
Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Fall 2023

1

Story so far

• Neural networks for computation
• All feedforward structures

• But what about..

2

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

3

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network

4

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

5

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

6

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

7

if

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

8

if

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

9

Example

10

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

11

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…
» And so on…

13

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

14

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

15

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
16

Loopy network

• Let be the output of the i-th neuron just before it responds to the
current field

• Let be the output of the i-th neuron just after it responds to the current
field

• If , then
– If the sign of the field matches its own sign, it does not flip

17

Loopy network

• If , then

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

18

Globally
• Consider the following sum across all nodes

– Assume

• For any unit that “flips” because of the local field

• This is strictly positive

19

Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in
20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

,

• is bounded

,

• The minimum increment of in a flip is

, { , .. }

• Any sequence of flips must converge in a finite number of steps 21

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of
• The 0.5 is only needed for convention

• The evolution of a Hopfield network
constantly decreases its energy

22

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1

24

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

Poll 1

25

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of

• The evolution of a Hopfield network
constantly decreases its energy

• Where did this “energy” concept suddenly sprout
from?

26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..
30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

Response of current dipole

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

34

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system 36

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

Image pilfered from
unknown source

39

Evolution

• The network will evolve until it arrives at a local minimum in the
energy contour

• We proved that every change in the network will result in decrease
in energy
– So path to energy minimum is monotonic 40

Evolution

• For threshold activations the energy contour is only
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 41

Evolution

• For threshold activations the energy contour is only
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 42

Evolution

• For threshold activations the energy contour is only defined on a
lattice
– Corners of a unit cube

• For tanh activations it will be a continuous function
– With output in [-1 1] 43

“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for tanh activation

44

“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because

If is a local minimum, so is

45

3-neuron net

• 8 possible states
• 2 stable states (hard thresholded network)

46

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/47

Hopfield net examples

48

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

49

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

50

Writing
and arranging the weights as a matrix

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete

version 51

Poll 2

52

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local
minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Poll 2

53

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a
local minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

54

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

55

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
56

Storing patterns: Training a network

• A network that stores pattern also naturally stores
– Symmetry since is a function of yiyj

-1

1

1

1 -1

1

-1

-1

-1 1

57

A network can store multiple patterns

• Every stable point is a stored pattern
• So, we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns, and

• How many patterns can we store intentionally?

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

58

Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well

– Intuitively, patterns must ideally be maximally far apart

Stored patterns
Ghosts (negations)

59

Evolution of the network
• Note: for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:
– Each step rotates the vector and then projects it onto the nearest

corner

60

1

1

-1

-1

2D example 3D example

Storing patterns
• A pattern is stored if:

– for all target patterns
• is in the same orthant as

• Training: Design such that this holds

• Simple solution: is an Eigenvector of
– And the corresponding Eigenvalue is positive

– More generally orthant() = orthant()

• How many such can we have?

61

Random fact that should interest you

• Number of ways of selecting two -bit binary
patterns and such that they differ from

one another in exactly bits is

• The size of the largest set of -bit binary
patterns that all differ from one
another in exactly bits is at most
– Trivial proof..

62

Only N patterns?

• Symmetric weight matrices have orthogonal Eigen vectors
• You can have max orthogonal vectors in an -dimensional

space
63

(1,1)

(1,-1)

random fact that should interest you

• The Eigenvectors of any symmetric matrix
are orthogonal

• The Eigenvalues may be positive or negative

64

Storing more than one pattern
• Requirement: Given

– Design such that
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that
can be stored?

65

Storing patterns

• Any (binary) eigen vector with a real eigen
value is stored

• A square matrix can have up to eigen
vectors
– So, we can “intentionally” store up to patterns

• Problem?

66

Storing orthogonal patterns
• The Eigenvectors span the space
• Any pattern can be written as

• Many of these will have the form

• Spurious memories
• The fewer memories we store, and the more distant they

are, the more likely we are to eliminate spurious memories

67

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
68

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
69

Can we do something
about this?

How do we find this
network?

