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Topics for the day

• The problem of learning
• The perceptron rule for learning individual 

perceptrons
– And its inapplicability to multi-layer perceptrons

• Greedy solutions for classification networks: 
ADALINE and MADALINE

• Learning through Empirical Risk Minimization
• Intro to function optimization and gradient 

descent
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Recap

• Neural networks are universal function approximators
– Can model any Boolean function
– Can model any classification boundary
– Can model any continuous valued function

• Provided the network satisfies minimal architecture constraints
– Networks with fewer than the required number of parameters can be very 

poor approximators
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These boxes are functions

• Take an input
• Produce an output
• Can be modeled by a neural network!

N.Net
Voice 
signal Transcription N.NetImage Text caption

N.Net
Game
State Next move
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Questions

• Preliminaries:
– How do we represent the input?

– How do we represent the output?

• How do we compose the network that performs 
the requisite function?
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– How do we represent the input?

– How do we represent the output?
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The original perceptron

• Simple threshold unit
– Unit comprises a set of weights and a threshold
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Preliminaries: The units in the 
network – the perceptron

• Perceptron
– General setting, inputs are real valued
– A bias representing a threshold to trigger the perceptron
– Activation functions are not necessarily threshold functions

• The parameters of the perceptron (which determine how it behaves) are 
its weights and bias
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Preliminaries: Redrawing the neuron

• The bias can also be viewed as the weight of another input 
component that is always set to 1
– If the bias is not explicitly mentioned, we will implicitly be assuming 

that every perceptron has an additional input that is always fixed at 1
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First: the structure of the network

• We will assume a feed-forward network
– No loops: Neuron outputs do not feed back to their inputs directly or 

indirectly
– Loopy networks are a future topic

• Part of the design of a network:  The architecture
– How many layers/neurons, which neuron connects to which and how, etc.

• For now, assume the architecture of the network is capable of 
representing the needed function
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What we learn: The parameters of the 
network

• Given: the architecture of the network
• The parameters of the network: The weights and biases

– The weights associated with the blue arrows in the picture

• Learning the network : Determining the values of these 
parameters such that the network computes the desired function

1
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The network is a function f() 
with parameters W which must
be set to the appropriate values
to get the desired behavior from
the net
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• Moving on..
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The MLP can represent anything

• The MLP can be constructed to represent anything
• But how do we construct it?
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Option 1:  Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.:  Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..
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Option 1:  Construct by hand
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18

-1,0

0,1

0,-1

1,0
X1

X2

1 1
1

X1 X2

Assuming simple perceptrons:
output = 1 if ௜ ