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Story so far

• Neural networks for computation
• All feedforward structures

• But what about..
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Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron
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• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network
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Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:
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Loopy network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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Loopy network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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A neuron “flips” if weighted sum of other 
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!



Example

• Red edges are +1,  blue edges are -1
• Yellow nodes are -1, black nodes are +1
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Example
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Example
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• Red edges are +1,  blue edges are -1
• Yellow nodes are -1, black nodes are +1



Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…
» And so on…
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20 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”

௜ ௝௜ ௝ ௜

௝ஷ௜

A neuron “flips” if 
weighted sum of other 
neuron’s outputs is of 
the opposite sign

But this may cause
other neurons to flip!
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120 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”
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Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

• Will this behavior continue for ever??
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Loopy network

• Let ௜
ି be the output of the i-th neuron just before it responds to the 

current field
• Let ௜

ା be the output of the i-th neuron just after it responds to the current 
field

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ ,  then ௜
ା

௜
ି

– If the sign of the field matches its own sign, it does not flip

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜
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Loopy network

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ ,  then ௜
ା

௜
ି

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜

௝ஷ௜

௜
ା

௝௜ ௝ ௜

௝ஷ௜

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase 

௜ ௝௜ ௝ ௜

௝ஷ௜
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Globally
• Consider the following sum across all nodes

– Assume ௜௜

• For any unit that “flips” because of the local field

• This is strictly positive
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Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in 
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Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of 

௜௝ ௜ ௝

௜,௝ஷ௜

௜ ௜

௜

• is bounded

௠௔௫ ௜௝

௜,௝ஷ௜

௜

௜

• The minimum increment of in a flip is

௠௜௡
௜, {௬೔, ௜ୀଵ..ே}

௝௜ ௝

௝ஷ௜

௜

• Any sequence of flips must converge in a finite number of steps 21



The Energy of a Hopfield Net

• Define the Energy of the network as

– Just  0.5 times the negative of 
• The 0.5 is only needed for convention

• The evolution of a Hopfield network 
constantly decreases its energy
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Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the 
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to 
align themselves in this manner
– Causing the field at other  neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of 
the network
– The energy is lower bounded and the decrements are upper bounded, so the 

network is guaranteed to converge to a stable state in a finite number of steps
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Poll 1

24

Hopfield networks are loopy networks whose output activations 
“evolve” over time 

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared 
parameter MLPs

 True
 False
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The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of 

• The evolution of a Hopfield network 
constantly decreases its energy

• Where did this “energy” concept suddenly sprout 
from?
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Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
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Analogy: Spin Glasses

• ௜ is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction 
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924) 

Total field at current dipole:

intrinsic external
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• A Dipole flips if it is misaligned with the field 
in its location

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

௜ ௝௜ ௝

௝ஷ௜

௜

29

Analogy: Spin Glasses



Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

௜ ௝௜ ௝

௝ஷ௜

௜
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• When will it stop???

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜
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Analogy: Spin Glasses



• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

௜ ௝௜ ௝

௝ஷ௜

௜

Response of current dipole

௜
௜ ௜ ௜

௜
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Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable 
configuration
– I.e. the system remembers its stable state and returns to it

state

PE
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for 
conformity with thermodynamic system 36



Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

state
PE
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Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it 

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

Image pilfered from
unknown source
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Evolution

• The network will evolve until it arrives at a local minimum in the 
energy contour

• We proved that every change in the network will result in decrease 
in energy
– So path to energy minimum is monotonic 40



Evolution

• For threshold activations the energy contour is only 
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 41

௜ ௝௜ ௝ ௜

௝ஷ௜



Evolution

• For threshold activations the energy contour is only 
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 42
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Evolution

• For threshold activations the energy contour is only defined on a 
lattice
– Corners of a unit cube

• For tanh activations it will be a continuous function 
– With output in [-1 1] 43

௜ ௝௜ ௝ ௜

௝ஷ௜



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for tanh activation

44



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because 

If is a local minimum, so is 
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3-neuron net

• 8 possible states
• 2 stable states (hard thresholded network)
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/47



Hopfield net examples

48



Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜
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Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

50

Writing ଵ ଶ ଷ ே
ୃ

and arranging the weights as a matrix 



Story so far
• A Hopfield network is a loopy binary network with symmetric 

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will 
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is 

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete 

version 51



Poll 2

52

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local 
minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting 

the weights matrix



Poll 2
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Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a 
local minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting 

the weights matrix



Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

54



Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..
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How do we remember a specific 
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network 
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
56



Storing patterns: Training a network

• A network that stores pattern also naturally stores 
– Symmetry  since is a function of yiyj

௝௜ ௝ ௜

௝ழ௜௜

-1

1

1

1 -1

1

-1

-1

-1 1
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A network can store multiple patterns

• Every stable point is a stored pattern
• So, we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns, and 

• How many patterns can we store intentionally?

