Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Fall 2023



Story so far

* Neural networks for computation
* All feedforward structures

* But what about..
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Consider this loopy network

+1ifz>0 y; = 0 ZWjiyj+bi
_1leS \ j#i

O(z) = {

The output of a neuron
affects the input to the
neuron

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron
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Consider this loopy network

{11223 gp - o(Zmes

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron



Hopfield Net

o= (1120 g 1= o(Zme )

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron



Loopy network

y; = 0 (Z Wj;yj + bi)

JED!

+1ifz>0
—-1ifz<0

O(z) = {

. » owe: ’)
At each time each neuron receives a “field quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Loopy network

ol AN Vi = @(ijin'l'bi)
Yi 7 —Yi JEi
if i (X2 Wiy + b;) <0

+1ifz>0
o o = {112,
At each time each neuron receives a “field” quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Loopy network
ol AN yi= 0 (Z wj;yj + bi)

YVi 7 Vi jZi

if yi (X Wiy + b)) <0 |
0(z) = +1ifz>0

“ﬁ _\"\H |-1ifz<0
A neuron "flips" if weighted sum of other e )
neurons’ outputs is of the opposite sign fo ES d field Zj:ti W;i Vi + bi

its own current (output) value

' S own sign, it does not
But this may cause other neurons to flip!

T \.—Jrl\ll T'\A

* |f the sign of the field opposes its own sign, it “flips” to
match the sign of the field
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Loopy network

D B

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

» And so on...
13



20 evolutions of a loopy net

o(z) = +1ifz>0 | A neuron “flips” if
27 1-1ifz<0 weighted sum of other
) neuron's outputs is of
- the opposite sign
JFL _ = But this may cause

)
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other neurons to flip!
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* All neurons which do not “align” with the local
field “flip”
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120 evolutions of a loopy net
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* All neurons which do not “align
field “flip”

with the local
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Loopy network

D D

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

* Will this behavior continue for ever??

16




Loopy network

yi= 0 ZWtij + b;

J#FI

+1ifz>0
G(Z):{—lifzﬁo

Let y; be the output of the i-th neuron just before it responds to the
current field

Let yl-+ be the output of the i-th neuron just after it responds to the current
field

if yi = sign(X ;. wjiy; + b;), theny; =y

— If the sign of the field matches its own sign, it does not flip

vi (2 WjiYj + bi) — Vi (Z wjiyj + bi) =0

J#FI J#Fi



Loopy network
Z wj;yj + b;

JED!

+1ifz>0
6(2) = { lifz<0

e Ify; # sign(Zjiiniyj + bi), then yl-+ ==Y

v (Z w;jiyj + bi) Vi (Z w;iy; + b; ) = 2y; (Z w;j;iyj + bi)

J#i JFi J#i
— This term is always positive!

* Every flip of a neuron is guaranteed to locally increase

Vi (2 wj;yj + bi)

J#L
18



Globally

Consider the following sum across all nodes

D(yl:yZJ . !yN) — Zyl (Z W]lyJ + b;

J#1

Z wiiyiyj + Z b;y;

NEI
— Assume w;; =0

For any unit k that “flips” because of the local field

AD() = Dy, e, Vi s V) = Dy oy Vi

This is strictly positive

AD(yy) = 2yy (Z Wjry; + bk>

Jj*k

)

,YN)

19



Upon flipping a single unit

AD(yi) = D(y4, ---:ylj» vy YN) = D(YV1, s Vg s YN
* Expanding

AD(y) = vk — Yk ) (2 Wikyj + bk)
J*k
— All other terms that do not include y;, cancel out

* This is always positive!

* Every flip of a unit results in an increase in D

20



Hopfield Net

s

Flipping a unit will result in an increase (non-decrease) of

D = zwuylyj zblyl

I,j#i

Dimax = z |Wl]| +Z|b |

[,j#i

D is bounded

The minimum increment of D in a flip is

2 Z W]ly] + bi

J#I

AD. . = min
Ty, i=1.N)

Any sequence of flips must converge in a finite number of steps

21



The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

NE}
— Just 0.5 times the negative of D
* The 0.5 is only needed for convention
* The evolution of a Hopfield network
constantly decreases its energy



Story so far

A Hopfield network is a loopy binary network with symmetric connections

Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

— The local “field”

Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

— Causing the field at other neurons to change, potentially making them flip

Each evolution of the network is guaranteed to decrease the “energy” of
the network

— The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps



Poll 1

Hopfield networks are loopy networks whose output activations
“evolve” over time

e True
e False

Hopfield networks will evolve continuously, forever

e True
e False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

e True
e False
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The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

i,j#Ii

— Just 0.5 times the negative of D

* The evolution of a Hopfield network
constantly decreases its energy

* Where did this “energy” concept suddenly sprout
from?
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Magnetic diploes in a disordered magnetic material
Each dipole tries to align itself to the local field
— In doing so it may flip
This will change fields at other dipoles
— Which may flip
Which changes the field at the current dipole...
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Analogy: Spin Glasses

it "-..- -_-r—
— . il e |
o N R o, o . .
o g - Total field at current dipole:
et ol (R
b - -
B o -
s, Rt Al Fp) =) Jux:+ b
| e Pi) = Jitj L
B M —
e el - J#L
ot | - _:'__ ;_ — /
v W e
&) Y intrinsic external

* p; is vector position of i-th dipole
 The field at any dipole is the sum of the field contributions of all other dipoles
 The contribution of a dipole to the field at any point depends on interaction |

— Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)
28



Analogy: Spin Glasses

— h- ° )
e e A Total field at current dipole:
ol gl Ny f(pi)=Z]jixj+bi
— - S il W —
T — -
—-'I_- - _--'_:F_.':- —-.l": | J#l
j -— - —_— !
™a "= = _— _4  Response of current dipole
A T Sl . T " "
ity | — —-'—_ ~= . .
e S Juifsign(x f(p) = 1
o g ST I o l —x; otherwise
s : ..-__-- -

* A Dipole flips if it is misaligned with the field
in its location
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Analogy: Spin Glasses

A T Total field at current dipole:
o |
ol gl Ny f(pi)=Z]jixj+bi
— - S il W - .
b -
—-'I_-'—_"' _--'_:F_.':- —-.I"H__ | J#i
I R B £ -
B S s SRy Response of current dipole
T T o |
ity | — —-'—_ ~= . .
AT = 5T aifsign(x f0) = 1
o g ST I o l —x; otherwise
—y il - — gy
S —

Dipoles will keep flipping
— Aflipped dipole changes the field at other dipoles
* Some of which will flip
— Which will change the field at the current dipole
e Which may flip
— Etc..
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Analogy: Spin Glasses

 When will it stop???

Total field at current dipole:

f(p)) = Z]jixj + b;

JES!

Response of current dipole

x; = {xi if sign(x; f(p)) =1

—Xx; otherwise

31



Analogy: Spin Glasses

A T Total field at current dipole:
e e R~ oy
ol gl Ny f(pi)=2]jixj+bi
- T s
B ‘r:"! I
| — i — '
™e "= = _—_"4 Response of current dipole
A T Sl . T " "
iy, | = —-..— — . .
e S Juifsign(x f(p) = 1
o g ST I o l —x; otherwise
A e

The “Hamiltonian” (total energy) of the system

E = —% xif (p;) = _zzjjixixj — Z bix;

i i j>i i
The system evolves to minimize the energy

— Dipoles stop flipping if any flips result in increase of energy

32



Spin Glasses

state

* The system stops at one of its stable configurations

— Where energy is a local minimum

 Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it .,



Hopfield Network

yi= 0 (Z wjiyj + bi)

J#FI

+1ifz>0
G(Z):{—lifzﬁo

— __(z W;jyiyj T szYL)

NES!

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

34



Hopfield Network

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35




Hopfield Network

(g

J#FI

+1ifz>0
G(Z):{—lifzﬁo

E=-5 ) wjyy;

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

* Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system -



Evolution

1
E = 5 Z WijYilj

ij<i

&Aw

— >
state

* The network will evolve until it arrives at a

local minimum in the energy contour

37



Content-addressable memory

X

A

(AN
Q.

state
 Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory .



Evolution

1
E = ) Z WijYilj

ij<i

| h vw unknown source

* The network will evolve until it arrives at a

local minimum in the energy contour
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Evolution

* The network will evolve until it arrives at a local minimum in the
energy contour

* We proved that every change in the network will result in decrease
In energy

— So path to energy minimum is monotonic 40



Evolution

* For threshold activations the energy contour is only
defined on a lattice

— Corners of a unit cube on [-1,1]N

41



Evolution

1
E = ) Z WiiViY;j

1,j<i

* For threshold activations the energy contour is only
defined on a lattice

— Corners of a unit cube on [-1,1]N

* For tanh activations it will be a continuous function .,



Evolution

For threshold activations the energy contour is only defined on a
lattice

— Corners of a unit cube
For tanh activations it will be a continuous function
— With outputin [-1 1]

43



“Energy”contour for a 2-neuron net

1 :

0.5;

-0.5;

1 0.5 0 0.5 1

* Two stable states (tanh activation)

— Symmetric, not at corners
— Blue arc shows a typical trajectory for tanh activation

44



“Energy”contour for a 2-neuron net

0.5}
ol
sl
Why symmetric?
Because —%yTWy — _%(_Y)TW(—y) 0.5 0 t 0.5 1
| If ¥ is a local minimum, so is —§

— Blue arc shows a typical trajectory for sigmoid activation
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3-neuron net

#2 4479
#3 .
(1,1,1)
: N o
stahle state E”' e '
€11, ERTA ey
ir;,:r‘l" = i P
-.:|._|_|:! - L l:]-: '15 1}
j | Stable state
- |
&
#3 1,-1,-1) (1,-1,-1)

* 8 possible states
» 2 stable states (hard thresholded network)
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Examples: Content addressable
memory

FEeconstruction

Hopfield network reconstmicting degraded images
frotn nowsy (top) o partial (bottorn) cues.

* http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/



Hopfield net examples

48



Computational algorithm

1. Initialize network with initial pattern

yi(O):xi' 0<i<N-1

2. lterate until convergence

JES!

 Verysimple
* Updates can be done sequentially, or all at once

* Convergence
E=- Z Z WjiVjYi

i j>i
does not change significantly any more



Computational algorithm

1. Initialize network with initial pattern

y =X, 0<i<N-1

2. lterate until convergence
y = 0(Wy)

Writingy = [y1,y2,¥3, -, ynl"
and arranging the weights as a matrix W

* Very simple
 Updates can be done sequentially, or all at once
* Convergence
E = —-0.5y "Wy
does not change significantly any more



Story so far

A Hopfield network is a loopy binary network with symmetric
connections

— Neurons try to align themselves to the local field caused by other neurons

* Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum

— The evolution will be monotonic in total energy
— The dynamics of a Hopfield network mimic those of a spin glass
— The network is symmetric: if a pattern Y is a local minimum, sois -Y

 The network acts as a content-addressable memory

— If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

— Effectively “recalling” the correct pattern, from a damaged/incomplete
version



Poll 2

Mark all that are correct about Hopfield nets

e The network activations evolve until the energy of the net arrives at a local
minimum
e Hopfield networks are a form of content addressable memory

e |tis possible to analytically determine the stored memories by inspecting
the weights matrix



Poll 2
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e The network activations evolve until the energy of the net arrives at a
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Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..
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How do we remember a specific
pattern?