Storing a pattern

• Design such that the energy is a local
minimum at the desired

1

-1

-1

-1 1

1

1

-1

1 -1

70

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
71

Estimating the Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 72

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

73

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

74

Optimizing W

• Simple gradient descent:

75

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

76

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

77

The training again..

• Note the energy contour of a Hopfield
network for any weight

78state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

79state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

80state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

81state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

82state

Energy

Identifying the valleys..

83state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

84

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley

– Update weights
•

85

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley

– Update weights
•

86

Which valleys?

87state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

88state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

89state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

90

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley

– Update weights
•

91

A possible problem

92state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

93state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

94state

Energy

Raising the neighborhood

95state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position

– Update weights
•

96

Story so far

• Hopfield nets with neurons can store up to
random patterns

– But comes with many parasitic memories

• Networks that store memories can be
trained through optimization
– By minimizing the energy of the target patterns,

while increasing the energy of the neighboring
patterns

97

Storing more than N patterns

• The memory capacity of an -bit network is at
most
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is

• How do we increase the capacity of the
network
– How to store more than patterns

98

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

99

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

100

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

102

Visible bits

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

103

Visible bits Hidden bits

Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

104

Visible bits Hidden bits

Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended

patterns:
– Making errors in the don’t care bits doesn’t matter

105

Visible bits Hidden bits

Robustness of recall

• The value taken by the K hidden neurons during recall
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

106

Robustness of recall

• Also, we can have multiple extended patterns
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons

107

Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits
– Possible to set the don’t care bits such that the overall pattern (and

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

• To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

108

A probabilistic interpretation of
Hopfield Nets

• For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution
– Minimizing energy maximizes log likelihood

109

The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

110

Continuing the Boltzmann analogy

• The system probabilistically selects states with
lower energy
– With infinitesimally slow cooling, at it

arrives at the global minimal state
111

Spin glasses and the Boltzmann
distribution

• Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at in a universe
where
– Energy landscape of a spin-glass model: Exploration and

characterization, Zhou and Wang, Phys. Review E 79, 2009

112

state

Energy

Hopfield nets: Optimizing W

• Simple gradient descent:

113

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Simple gradient descent:

114
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Update rule

115

Natural distribution for variables: The Boltzmann Distribution

From Analogy to Model

• The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

• So, let’s explicitly model the Hopfield net as a
distribution..

116

Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of
the state
– And the expected value of the state

state

PE

The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state

at temperature is

• At each state it has a potential energy
• The internal energy of the system, representing its

capacity to do work, is the average:

The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the
two terms

The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

• The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.

The Energy of the Network

• We can define the energy of the system as before
• Neurons are stochastic, with disorder or entropy
• The equilibribum probability distribution over states is the

Boltzmann distribution at T=1
– This is the probability of different states that the network will

wander over at equilibrium

Visible
Neurons

The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

124

The field at a single node

• Let and be the states with the ith bit in the and
states

•

125

The field at a single node

• Giving us

• The probability of any node taking value 1
given other node values is a logistic

126

Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state , which

can take value 0 or 1 with a probability that depends on the local
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible
Neurons

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

2. Iterate

130

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate

131

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate

132

Assuming T = 1

Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

– Estimates the probability that the bit is 1.0.
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

2. Iterate

133

Assuming T = 1

Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

1. Initialize network with initial pattern

2. For
i. For iter

a) For

134

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion: Initialize the entire
network and let the entire network evolve

Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
135

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
136

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
137

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
138

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter: increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior

Annealing

• Let the system evolve to “equilibrium”
• Let be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

1. Initialize network with initial pattern

2. For

i. For iter

a) For

139

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

140

1. Initialize network with initial pattern

2. For

i. For iter

a) For

Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a
conditional distribution

• What is the overall probability of the entire set
of neurons taking any configuration

141

The overall probability

• The probability of any state can be shown to be
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
142

The overall probability

• Stop when the running average of the log
probability of patterns stops increasing
– I.e. when the (running average) of the energy of

the patterns stops decreasing
143

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

– The parameter of the distribution is the weights matrix

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

Training the model

• How does the probabilistic view affect how we
train the model?

