
256x256 (c) Results by a vanilla 256 X256 GAN which simply adds more
images upsampling layers to state-of-the-art GAN-INT-CLS []. It is un-

able to generate any plausible images of 256 X256 resolution.

https://arxiv.org/pdf/1612.03242.pdf

https://arxiv.org/pdf/1612.03242.pdf

Cycle GAN

Translating Images

GANs can be used for much more than image generation.
By clever training, we can even use them for image translation.

Monet 7_ Photos Summer > Winter

Zebras Z_ Horses

zebra —» horse

horse — zebra

Photograph Van Gogh Cezanne

Zhu et al, 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

50

Why CycleGAN?

Lets try methods we have discussed so far

Cycle GAN

Autoencoder Alternative

Unless you have paired images, achieving the above with a simple
Autoencoder is simply not possible.

So, what if we just threw a GAN (or a WGAN) at it?

Zhu et al, 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

52

Cycle GAN
Regular GAN Alternative

This only trains the GAN to
produce Zebra-like images. Not
necessarily having to do
ANYTHING with the input image.

Real / Fake

We also need a way to make
sure that the produced image is
closely related to the input
image for the generator.

In short, this may not translate
but instead completely ignore
what you fed in.

53
Zhu et al, 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Cycle GAN

Cycle consistency Loss

This is where Cycle GANs come in.

On top of the regular GAN training to ensure that the generated image looks like
a zebra, the cycle consistency loss (just a reconstruction loss) ensures that the

generated image has retained enough information about the input enough to
retrieve it using a different “special purpose” generator.

e

N 2 e o
W/E ’/ff:‘\

e

NV ek H o X
IS /Zk
Generator 1 Generator 2 g Al

MSE / Reconstruction Loss

Zhu et al, 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

54

What we learn from CycleGAN

. There is no paired dataset of Zebras and
Horses

. So there is no easy discriminative method to
train Zebras from Horses

. But using GANSs, we can train distributions to
match.

Neural Style Transfer Results

Style transfer with CycleGAN

Input Monet

L ¥ g 1 X
anr?
AN

”~
»

- T
e e ol >
Y)
3 s]
® »ra

-

Wittana: it ae)

| I

Comparing

. Neural Style Transfer

- Need a content and style image
_ Specific & small number of images
- More control

https://reinakano.com/arbitrary-image-stylization-tfjs/

: CycIeGAN

Just need 2 domains of images. No need for specific content or style
images

- Many similar pictures
_ Specificity of images doesn’t really matter

https://reinakano.com/arbitrary-image-stylization-tfjs/

Comparing

For specific and small no. of images
. Neural Style Transfer
- Need a content and style image
Specific & small number of images
More control
https://reinakano.com/arbitrary-image-stylization-tfis/

. CycleGAN

_ Just need 2 domains of images. No need for specific content or style
images

- Many similar pictures

_ Specificity of images doesn’t really matter

https://reinakano.com/arbitrary-image-stylization-tfjs/

Comparing

For specific and small no. of images
. Neural Style Transfer
- Need a content and style image
Specific & small number of images
More contr

https://reinj/ Specificity of images do not really Itvlization-tfis/

. CycleGAN . o

_ Just need 2 domains of images. No need for specific content or style
images

- Many similar pictures

_ Specificity of images doesn’t really matter

https://reinakano.com/arbitrary-image-stylization-tfjs/

StarGAN

Generalization of CycleGAN

(a) Training the discriminator (b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

Depth-wise concatenation

Onglnal

@Bﬂ

Reconstructed Real / Fak Domain
Target domain Input i |mage image eal / Fake classHication

Depth-wise concatenation

Real image Fake image

0 —

(1),(2) ,—J

Real / Fake

Domain
classification

Figure 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator G. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (c) G tries to

reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from
real images and classifiable as target domain by D.

Given training data from two different domains, StarGANs learn to translate
images from one domain to the other

For Example — changing the hair color (attribute) of a person from black (attribute
value) to blond (attribute value).

Choi et al, 2017, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

61

StarGAN

How does it work?

(b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

| Depth-wise concatenation

. Or|g|nal
—

fX}*E&’

|

Reconstructed
Target domain Input image P — image

Depth-wise concatenation

Domain
classification

Real / Fake

® G takesin asinput both the image and target domain label and generates an fake image.

e It then tries to reconstruct the original image from the fake image conditioned on the
original domain label.

e Discriminator tells if image is fake and classifies an image to its corresponding domain, so
G will ultimately learn to generate realistic images corresponding to the given target

domain. (d)

62
Choi et al, 2017, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

StarGAN

Image-to-Image Translation

CelebA label ‘ RaFD label Mask vector
' d / Brown / Male / Y B Angry / Fearful / Happy / Sad / Disgusted
(a) Training the discriminator (b) Original-to-target domain (¢) Target-to-original domain (d) Fooling the discriminator

!