How do we teach a network
to “remember” this image

For an image with N pixels we need a network
with N neurons

Every neuron connects to every other neuron

Weights are symmetric (not mandatory)
N(N-1)

weights in all



Storing patterns: Training a network

* A network that stores pattern P also naturally stores - P
— Symmetry E(P) = E(—P)since E is a function of y,,

E=- Z Z WjiVjYi

I Jj<i 57



A network can store multiple patterns

PE

state

* Every stable point is a stored pattern

* So, we could design the net to store multiple patterns
— Remember that every stored pattern P is actually two stored patterns, P and
— P

 How many patterns can we store intentionally? -,



Patterns you can store

Ghosts (negations)

Stored patterns

A

* All patterns are on the corners of a hypercube

— |If a pattern is stored, it’s “ghost” is stored as well

— Intuitively, patterns must ideally be maximally far apart .,



Evolution of the network

Note: for real vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube

— It “quantizes” the space into orthants

Response to field: y « sign(Wy)

— Each step rotates the vector y and then projects it onto the nearest
Projection: sign(Wy)

corner
2D example 3D example )
| . | y sl w
1 Slgn(Wy) : v
'\Rro'ection E
-T Y i /
- A :
' :
I 1
. A 4 ; |
_1 1 II'
Tl;énSform .........
U4
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Storing patterns

A pattern yp is stored if:

— Sign(Wyp) = y,, for all target patterns
* Wy, isin the same orthant as y,

Training: Design W such that this holds

Simple solution: y,, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = 1y,
— More generally orthant(Wy,) = orthant(y,)

How many such y,,can we have?



Random fact that should interest you

* Number of ways of selecting two N-bit binary
patterns y;and y, such that they differ from

3N
one another in exactly N/2 bits is 0(2 2 )

* The size of the largest set of N-bit binary
patterns {y, ¥,, ... } that all differ from one
another in exactly N /2 bits is at most N

— Trivial proof.. ©



Only N patterns?

(1,1)

(11'1)

* Symmetric weight matrices have orthogonal Eigen vectors

* You can have max N orthogonal vectors in an N-dimensional
space

63



random fact that should interest you

* The Eigenvectors of any symmetric matrix W
are orthogonal

 The Eigenvalues may be positive or negative



Storing more than one pattern

* Requirement: Giveny4, Yy, ..., Vp
— Design W such that
. Sign(Wyp) =y, for all target patterns

* There are no other binary vectors for which this holds

* What is the largest number of patterns that
can be stored?



Storing patterns

* Any (binary) eigen vector with a real eigen
value is stored

Vp < Sign(Wyp) = sign(dy,) = 1y,

* A square matrix W can have up to N eigen
vectors

— So, we can “intentionally” store up to N patterns

* Problem?



Storing N orthogonal patterns

The N Eigenvectors y4, V>, ..., Yy Span the space
Any pattern y can be written as
y=a1y1 +azy; + -+ ayyn
Wy = a; Wy, + a, Wy, + .-+ ayWyy
= a1 Y1 + a2y, + -+ anAnyy

Many of these will have the form
sign(Wy) =y
Spurious memories

The fewer memories we store, and the more distant they
are, the more likely we are to eliminate spurious memories

67



The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

68



The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are sta ided K < N

— Mostafa and St. Jacques 85’ Can we do something

_ about this?
* Forlarge N, the upper bound on K is actuany
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

69



Storing a pattern

* Design {w;;} such that the energy is a local
minimum at the desired P = {y,}



Consider the energy function

1

E=—-y"Wy—b'y

2

* This must be maximally low for target patterns

* Must
—So t

oe maximally hig

nat they are unstab

the target patterns

n for all other patterns

e and evolve into one of

71



Estimating the Network

1
E(y) = —EyTWy —b'y

* Estimate W (and b) such that
— E is minimized foryq, y5, ..., ¥p
— £ is maximized for all othery

e Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable

72



Optimizing W (and b)

1 _
E(y)=—=y'Wy W = argmin E E(y)
w

2
YEYp
The bias can be captured by
another fixed-value component

 Minimize total energy of target patterns

— Problem with this?

73



Optimizing W

1

E(y) = —EyTWy

W = argmin 2 E(y) — 2 E(y)
W YEYp y&Yp
 Minimize total energy of target patterns

 Maximize the total energy of all non-target
patterns

74



Optimizing W

1 N |
E(y) = —EyTWy W = argmin E E(y) — E E(y)
w
YEYp y&Yp

* Simple gradient descent:

W=W+n<z yy' — zny)

YEYp y€Yp

75



Optimizing W

W=W+n(2 yy' — Zny>

YEYp YEYp

* Can “emphasize” the importance of a pattern
by repeating

— More repetitions = greater emphasis

76



Optimizing W

W=W+n(z yy' — Zny>

YEYp YE€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis

* How many of these?

— Do we need to include all of them?
— Are all equally important?



The training again..

W=W+n(z yy' — Zny)

YEYp YEYp

* Note the energy contour of a Hopfield
network for any weight W

Bowls will all actually be
quadratic

Energy

state
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The training again

W=W+n Eny—Zny

YEYp YEYp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

A Target patterns

Energy

v

state



The negative class

W=W+n(z yy' — zny)

YEYp yE€Yp

* The second term tries to “raise” all non-target
patterns

— Do we need to raise everything?

Energy o

state

80



Option 1: Focus on the valleys

W=W+n Zny— Z yy'

VEYp y&éYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy

v

state &l



Identifying the valleys..

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy MA ‘ ‘

state
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Identifying the valleys..