• Not much…

146

Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability
distribution to states
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to

other patterns

Training the network

• Must train the network to assign a desired probability distribution
to states

• Given a set of “training” inputs
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed: maximize likelihood of stored states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all “training”
vectors
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

∈𝐒

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!

The second term

" "
"

" "
"

" "
"

The second term

" "
"

" "
"

" "
"

The second term

" "
"

" "
"

" "
"

The second term

• The second term is simply the expected value
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we
can compute it by sampling!

Estimating the second term

• The expectation can be estimated as the average of
samples drawn from the distribution

• Question: How do we draw samples from the Boltzmann
distribution?
– How do we draw samples from the network?

The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be

The simulation solution for the second
term

• The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”

Maximum Likelihood Training

• The overall gradient ascent rule

∈𝐒

Sampled estimate

Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

∈𝐒

Overall Training

∈𝐒

state

Energy

Note the similarity to the update rule for the Hopfield network

Adding Capacity to the Hopfield
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

161

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

162

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

163

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Training the network

• For a given pattern of visible neurons, there are any
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible
Neurons

Hidden
Neurons

The patterns
• In fact we could have multiple hidden patterns

coupled with any visible pattern
– These would be multiple stored patterns that all give

the same visible output
– How many do we permit

• Do we need to specify one or more particular
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?

Boltzmann machine without hidden
units

• This basic framework has no hidden units

• Extended to have hidden units

∈𝐒

With hidden neurons

• Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown
– Since they are only defined over visible neurons

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

Must train to maximize
probability of desired
patterns of visible bits

Training the network

• Must train the network to assign a desired
probability distribution to visible states

• Probability of visible state sums over all
hidden states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training”
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term

∈𝐕

∈𝐕

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states
for each visible configuration in our training set

– But the second term is summed over all states

∈𝐕

" "
∈𝐕

" "
"

∈𝐕

The simulation solution

• The first term is computed as the average
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as
the average of sampled states when the network
is running “freely”

∈𝐕

More simulations

• Maximizing the marginal probability of requires
summing over all values of
– An exponential state space
– So we will use simulations again

Visible
Neurons

Hidden
Neurons

Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

Visible
Neurons

Hidden
Neurons

Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

Visible
Neurons

Hidden
Neurons

Gradients

• Gradients are computed as before, except that
the first term is now computed over the
expanded training data

Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped

training samples
• Compute gradient and update weights
• Iterate

𝑺 ∈𝐒

Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than

Hopfield nets
• But also enables computation of probabilities

of patterns, and completion of pattern

Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate

𝑺 ∈𝐒

Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value

Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?

Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, …. , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features, anchor features, estimate a posteriori probability

distribution over classes
• Or choose most likely class

Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small
number of bits

Solution: Restricted Boltzmann
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul

Smolensky

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

VISIBLE

HIDDEN

VISIBLE

HIDDEN

Recap: Training full Boltzmann
machines: Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

-1

1

1

1 -1

Visible Neurons Hidden Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!

VISIBLE

HIDDEN

Recap: Training full Boltzmann
machines: Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

-1

1

1

1 -1

Visible
Neurons

Hidden
Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN

Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v

Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to
hidden node j)

• <vi, hj> represents average over many generated training
samples

v0

h0

v1

h1

v2

h2

v

h

jiji

ij
hvhv

w

vp 0)(log

i

j

i i i

j j j

Recall: Hopfield Networks
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

195state

Energy

A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of
the gradient

v0

h0

v1

h1

10)(log

jiji
ij

hvhv
w

vp

i

j

i

j

Restricted Boltzmann Machines

• Excellent generative models for binary (or
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models

197

Continuous-values RBMs

VISIBLE

HIDDEN

VISIBLE

HIDDEN

Hidden units may also be continuous values

Other variants

• Left: “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm

Topics missed..

• Other algorithms for Learning and Inference
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …

200