Output image and original domain label

Real image Fake image

(1) (2)

(1), 'l“’

L

@
—

CelebA label ~ RaFD label

Real? :‘,-f,; 0

CelebA Iabel RaFD label

(1) when training with real images

2) when training with fake images :
(2) when training with fake images ' Input image and target domain label Reconstructed image Training with CelebA

63
Deep Learning Notes: StarGAN. From the perceived daunting task of... | by ashwin bhat | Medium

https://medium.com/@ashwinbhat2906/deep-learning-notes-stargan-f5506c2ce833

StarGAN
Objectives of StarGAN

1.
2.

Objectives of Discriminator:

Identify whether an image is fake or not.

Predict the target domain of the input image.

©)

Uses an auxiliary classifier to learn the mapping of original image and

its corresponding domain from the dataset

Choi et al, 2017, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

64

StarGAN
Objectives of StarGAN

Objectives of the Generator:

1. The images generated are realistic.
2. The images generated are classifiable as target domain by D.

3. Able to reconstruct the original image from the fake image given the

original domain label. (Cycle consistency Loss)

Choi et al, 2017, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

65

BiGAN

Adversarial Feature Learning

A Bi-Directional Generative Adversarial Network trains an
encoder/decoder pair in an elegant fashion. The discriminator tries
to tell the difference between pairs of real data and encoded real

data from data generated from prior samples and prior samples.
[DKD16]

The BiGAN training objective is defined as a minimax objective

Iél,iél max V(D,E,QG) 2
where
V(Da E, G) = ExNPx [IEzrva('Ix) [IOgD(x?Z)]I] +]EZNPZ [EEXNPGHZ) [log (1 o D(X,Z))l] :
log D(;E(x)) log(l—D‘(rG(Z),Z))
(€)]

66
Donahue et al, 2016, Adversarial Feature Learning

BiGAN

Adversarial Feature Learning

BiGAN Architecture

Generated Images

R

Latent Codes 2
EE EE @ Real Image,
HEEN | Fake Code

Discriminator O R

Generated Real Code,
Latent Codes Fake Image?

Dataset Images

Donahue et al, 2016, Adversarial Feature Learning

LAPGAN
Stacking CGANs

A Laplacian GAN is constructed of a chain of conditional
GANs, to generate progressively larger images. A GAN
generates small, blurry images. A conditional GAN generates
larger images conditioned on the smaller image, repeated
until you reach the desired size.[DCSF15]

Denton et al, 2015, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

LAPGAN
Stacking CGANs

3
ﬁ_’Real/
g‘ Generated?

Real/

Generated?

Real/Generated?

Real/Generated?

Figure 2: The training procedure for our LAPGAN model. Starting with a 64x64 input image I from our
training set (top left): (i) we take Ip = I and blur and downsample it by a factor of two (red arrow) to produce
I; (ii) we upsample I; by a factor of two (green arrow), giving a low-pass version lo of Io; (iii) with equal
probability we use [, to create either a real or a generated example for the discriminative model Dy. In the real
case (blue arrows), we compute high-pass ho = Ip — lo which is input to Do that computes the probability of
it being real vs generated. In the generated case (magenta arrows), the generative network G receives as input
a random noise vector zo and [y. It outputs a generated high-pass image fLo = Go(20,lo), which is input to
Dy. In both the real/generated cases, Dy also receives [y (orange arrow). Optimizing Eqn. 2, G thus learns
to generate realistic high-frequency structure ho consistent with the low-pass image lo. The same procedure is
repeated at scales 1 and 2, using /1 and I>. Note that the models at each level are trained independently. At
level 3, I3 is an 8 X8 image, simple enough to be modeled directly with a standard GANs G3 & Ds.

Denton et al, 2015, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

GANs
And Many More...

70

Summary

Training GANs is difficult for a lot of reasons

Primarily, the issues of the discriminator capturing the wrong boundary,
being too confident (and non differentiable), and getting saturated due to
the formulation of the objective.

We can remedy this by using Earth mover’s metric — Wasserstein Distance
The Lipschitz constraint of WGANSs can be imposed in several ways including
weight clipping, gradient penalties, and spectral norm.

There are (so) many variants of GANs which do more than just image

generation and are able to do image translation (or style transfer) as well!

References

d StarGAN — Image-to-lmage Translation | by Pranoy Radhakrishnan | Towards Data Science

d Deep Learning Notes: StarGAN. From the perceived daunting task of... | by ashwin bhat | Medium

https://towardsdatascience.com/stargan-image-to-image-translation-44d4230fbb48
https://medium.com/@ashwinbhat2906/deep-learning-notes-stargan-f5506c2ce833