* |nitialize the network randomly and let it evolve

— |t will settle in a valley

Energy

state

83



Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

84



Training the Hopfield network: SGD

version
W=W+y Zny— Z yy'
VEYp yv&€Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,¥5 —Vu¥7)
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Training the Hopfield network

W=W+r7 Zny— Z yy'

yEYp y&Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
~_* Sampling frequency of pattern must reflect importance of pattern

-< Randomly |n|t|aI|ze>the network and let it evolve
+ And settle at a vaIIey 2

— Update weights

c W=W+ U(Ypr Yva)

86



Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy

state



Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

 Major requirement: memories must be stable

— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy Y

state




Identifying the valleys..

e |nitialize the network at valid memories and let it evolve
— It will settle in a valley. If this is not the target pattern, raise it

Energy

v

state
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Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights
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Training the Hopfield network: SGD

version
W=W+n E(YYT—YVYS)
YEYp

nitialize W
Do until convergence, satisfaction, or death from
poredom:
— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y) —Vu¥7)
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A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state



A related issue

* Really no need to raise the entire surface, or
even every valley

Energy o

state
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A related issue

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state



Raising the neighborhood

* Starting from a target pattern, let the network
evolve only a few steps

— Try to raise the resultant location
* Will raise the neighborhood of targets

* Will avoid problem of down-valley targets

Energy

state



Training the Hopfield network: SGD

version
W=W+n E(YYT—deZ)
YEYp

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target pattern y,

* Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve a few steps (2-4)
* And arrive at a down-valley position y,

— Update weights
* W=W+n(y,y; —Ya¥a)
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Story so far

* Hopfield nets with N neurons can store up to
N random patterns

— But comes with many parasitic memories

* Networks that store O(N) memories can be
trained through optimization

— By minimizing the energy of the target patterns,
while increasing the energy of the neighboring
patterns



Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
e Although “information capacity” is O(N3)
* How do we increase the capacity of the
network

— How to store more than N patterns



Expanding the network

N Neurons
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 Add a large number of neurons whose actual
values you don’t care about!
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Expanded Network
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~(N + K) patterns
— Although we only care about the pattern of the first N

ty:

* New capac

neurons

— We're interested in N-bit patterns
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Terminology

Hidden
Neurons

Visible
Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern



Increasing the capacity: bits view

Visible bits

00000000

o] o] oo (@
00000000

o, (000 | @

oo o @ @

00000000
00000000

QOCCOCC?

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..
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Increasing the capacity: bits view

Visible bits Hidden bits

L 0 00 o | 00000000 000eeee.

o] o] (00 (000000 00000000000
L 0 (0] [0 000000 00000000000

o, (000 | [0000000000000000.

o0 [0 0 00000000000000ee.

L 1 19 (00 | (0000000000000 0e0
ol l [l [0 000000000000 0eee0

QOQQOQQ?OOOOOOOOOOOOOOOO

N+ K

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..

 So, let’s pad the patterns with K “don’t care” bits
— The new width of the patterns is N+K
— Now we can store N+K patterns!
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Issues: Storage

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

* What patterns do we f|II in the don’t care bits?

— Simple option: Randomly
* Flip a coin for each bit
— We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly

* Recalling any of the extended patterns from a base pattern will recall the base pattern

* How do we store the patterns?

— Standard optimization method should work 104



Issues: Recall

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

* How do we retrieve a memory?

* Can do so using usual “evolution” mechanism

* But this is not taking advantage of a key feature of the extended

patterns:
— Making errors in the don’t care bits doesn’t matter
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Robustness of recall
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* The value taken by the K hidden neurons during recall
doesn’t really matter
— Even if it doesn’t match what we actually tried to store

* Can we take advantage of this somehow?
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Robustness of recall

N Neurons
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* Also, we can have multiple extended patterns
with the same pattern over visible bits

— Can we exploit this somehow?
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Taking advantage of don’t care bits

Simple random setting of don’t care bits, and using the usual
training and recall strategies for Hopfield nets should work

However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits

— Possible to set the don’t care bits such that the overall pattern (and
hence the “visible” bits portion of the pattern) is more memorable

— Also, may have multiple don’t-care patterns for a target pattern

* Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine



A probabilistic interpretation of
Hopfield Nets

* For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution

— Minimizing energy maximizes log likelihood

E() = —5y™Wy  P(y) = Cexp(~E(y)

109



The Boltzmann Distribution

1 —E(y)
E(y)=—-y"Wy —Db'y P(y) = Cexp
2 kT
FL = A N —E(y)
B Rm 2y exp( kT )

* k is the Boltzmann constant
T isthe temperature of the system

 The energy terms are the negative loglikelihood of a Boltzmann
distribution at T = 1 to within an additive constant

— Derivation of this probability is in fact quite trivial..
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Continuing the Boltzmann analogy

1 —E(y)
E(y)=—-y"Wy —Db'y P(y) = Cexp
2 kT
e :ii‘ - . 1
fie et B —E(y)

* The system probabilistically selects states with
lower energy

— With infinitesimally slow cooling, at T = 0, it
arrives at the global minimal state
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Spin glasses and the Boltzmann
distribution

Energy

state

* Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at T = 1, in a universe
where k =1

— Energy landscape of a spin-glass model: Exploration and
characterization, Zhou and Wang, Phys. Review E 79, 2009



Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

yEYp Y€Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YEYp [

More importance to more frequently
presented memories

yEYp \

More importance to more attractive
spurious memories
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Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

YEYp y&Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YyEYp [ y&Yp \
More importance to more frequently More importance to more attractive
presented memories spurious memories

THIS LOOKS LIKE AN EXPECTATIONI
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Hopfield nets: Optimizing W

1 .
E(y) = —EyTWy W= argvflnin 2 E(y) — 2 E(y)

YEYp YEYp
e Update rule

W=W-+7 (2 ayyy' — 2 ,B(E(Y))YYT>

YEYp VEYp
W =W +n(Ey-y,yy" — Eyyyy")

Natural distribution for variables: The Boltzmann Distribution
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From Analogy to Model

 The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

* So, let’s explicitly model the Hopfield net as a
distribution..
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state

* [sthe system actually in a specific state at any time?

* No —the state is actually continuously changing

— Based on the temperature of the system
* At higher temperatures, state changes more rapidly

 What s actually being characterized is the probability of
the state
— And the expected value of the state



The Helmholtz Free Energy of a System

 Athermodynamic system at temperature T can exist in
one of many states

— Potentially infinite states

— At any time, the probability of finding the system in state s
at temperature T is Py (s)

* At each state s it has a potential energy E

 The internal energy of the system, representing its
capacity to do work, is the average:

Ur =) Pr(s)E



The Helmholtz Free Energy of a System

* The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

Hr = =) Pr(s)logPr(s)

 The Helmholtz free energy of the system combines the
two terms

FT —_ UT + kTHT

=) Pr(s)E; — kKT ) Pr(s)1og Pr(s)



The Helmholtz Free Energy of a System

Fr = z Pr(s)E, — sz P;(s)log Py (s)

* A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

* The probability distribution of the states at steady state
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

Fr=) Pr(s)E;— kT ) Pr(s)logPr(s)

* Minimizing this w.r.t P-(s), we get

1 [—E,
Pr(s) = Z€XP |\ 7

— Also known as the Gibbs distribution
— Z is a normalizing constant
— Note the dependenceon T

— AT =0, the system will always remain at the lowest-
energy configuration with prob = 1.



