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Story so far

• Neural networks for computation
• All feedforward structures

• But what about..
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Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

3



• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network
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Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:
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Loopy network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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Loopy network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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A neuron “flips” if weighted sum of other 
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!



Example

• Red edges are +1,  blue edges are -1
• Yellow nodes are -1, black nodes are +1
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Example
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• Yellow nodes are -1, black nodes are +1



Example

11

• Red edges are +1,  blue edges are -1
• Yellow nodes are -1, black nodes are +1



Example
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• Red edges are +1,  blue edges are -1
• Yellow nodes are -1, black nodes are +1



Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…
» And so on…
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20 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”

A neuron “flips” if 
weighted sum of other 
neuron’s outputs is of 
the opposite sign

But this may cause
other neurons to flip!
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120 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”
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Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

• Will this behavior continue for ever??
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Loopy network

• Let be the output of the i-th neuron just before it responds to the 
current field

• Let be the output of the i-th neuron just after it responds to the current 
field

• If ,  then 
– If the sign of the field matches its own sign, it does not flip
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Loopy network

• If ,  then 

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase 
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Globally
• Consider the following sum across all nodes

– Assume 

• For any unit that “flips” because of the local field

• This is strictly positive
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Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in 
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Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of 

,

• is bounded

,

• The minimum increment of in a flip is

, { , .. }

• Any sequence of flips must converge in a finite number of steps 21



The Energy of a Hopfield Net

• Define the Energy of the network as

– Just  0.5 times the negative of 
• The 0.5 is only needed for convention

• The evolution of a Hopfield network 
constantly decreases its energy
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Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the 
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to 
align themselves in this manner
– Causing the field at other  neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of 
the network
– The energy is lower bounded and the decrements are upper bounded, so the 

network is guaranteed to converge to a stable state in a finite number of steps
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Poll 1

24

Hopfield networks are loopy networks whose output activations 
“evolve” over time 

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared 
parameter MLPs

 True
 False
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The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of 

• The evolution of a Hopfield network 
constantly decreases its energy

• Where did this “energy” concept suddenly sprout 
from?
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Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
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Analogy: Spin Glasses

• is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction 
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924) 

Total field at current dipole:

intrinsic external
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• A Dipole flips if it is misaligned with the field 
in its location

Total field at current dipole:

Response of current dipole
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Total field at current dipole:

Response of current dipole

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..
30
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• When will it stop???

Total field at current dipole:

Response of current dipole
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Analogy: Spin Glasses



• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

Response of current dipole
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Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable 
configuration
– I.e. the system remembers its stable state and returns to it

state

PE
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly
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Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for 
conformity with thermodynamic system 36



Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

state
PE
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Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it 

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

Image pilfered from
unknown source
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Evolution

• The network will evolve until it arrives at a local minimum in the 
energy contour

• We proved that every change in the network will result in decrease 
in energy
– So path to energy minimum is monotonic 40



Evolution

• For threshold activations the energy contour is only 
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 41
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Evolution

• For threshold activations the energy contour is only defined on a 
lattice
– Corners of a unit cube

• For tanh activations it will be a continuous function 
– With output in [-1 1] 43



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for tanh activation
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“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because 

If is a local minimum, so is 
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3-neuron net

• 8 possible states
• 2 stable states (hard thresholded network)
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/47



Hopfield net examples
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Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence
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Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence
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Writing 
and arranging the weights as a matrix 



Story so far
• A Hopfield network is a loopy binary network with symmetric 

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will 
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is 

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete 

version 51



Poll 2
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Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local 
minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting 

the weights matrix



Poll 2
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Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a 
local minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting 

the weights matrix



Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..
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Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..
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How do we remember a specific 
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network 
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
56



Storing patterns: Training a network

• A network that stores pattern also naturally stores 
– Symmetry  since is a function of yiyj

-1

1

1

1 -1

1

-1

-1

-1 1
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A network can store multiple patterns

• Every stable point is a stored pattern
• So, we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns, and 

• How many patterns can we store intentionally?

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

58



Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well

– Intuitively, patterns must ideally be maximally far apart

Stored patterns
Ghosts (negations)
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Evolution of the network
• Note:  for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:  
– Each step rotates the vector and then projects it onto the nearest 

corner

60
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-1
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Storing patterns
• A pattern is stored if:

– for all target patterns
• is in the same orthant as 

• Training: Design such that this holds

• Simple solution:  is an Eigenvector of 
– And the corresponding Eigenvalue is positive

– More generally  orthant( ) = orthant( )

• How many such can we have?
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Random fact that should interest you

• Number of ways of selecting two -bit binary 
patterns and such that they differ from 

one another in exactly bits is 

• The size of the largest set of -bit binary 
patterns that all differ from one 
another in exactly bits is at most 
– Trivial proof.. 
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Only N patterns?