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1
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Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well

– Intuitively, patterns must ideally be maximally far apart

Stored patterns
Ghosts (negations)
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Evolution of the network
• Note:  for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:  
– Each step rotates the vector and then projects it onto the nearest 

corner

60
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1

-1
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2D example 3D example



Storing patterns
• A pattern is stored if:

– for all target patterns
• is in the same orthant as 

• Training: Design such that this holds

• Simple solution:  is an Eigenvector of 
– And the corresponding Eigenvalue is positive

– More generally  orthant( ) = orthant( )

• How many such can we have?
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Random fact that should interest you

• Number of ways of selecting two -bit binary 
patterns and such that they differ from 

one another in exactly bits is 

• The size of the largest set of -bit binary 
patterns that all differ from one 
another in exactly bits is at most 
– Trivial proof.. 
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Only N patterns?

• Symmetric weight matrices have orthogonal Eigen vectors
• You can have max orthogonal vectors in an -dimensional 

space
63
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random fact that should interest you

• The Eigenvectors of any symmetric matrix 
are orthogonal

• The Eigenvalues may be positive or negative
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Storing more than one pattern
• Requirement: Given 

– Design such that 
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that 
can be stored?
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Storing patterns

• Any (binary) eigen vector with a real eigen 
value is stored

• A square matrix can have up to eigen 
vectors
– So, we can “intentionally” store up to patterns

• Problem?
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Storing orthogonal patterns
• The Eigenvectors span the space
• Any pattern can be written as

• Many of these will have the form

• Spurious memories
• The fewer memories we store, and the more distant they 

are, the more likely we are to eliminate spurious memories

67



The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
68



The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stable
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– But this may come with many “parasitic” memories
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Can we do something 
about this?

How do we find this 
network?



Storing a pattern

• Design such that the energy is a local 
minimum at the desired 

1

-1

-1

-1 1

1

1

-1

1 -1
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Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of 

the target patterns
71



Estimating the Network

• Estimate (and ) such that 
– is minimized for 

– is maximized for all other 

• Caveat: Unrealistic to expect to store more than 
patterns, but can we make those patterns 

memorable 72



Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

73

The bias can be captured by 
another fixed-value component



Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target 
patterns

74



Optimizing W

• Simple gradient descent:

75



Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

77



The training again..

• Note the energy contour of a Hopfield 
network for any weight 

78state

Energy

Bowls will all actually be
quadratic



The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more 

frequently

79state

Energy

Target patterns



The negative class

• The second term tries to “raise” all non-target 
patterns
– Do we need to raise everything?

80state

Energy



Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the 

target patterns, and many will even vanish

81state

Energy



Identifying the valleys..

• Problem: How do you identify the valleys for 
the current ?

82state

Energy



Identifying the valleys..

83state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

84



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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Training the Hopfield network

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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Which valleys?

87state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?



Which valleys?

88state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of 
memories are more important to eliminate



Identifying the valleys..

89state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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A possible problem

92state

Energy

• What if there’s another target pattern 
downvalley
– Raising it will destroy a better-represented or 

stored pattern!



A related issue
• Really no need to raise the entire surface, or 

even every valley

93state

Energy



A related issue
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley

94state

Energy



Raising the neighborhood

95state

Energy

• Starting from a target pattern, let the network 
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்
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Story so far

• Hopfield nets with neurons can store up to 
random patterns

– But comes with many parasitic memories

• Networks that store memories can be 
trained through optimization
– By minimizing the energy of the target patterns, 

while increasing the energy of the neighboring 
patterns

97



Storing more than N patterns

• The memory capacity of an -bit network is at 
most 
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is 

• How do we increase the capacity of the 
network
– How to store more than patterns

98



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons

99



Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

102

Visible bits



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

103

Visible bits Hidden bits



Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to 
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

104

Visible bits Hidden bits



Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended 

patterns:
– Making errors in the don’t care bits doesn’t matter

105

Visible bits Hidden bits



Robustness of recall

• The value taken by the K hidden neurons during recall 
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

106



Robustness of recall

• Also, we can have multiple extended patterns 
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons

107



Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual 

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t 
care bits
– Possible to set the don’t care bits such that the overall pattern (and 

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits 
vary

• To exploit it properly, it helps to view the Hopfield net differently: as 
a probabilistic machine

108



A probabilistic interpretation of 
Hopfield Nets

• For binary y the energy of a pattern is the 
analog of the negative log likelihood of a 
Boltzmann distribution
– Minimizing energy maximizes log likelihood

109



The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann 

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

110



Continuing the Boltzmann analogy

• The system probabilistically selects states with 
lower energy
– With infinitesimally slow cooling, at it 

arrives at the global minimal state
111



Spin glasses and the Boltzmann 
distribution

• Selecting a next state is analogous to drawing a sample 
from the Boltzmann distribution at in a universe 
where 
– Energy landscape of a spin-glass model: Exploration and 

characterization, Zhou and Wang, Phys. Review E 79, 2009

112

state

Energy



Hopfield nets: Optimizing W

• Simple gradient descent:

113

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Simple gradient descent:

114
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Update rule

115

Natural distribution for variables:  The Boltzmann Distribution



From Analogy to Model

• The behavior of the Hopfield net is analogous 
to annealed dynamics of a spin glass 
characterized by a Boltzmann distribution

• So, let’s explicitly model the Hopfield net as a 
distribution..
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of 
the state
– And the expected value of the state

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the average:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the 
two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



The Energy of the Network

• We can define the energy of the system as before
• Neurons are stochastic, with disorder or entropy
• The equilibribum probability distribution over states is the 

Boltzmann distribution at T=1
– This is the probability of different states that the network will 

wander over at equilibrium

Visible 
Neurons



The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model:  generates states according to 

Visible 
Neurons



The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•
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The field at a single node

• Giving us

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons

೔



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons

೔



Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons

೔



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜

131

Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

– Estimates the probability that the bit is 1.0. 
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter
a) For 

௝௜ ௝

௝ஷ௜

௜
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Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
136

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
137

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
138

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter:  increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior



Annealing

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜
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Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

140

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜



Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a 
conditional distribution

• What is the overall probability of the entire set 
of neurons taking any configuration 
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The overall probability

• The probability of any state can be shown to be 
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
142



The overall probability

• Stop when the running average of the log 
probability of patterns stops increasing
– I.e. when the (running average) of the energy of 

the patterns stops decreasing
143



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

்

– The parameter of the distribution is the weights matrix 

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

೔



The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

೔



Training the model

• How does the probabilistic view affect how we 
train the model?

• Not much…
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Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and 
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability 
distribution to states 
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to 

other patterns



Training the network

• Must train the network to assign a desired probability distribution 
to states 

• Given a set of “training” inputs 
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed:  maximize likelihood of stored states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 
vectors 
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

௜௝ ௜ ௝

௜ழ௝

௜௝ ௜
ᇱ

௝
ᇱ

௜ழ௝ௌᇱ

ௌ∈𝐒

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ

௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training 

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!
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The second term
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The second term
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The second term
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The second term

• The second term is simply the expected value 
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 
can compute it by sampling!
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Estimating the second term

• The expectation can be estimated as the average of 
samples drawn from the distribution

• Question:  How do we draw samples from the Boltzmann 
distribution?
– How do we draw samples from the network?
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The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be 



The simulation solution for the second 
term

• The second term in the derivative is computed 
as the average of sampled states when the 
network is running “freely”
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Maximum Likelihood Training

• The overall gradient ascent rule
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Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate
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Overall Training

௜௝
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state

Energy

Note the similarity to the update rule for the Hopfield network



Adding Capacity to the Hopfield 
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity
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Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons

162



Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible 
Neurons

Hidden 
Neurons



The patterns
• In fact we could have multiple hidden patterns 

coupled with any visible pattern
– These would be multiple stored patterns that all give 

the same visible output
– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?



Boltzmann machine without hidden 
units

• This basic framework has no hidden units

• Extended to have hidden units
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With hidden neurons

• Now, with hidden neurons the complete state 
pattern for even the training patterns is 
unknown
– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons

Must train to maximize 
probability of desired
patterns of visible bits



Training the network

• Must train the network to assign a desired 
probability distribution to visible states 

• Probability of visible state sums over all 
hidden states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training” 
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term
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Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states 
for each visible configuration in our training set

– But the second term is summed over all states
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The simulation solution

• The first term is computed as the average 
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as 
the average of sampled states when the network 
is running “freely”
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More simulations

• Maximizing the marginal probability of requires 
summing over all values of 
– An exponential state space
– So we will use simulations again
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Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 
the first term is now computed over the 
expanded training data

ೞ೔೘ೠ೗



Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped 

training samples
• Compute gradient and update weights
• Iterate
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Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than 

Hopfield nets
• But also enables computation of probabilities 

of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate
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Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, ….  , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features,  anchor features,  estimate a posteriori probability 

distribution over classes
• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul 

Smolensky

VISIBLE

HIDDEN



Solution: Restricted Boltzmann 
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN
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Solution: Restricted Boltzmann 
Machines

VISIBLE

HIDDEN
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Recap: Training full Boltzmann 
machines: Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training
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1 -1

Visible Neurons Hidden Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!
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Recap: Training full Boltzmann 
machines: Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

-1

1

1

1 -1

Visible 
Neurons

Hidden 
Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN
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Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v



Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to 
hidden node j)

• <vi, hj> represents average over many generated training 
samples
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Recall: Hopfield Networks
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley
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A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of 
the gradient
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Restricted Boltzmann Machines

• Excellent generative models for binary (or 
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application 

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models
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Continuous-values RBMs

VISIBLE

HIDDEN

೔

VISIBLE

HIDDEN

Hidden units may also be continuous values



Other variants

• Left:  “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm



Topics missed..

• Other algorithms for Learning and Inference 
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …
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