The Energy of the Network

Visible E(S) = —2 W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = 5 exp(CES))

 We can define the energy of the system as before
* Neurons are stochastic, with disorder or entropy

* The equilibribum probability distribution over states is the
Boltzmann distribution at T=1

— This is the probability of different states that the network will
wander over at equilibrium



The Hopfield net is a distribution

Visible E(S) = —Z W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = 5 exp(CES))

 The stochastic Hopfield network models a probability distribution over
states

— Where a state is a binary string
— Specifically, it models a Boltzmann distribution
— The parameters of the model are the weights of the network

* The probability that (at equilibrium) the network will be in any state is P(S)
— Itis a generative model: generates states according to P(S5)



The field at a single node

* LetS andS ' be otherwise identical states that only differ in the i-th bit
— Shasi-th bit=41 and S’ has i-th bit= —1

P(S) = P(s; = 1|sj2:)P(Sj2i)
P(S") = P(s; = —1|8j; ) P(Sj=i)

logP(S) — logP(S') = logP(si = 1|Sj¢i) — logP(sl- = —1|Sj¢i)

P(Si = 1|Sj¢i)

logP(S) — logP(S') = log - P(s- — 1|s- )
i — JEI
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The field at a single node

 LetS and S ' be the states with the ith bit in the +1 and
— 1 states

logP(S) =—-E(S)+C

1
= _E(Enoti +szSj +bi

5o
|

, 1
E(S :—E(Enoti—ZWij—bi

J#FI

* logP(S) —logP(S') = E(S') —E(S) = X+ W;sj + b;
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The field at a single node

P(Sl' — 1‘Sj¢l
l z b,

]-‘/—'l

* Glving us

1
P(Sl' — 1‘Sj¢i) —

1 +e_(Z]¢lW]S]+b)
* The probability of any node taking value 1
given other node values is a logistic




Redefining the network

Visible Zi = 2 w;jisj + bi
Neurons J

P(s; = 1|sj%) = ]

+ e %

First try: Redefine a regular Hopfield net as a stochastic system
Each neuron is now a stochastic unit with a binary state s;, which
can take value 0 or 1 with a probability that depends on the local
field

— Note the slight change from Hopfield nets

— Not actually necessary; only a matter of convenience



The Hopfield net is a distribution

Visible Zi = Z wjiSj + b
Neurons J

1
@ PE = ) = e

 The Hopfield net is a probability distribution over
binary sequences

— The Boltzmann distribution

e The conditional distribution of individual bits in the
sequence is a logistic



Running the network

Visible Zi = 2 wjiSj + b
Neurons J

P(si = 1sj21) =7

+ e4i

Initialize the neurons
Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
— Gibbs sampling: Fix N-1 variables and sample the remaining variable
— As opposed to energy-based update (mean field approximation): run the test z, >0 ?

After many many iterations (until “convergence”), sample the individual neurons



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)
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Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)

* When do we stop?
 What is the final state of the system

— How do we “recall” a memory?



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yi(0)=xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)

* When do we stop?

 What is the final state of the system

— How do we “recall” a memory?




Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

<o)

J#I

y;(t + 1) ~ Binomial(P)

* Let the system evolve to “equilibrium”
* Letyy V1,¥2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
=(— > 07?
Y (M zt=L—M+1Yt)

— Estimates the probability that the bit is 1.0.
— If it is greater than 0.5, sets it to 1.0



Evolution of the stochastic network

1. Initialize network with initial pattern

yi(O):xi! 0<i<N-1

2. ForT = Tydown to Ty,

Noisy pattern completion: Initialize the entire
network and let the entlre network evolve

Pattern completlon Fix the ‘seen’ blts and only
let the “unseen” bits evolve

* Let the system evolve to “equilibrium”
* Letyy, V1, Y2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
=|— > 07
Y (M Zt=L—M+1Yt)



Including a “Temperature” term

P(y; =1) =0(z)
Ply;=0)=1-0(z)

* Including a temperature term in computing the local field

— This is much more in accord with Thermodynamic models

e AtT = oo the energy “surface” will be flat. At T = 1 the
surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
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Recap: Stochastic Hopfield Nets

P(yi=1) = 0(z)
oy

The field quantifies the energy difference obtained by flipping the
current unit

* |Including a temperature term in computing the local field

— This is much more in accord with Thermodynamic models

e AtT = oo the energy “surface” will be flat. At T = 1 the
surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
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Recap: Stochastic Hopfield Nets

0

P(y; =1) =0a(z)

The field quantifies the energy difference obtained by flipping the

current unit

’

If the dlfference s no’r large the probability of fllppmg approachesO 5

JIuU VW

in]d

e AtT = oo the energy “surface” will be flat. At T = 1 the

surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states



Recap: Stochastic Hopfield Nets

O

The field quantifies the energy difference oI:>/‘ra/ned by flipping the /

current unit

) [ ] .l._ YN A a a [ Y ] [ ] Aldala .. ars [/} = -Id
If the dlfference is no’r large the pr'ob bility of flipping approaches 0.5

T is a "temperature” parameter: increasing it moves the probability of the
bits towards 0.5

At T=1.0 we get the traditional definition of field and energy

At T = O, we get deterministic Hopfield behavior

— This can be used to improve the likelihood of finding good (or
optimal) minimum-energy states

P(yi =1) = a(z)
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Annealing

1. Initialize network with initial pattern

y; (0) = x;, 0<i<N-1
2. ForT = T,downto T,,;,
i. Foriter 1..L

a) Foro<i<N-1

P=o (%Zj;tiwjiyj)

y;(t + 1) ~ Binomial(P)

* Let the system evolve to “equilibrium”
* Letyy, V1, Y2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
=|— > 07
Y (M Zt=L—M+1Yt)



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

yl.(()):xl-, OSLSN_].
2. ForT = Tydownto Ty,
i. Foriter1..L

a) Foro0<i<N-1

P=o¢ (%Zjiiwjiyj)

y;(t + 1) ~ Binomial(P)

* When do we stop?

 What is the final state of the system

— How do we “recall” a memory?




Recap: Stochastic Hopfield Nets

1
Zi = TZ WjiYj
) JE!

P(y; = 1|yjzi) = 0(z)

* The probability of each neuron is given by a
conditional distribution

* What is the overall probability of the entire set
of neurons taking any configuration y
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The overall probability

* The probability of any state y can be shown to be
given by the Boltzmann distribution

1 —F
E(y)=—§yTWy P(y)=Cexp< T(Y))

— Minimizing energy maximizes log likelihood
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The overall probability

£

i 1 —E
&E(y) = —EyTWy P(y) =Cexp< T(Y)>

)

e Stop when the running average of the log
probability of patterns stops increasing

— |l.e. when the (running average) of the energy of
the patterns stops decreasing

143



The Hopfield net is a distribution
1
2 zfzwﬁsj

P(si = 1sj21) =7

+ e4i

 The Hopfield net is a probability distribution over binary sequences
— The Boltzmann distribution

1 T
E(y)=—zy Wy

2
E
P(y) = Cexp (— g)

— The parameter of the distribution is the weights matrix W

 The conditional distribution of individual bits in the sequence is a logistic
 We will call this a Boltzmann machine



The Boltzmann Machine

1
Zi = TZ le'Sj
@ J

P(si = 1sj21) =7

+ e4i

 The entire model can be viewed as a generative model

* Has a probability of producing any binary vector y:
1
E(y)=—5y Wy

2
E(y)

P(y) = Cexp (— T)



Training the model

* How does the probabilistic view affect how we
train the model?

e Not much...



Training the network
E(S) — _ZwijSiSj

i<j
_ exp(—E(S))
Pi8) = s exp(—E(S"))
P(s) = exp(ziq WijSiSj)

s exp(Zicj wijsis;)

Training a Hopfield net: Must learn weights to “remember” target states and
“dislike” other states

“State” == binary pattern of all the neurons

Training Boltzmann machine: Must learn weights to assign a desired probability
distribution to states
— (vectorsy, which we will now calls S because I’'m too lazy to normalize the notation)

— This should assign more probability to patterns we “like” (or try to memorize) and less to
other patterns



Training the network
E(S) — _ZwijSiSj

Visible o5
Neurons s = exp(—E(S))
Y5 exp(=E(S"))
P(s) = exp(ziq WijSiSj)

Ysr€xp(Zic; WijSis;

Must train the network to assign a desired probability distribution
to states
Given a set of “training” inputs 54, ..., Sy

— Assign higher probability to patterns seen more frequently

— Assign lower probability to patterns that are not seen at all

Alternately viewed: maximize likelihood of stored states



Maximum Likelihood Training

log(P(S)) = (Z w; jsl-sj> ~log (Z exp (Z Wi ))

i<j 1<J

1 Average log likelihood of training vectors
- _z log(P($)) (to be maximized)

SES

Nz(z Wl,ss,) 1og<z exp (Z wigs! ))

i<j 1<J

 Maximize the average log likelihood of all “training”
vectors S = {5, S,, ..., Sy}
— In the first summation, s; and s;are bits of S

— In the second, s;"and s;” are bits of &’



Maximum Likelihood Training

D)

i<j i<j

dL _12 oo
dwij_N ST T
S

 We will use gradient ascent, but we run into a problem..

* The first term is just the average s;s; over all training
patterns

e But the second term is summed over all states

— Of which there can be an exponential number!



The second term

dlog(Xs: exp(Xic;wijsisj)) 1 d Y5 exp(Xi<; wijsis
dw;; D exp(ZKj WijS;S]'-') dwi;
1 Z 2 I I/ I /1
= ) exXp WijSiSj | SiSj
Zs" exP(ZKj WiJ'SiSJ') S7 i<j

N Oi S
dw;j s exp (i< Wijs;s;)

leg(ZsfexP(ZKjWijSi’Sj’)):z exp(ZKjWijS{S]{) o'/
)
S




The second term

dlog(Xs: exp(Xic;wijsisj)) 1 d Y5 exp(Xi<; wijsis
dw;; D exp(ZKj Wl-]-S;S]'-') dwi;
1 Z Z I I/ I /1
= ) exXp WijSiSj | SiSj
ZS" exP(ZKj WiJ'SiSJ') S7 i<j

/ \
I I/
exp(ZKj W

s €XP (Zi<j WijS;SJ'")

dlog(ZS, exp(ziq' WijSi’SJ{)) _
dWl'j -




The second term

dlog(Xs: exp(Xic;wijsisj)) 1 d Y5 exp(Xi<; wijsis
dw;; D exp(ZKj WijSzS]'-') dwi;
1 Z z I I/ I /1
= ) exXp WijSiSj | SiSj
Zs" exP(ZKj WiJ'SiSj) S7 i<j

N Oi S
dw;j s exp (i< Wijs;s;)

leg(ZsfexP(ZKjWijSi’Sj’)):z exp(ZKjWijS{S]{) o'/
)
S

dlog(Xs, exP(ZKj WijSi’SJ{)) _ z P(S")s!s!
— (S;
S

dWij




The second term

dlog(Xs, exP(ZKj WijSi’SJ{)) _ 2 P(S")s!s!
= (S;
S

dWij

* The second term is simply the expected value

of s:s.