• Symmetric weight matrices have orthogonal Eigen vectors
• You can have max orthogonal vectors in an -dimensional 

space
63
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random fact that should interest you

• The Eigenvectors of any symmetric matrix 
are orthogonal

• The Eigenvalues may be positive or negative
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Storing more than one pattern
• Requirement: Given 

– Design such that 
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that 
can be stored?
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Storing patterns

• Any (binary) eigen vector with a real eigen 
value is stored

• A square matrix can have up to eigen 
vectors
– So, we can “intentionally” store up to patterns

• Problem?
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Storing orthogonal patterns
• The Eigenvectors span the space
• Any pattern can be written as

• Many of these will have the form

• Spurious memories
• The fewer memories we store, and the more distant they 

are, the more likely we are to eliminate spurious memories
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The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
68
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Can we do something 
about this?

How do we find this 
network?



Storing a pattern

• Design such that the energy is a local 
minimum at the desired 

1

-1

-1

-1 1

1

1

-1

1 -1
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Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of 

the target patterns
71



Estimating the Network

• Estimate (and ) such that 
– is minimized for 

– is maximized for all other 

• Caveat: Unrealistic to expect to store more than 
patterns, but can we make those patterns 

memorable 72



Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

73

The bias can be captured by 
another fixed-value component



Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target 
patterns
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Optimizing W

• Simple gradient descent:
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?
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The training again..

• Note the energy contour of a Hopfield 
network for any weight 

78state

Energy

Bowls will all actually be
quadratic



The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more 

frequently

79state

Energy

Target patterns



The negative class

• The second term tries to “raise” all non-target 
patterns
– Do we need to raise everything?

80state

Energy



Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the 

target patterns, and many will even vanish

81state

Energy



Identifying the valleys..

• Problem: How do you identify the valleys for 
the current ?

82state

Energy



Identifying the valleys..

83state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

84



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 

– Update weights
•

85



Training the Hopfield network

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 

– Update weights
•
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Which valleys?

87state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?



Which valleys?

88state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of 
memories are more important to eliminate



Identifying the valleys..

89state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley 

– Update weights
•
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A possible problem

92state

Energy

• What if there’s another target pattern 
downvalley
– Raising it will destroy a better-represented or 

stored pattern!



A related issue
• Really no need to raise the entire surface, or 

even every valley

93state

Energy



A related issue
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley

94state

Energy



Raising the neighborhood
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Energy

• Starting from a target pattern, let the network 
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position 

– Update weights
•
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Story so far

• Hopfield nets with neurons can store up to 
random patterns

– But comes with many parasitic memories

• Networks that store memories can be 
trained through optimization
– By minimizing the energy of the target patterns, 

while increasing the energy of the neighboring 
patterns
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Storing more than N patterns

• The memory capacity of an -bit network is at 
most 
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is 

• How do we increase the capacity of the 
network
– How to store more than patterns

98



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

100



Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

102

Visible bits



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!
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Visible bits Hidden bits



Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to 
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

104

Visible bits Hidden bits



Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended 

patterns:
– Making errors in the don’t care bits doesn’t matter

105

Visible bits Hidden bits



Robustness of recall

• The value taken by the K hidden neurons during recall 
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons
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Robustness of recall

• Also, we can have multiple extended patterns 
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons

107



Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual 

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t 
care bits
– Possible to set the don’t care bits such that the overall pattern (and 

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits 
vary

• To exploit it properly, it helps to view the Hopfield net differently: as 
a probabilistic machine
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A probabilistic interpretation of 
Hopfield Nets

• For binary y the energy of a pattern is the 
analog of the negative log likelihood of a 
Boltzmann distribution
– Minimizing energy maximizes log likelihood

109



The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann 

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

110



Continuing the Boltzmann analogy

• The system probabilistically selects states with 
lower energy
– With infinitesimally slow cooling, at it 

arrives at the global minimal state
111



Spin glasses and the Boltzmann 
distribution

• Selecting a next state is analogous to drawing a sample 
from the Boltzmann distribution at in a universe 
where 
– Energy landscape of a spin-glass model: Exploration and 

characterization, Zhou and Wang, Phys. Review E 79, 2009

112

state

Energy



Hopfield nets: Optimizing W

• Simple gradient descent:

113

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Simple gradient descent:

114
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Update rule

115

Natural distribution for variables:  The Boltzmann Distribution



From Analogy to Model

• The behavior of the Hopfield net is analogous 
to annealed dynamics of a spin glass 
characterized by a Boltzmann distribution

• So, let’s explicitly model the Hopfield net as a 
distribution..
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of 
the state
– And the expected value of the state

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the average:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the 
two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



The Energy of the Network

• We can define the energy of the system as before
• Neurons are stochastic, with disorder or entropy
• The equilibribum probability distribution over states is the 

Boltzmann distribution at T=1
– This is the probability of different states that the network will 

wander over at equilibrium

Visible 
Neurons



The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model:  generates states according to 

Visible 
Neurons



The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•
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The field at a single node

• Giving us

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons



Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

2. Iterate 
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Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate 
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Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate 
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Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

– Estimates the probability that the bit is 1.0. 
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

2. Iterate 
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Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

1. Initialize network with initial pattern

2. For 
i. For iter

a) For 

134

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter:  increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior



Annealing

• Let the system evolve to “equilibrium”
• Let be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

1. Initialize network with initial pattern

2. For 

i. For iter

a) For 

139



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

140

1. Initialize network with initial pattern

2. For 

i. For iter

a) For 



Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a 
conditional distribution

• What is the overall probability of the entire set 
of neurons taking any configuration 

141



The overall probability

• The probability of any state can be shown to be 
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
142



The overall probability

• Stop when the running average of the log 
probability of patterns stops increasing
– I.e. when the (running average) of the energy of 

the patterns stops decreasing
143



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

– The parameter of the distribution is the weights matrix 

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine



The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :



Training the model

• How does the probabilistic view affect how we 
train the model?

• Not much…
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Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and 
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability 
distribution to states 
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to 

other patterns



Training the network

• Must train the network to assign a desired probability distribution 
to states 

• Given a set of “training” inputs 
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed:  maximize likelihood of stored states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 
vectors 
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

∈𝐒

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training 

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!



The second term
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The second term

• The second term is simply the expected value 
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 
can compute it by sampling!



Estimating the second term

• The expectation can be estimated as the average of 
samples drawn from the distribution

• Question:  How do we draw samples from the Boltzmann 
distribution?
– How do we draw samples from the network?



The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be 



The simulation solution for the second 
term

• The second term in the derivative is computed 
as the average of sampled states when the 
network is running “freely”



Maximum Likelihood Training

• The overall gradient ascent rule

∈𝐒

Sampled estimate



Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

∈𝐒



Overall Training

∈𝐒

state

Energy

Note the similarity to the update rule for the Hopfield network



Adding Capacity to the Hopfield 
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

161



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible 
Neurons

Hidden 
Neurons



The patterns
• In fact we could have multiple hidden patterns 

coupled with any visible pattern
– These would be multiple stored patterns that all give 

the same visible output
– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?



Boltzmann machine without hidden 
units

• This basic framework has no hidden units

• Extended to have hidden units

∈𝐒



With hidden neurons

• Now, with hidden neurons the complete state 
pattern for even the training patterns is 
unknown
– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons

Must train to maximize 
probability of desired
patterns of visible bits



Training the network

• Must train the network to assign a desired 
probability distribution to visible states 

• Probability of visible state sums over all 
hidden states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training” 
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term

∈𝐕

∈𝐕

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states 
for each visible configuration in our training set

– But the second term is summed over all states

∈𝐕
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The simulation solution

• The first term is computed as the average 
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as 
the average of sampled states when the network 
is running “freely”

∈𝐕



More simulations

• Maximizing the marginal probability of requires 
summing over all values of 
– An exponential state space
– So we will use simulations again

Visible 
Neurons

Hidden 
Neurons



Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 
the first term is now computed over the 
expanded training data



Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped 

training samples
• Compute gradient and update weights
• Iterate

𝑺 ∈𝐒



Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than 

Hopfield nets
• But also enables computation of probabilities 

of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate

𝑺 ∈𝐒



Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, ….  , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features,  anchor features,  estimate a posteriori probability 

distribution over classes
• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul 

Smolensky

VISIBLE

HIDDEN



Solution: Restricted Boltzmann 
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN



Solution: Restricted Boltzmann 
Machines

VISIBLE

HIDDEN

VISIBLE

HIDDEN



Recap: Training full Boltzmann 
machines: Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training

-1

1

1

1 -1

Visible Neurons Hidden Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!

VISIBLE

HIDDEN



Recap: Training full Boltzmann 
machines: Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

-1

1

1

1 -1

Visible 
Neurons

Hidden 
Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN



Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v



Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to 
hidden node j)

• <vi, hj> represents average over many generated training 
samples
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Recall: Hopfield Networks
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley

195state

Energy



A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of 
the gradient
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Restricted Boltzmann Machines

• Excellent generative models for binary (or 
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application 

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models
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Continuous-values RBMs

VISIBLE

HIDDEN

VISIBLE

HIDDEN

Hidden units may also be continuous values



Other variants

• Left:  “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm



Topics missed..

• Other algorithms for Learning and Inference 
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …
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