S, over all possible values of the state

* We cannot compute it exhaustively, but we
can compute it by sampling!



Estimating the second term

!/

dlog(ZS, exP(ZKj WiJ'SiSJ{)) _ z p(S’)s'S'
— i°f
S

dWij

1
Z P(S")s;s; = v S{Si

SI€Ssamples

 The expectation can be estimated as the average of
samples drawn from the distribution

* Question: How do we draw samples from the Boltzmann
distribution?

— How do we draw samples from the network?



The simulation solution

Initialize the network randomly and let it “evolve”
— By probabilistically selecting state values according to our model

After many many epochs, take a snapshot of the state
Repeat this many many times
Let the collection of states be

Ssimut = {Ssimul,l» Ssimul,1=2» ey Ssimul,M}



The simulation solution for the second
term

dlog(ZS, exP(ZKj WiJ'Si,SJ{)) _ z p(S’)s'S'
— i°f
S

dWij

1
D PEYsis g ) sl
S

STESsimul

 The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”



Maximum Likelihood Training

Sampled estimate

log(P(S))
e DR PAR

d(log(P (S)))

dWij

Wi = wij +1

* The overall gradient ascent rule



Overall Training

log(P(S)) ZS S; — — z S;Sj
dw;; N *J o

S’Essimul

d(log(P (S)))

dWij

Wij = W;ij +1

Initialize weights
Let the network run to obtain simulated state samples
Compute gradient and update weights

Ilterate



Overall Training

log(P(S))
e DRLEST PRR

d(log(P (S)))

dWij

Wij = W;ij +1

Note the similarity to the update rule for the Hopfield network

Energy @

state



Adding Capacity to the Hopfield
Network / Boltzmann Machine

* The network can store up to N N-bit patterns
* How do we increase the capacity
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Expanding the network

N Neurons

A /
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 Add a large number of neurons whose actual
values you don’t care about!
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Expanded Network

o
KA
-ﬁ"’l’ L
S

<
77

i
¥,

I

=
s
Py
L7

LX)

S
<y

=

K Neurons

N Neurons

Sy
o }1%-

XX

o

."' =

o

AT

and

s

N7

e

25

~(N + K) patterns
— Although we only care about the pattern of the first N

ty:

* New capac

neurons

— We're interested in N-bit patterns
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Terminology

Hidden
Neurons

Visible
Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern



the network

ining

Tra

Hidden

Neurons

Visible
Neurons

s

isible neurons, there are any

Ml

e

 For agiven pattern of v

dden patterns (2X)

]

number of h

Which of these do we choose?

— ldeally choose the one that results in the lowest energy

— But that’s an exponential search space!



The patterns

* |n fact we could have multiple hidden patterns
coupled with any visible pattern

— These would be multiple stored patterns that all give
the same visible output

— How many do we permit

Do we need to specify one or more particular
hidden patterns?

— How about all of them
— What do | mean by this bizarre statement?



Boltzmann machine without hidden

uni(ts :
log P(S) o
dWU NZS S] __SIESz
d(log( P(S)
Wij = Wij + n ( dEVU )>

 This basic framework has no hidden units

e Extended to have hidden units



With hidden neurons

Hidden

Visible Neurons

Neurons

* Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown

— Since they are only defined over visible neurons



With hidden neurons
Hidden

Neurons

Visible

Neurons

exp(—E(S))
Y. exp(—E(S))

P(S) =

P(S) = P(V,H)

P(V) = 21)(5)
H

 We are interested in the marginal probabilities over visible bits

— We want to learn to represent the visible bits
— The hidden bits are the “latent” representation learned by the network

e S = (V,H)
— V =visible bits
— H = hidden bits



With hidden neurons
Hidden

Neurons

Visible

Neurons
exp(—E(S))

Y. exp(—E(S))

P(S) =

P(S) = P(V,H)

50N

==

N P(V) 2 P(S)
H

 We are interested in the marginal probabilities over visible bits

— We want to learn to represent the visible bits
— The hidden bits are the “latent” representation learned by the network

.+ S = (V,H) Must train to maximize
_ V= visible bits probability of desired
— H = hidden bits patterns of visible bits



Training the network

Visible E(S) = _ZW”S"SJ'

i<j
Neurons
exp(zi<j WijSiSj)

P(S) — I ./
@ D51 €xp (Zi< jWijSiS;
P(V) _ p( l<] l] l ])

7 L5 €xp(Zic; WijSiS]

* Must train the network to assign a desired
probability distribution to visible states

* Probability of visible state sums over all
hidden states



Maximum Likelihood Training

log(P(V)) = log (Z exp (

R )

I<j I<j

1
L= Nz log(P(V))

Vev

Average log likelihood of training vectors
(to be maximized)

(e

VeV 1<j

D R)

* Maximize the average log likelihood of all visible bits of “training”

vectorsV ={V,V,, ...,V\}

— The first term also has the
* Log of asum

same format as the second term

— Derivatives of the first term will have the same form as for the second term



Maximum Likelihood Training

X ) R e )

Vev <j 1<j
ZZ exp(Qx<i WkiSkSt) exp(Lk<i WraiSkS1)
T~ SiSj — Sk
dWU Nvev - DH exp(quWlekSz) = Qs exp(2k<lwijsksl)

dWU NZZP(SW)SS] ZP(S)S

Vev H

e We’'ve derived this math earlier

* But now both terms require summing over an exponential number of states

— The first term fixes visible bits, and sums over all configurations of hidden states
for each visible configuration in our training set

— But the second term is summed over all states



The simulation solution

dWU NZZP(SW)S Sj — ZP(S )SiS;

VevV H

zp(sw)ss, = 2

HEHSLmul

ZP(S)S M Z

S1ESsimul

* The first term is computed as the average
sampled hidden state with the visible bits fixed

 The second term in the derivative is computed as
the average of sampled states when the network
IS running “freely”



More simulations

Hidden

Visible Neurons

Neurons

exp(—E(S))

P(S) =

ZS/ exp(_E(S,))

P(V) = ZP(S)
H

* Maximizing the marginal probability of VV requires
summing over all values of H

— An exponential state space

— So we will use simulations again



Step 1

Hidden
Neurons

Visible
Neurons

* For each training pattern V;

— Fix the visible units to V/;

— Let the hidden neurons evolve from a random initial point to
generate H;

— Generate S; = |V}, H;]
 Repeat K times to generate synthetic training
S — {51’1, 51,2: ""SlK’ 52,1, ""SN,K}



Step 2

Hidden
Neurons

Visible
Neurons

* Now unclamp the visible units and let the
entire network evolve several times to
generate

simul — {Ssimul,l: simul,1=2» ) 2simul,M



Gradients

d{log(P($))} »
dw; NKZSS]__ Z iy

SIESsimul

* Gradients are computed as before, except that
the first term is now computed over the
expanded training data




Overall Training

* [nitialize weights

* Run simulations to get clamped and unclamped
training samples

 Compute gradient and update weights
* |terate



Boltzmann machines

* Stochastic extension of Hopfield nets

* Enables storage of many more patterns than
Hopfield nets

* But also enables computation of probabilities
of patterns, and completion of pattern



Boltzmann machines: Overall

= z WjiSi + bi
J

P(Si=1)=

14+e %2

i

d{log(P(8))) ,,
dw;; NKZ SiSj —S,E;mul SiSj
d(log(P(S)
vy =y L2

Training: Given a set ot training patterns

— Which could be repeated to represent relative probabilities

* |nitialize weights

* |terate

Compute gradient and update weights

Run simulations to get clamped and unclamped training samples




Boltzmann machines: Overall

* Running: Pattern completion
— “Anchor” the known visible units
— Let the network evolve
— Sample the unknown visible units

* Choose the most probable value



Applications

Criginal Degraded Eeconstruction
1 o e i

Hophield network reconstructing degraded images
from nowsy (top) or partial (bottorm) cues.

Filling out patterns

Denoising patterns

Computing conditional probabilities of patterns
Classification!!

— How?



Boltzmann machines for classification

* Training patterns:
— [fy, f,, f5, ..., class]
— Features can have binarized or continuous valued representations

— Classes have “one hot” representation

e (Classification:

— Given features, anchor features, estimate a posteriori probability
distribution over classes

* Or choose most likely class



Boltzmann machines: Issues

* Training takes for ever
* Doesn’t really work for large problems

— A small number of training instances over a small
number of bits



Solution: Restricted Boltzmann
Machines

o VISIBLE

e Partition visible and hidden units
— Visible units ONLY talk to hidden units
— Hidden units ONLY talk to visible units

e Restricted Boltzmann machine..

— Originally proposed as “Harmonium Models” by Paul
Smolensky



Solution: Restricted Boltzmann
Machines

o VISIBLE

Zj = sziSi + b; P(s;=1) = .
i 1+ e~%

* Still obeys the same rules as a regular Boltzmann machine
e But the modified structure adds a big benefit..



Solution: Restricted Boltzmann

Machines
HIDDEN
VISIBLE
HIDDEN Zi = ijivi + b; P(h;=1) = 1+ e~%
VISIBLE Yi = ijihi + b; P(v;=1) = 1+ o7




Recap: Training full Boltzmann

machines: Step 1

Visible Neurons Hidden Neurons

* For each training pattern V;

— Fix the visible units to V/;

— Let the hidden neurons evolve from a random initial point to
generate H;

— Generate S; = [V, H;]
* Repeat K times to generate synthetic training
S = {51,1151,21 ---ile’ 52,1’ '"’SN:K}



Sampling: Restricted Boltzmann

machine

HIDDEN

* For each sample:
— Anchor visible units
— Sample from hidden units
— No looping!!

Zi = z Wjivi + bi
J

P(hl=1)=

1+ e %




Recap: Training full Boltzmann

machines: Step 2
Visib| Hidden

sible Neurons
Neurons

* Now unclamp the visible units and let the
entire network evolve several times to
generate

Ssimut = {Ssimul,l: Ssimul,1=2: ae ) Ssimul,M}



Sampling: Restricted Boltzmann
machine

O VISIBLE
Zi = Z Wjivi + bi f‘> Vi = Z Wjihi + bi
j j
<:: P(v;=1) =
* For each sample:

— lteratively sample hidden and visible units for a long time
— Draw final sample of both hidden and visible units

Pli=1D =1 1+ e~V

+ e~ %




Pictorial representation of RBM training

* For each sample:
— Initialize V}y (visible) to training instance value
— |teratively generate hidden and visible units

* For avery long time



Pictorial representation of RBM training

e Gradient (showing only one edge from visible node i to
hidden node j)

dlog p(v)

ﬁwl-j

* <v,, h> represents average over many generated training

samples

_ 0 o
= <vh;> —<v;h;>



Recall: Hopfield Networks

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state



A Shortcut: Contrastive Divergence

e Sufficient to run one iteration!
Olog p(v)

_ 0 1
= <vl.hj> —<vl.h].>

* This is sufficient to give you a good estimate of
the gradient



Restricted Boltzmann Machines

* Excellent generative models for binary (or
binarized) data

e Can also be extended to continuous-valued data

— “Exponential Family Harmoniums with an Application
to Information Retrieval”, Welling et al., 2004

* Useful for classification and regression

— How?
— More commonly used to pretrain models



Continuous-values RBMs

HIDDEN

VISIBLE

Zi = 2 Wjivi —+ bi
J

Vi = z wjih; + b;
J

Hidden units may also be continuous values

HIDDEN

VISIBLE

P =D =1 e

P(v;) = r(y)exp(y:)




Other variants

Q O--Q)

e Left: “Deep” Boltzmann machines
* Right: Helmholtz machine

— Trained by the “wake-sleep” algorithm



Topics missed..

Other algorithms for Learning and Inference
over RBMs

— Mean field approximations

RBMs as feature extractors

— Pre training
RBMs as generative models
More structured DBMs



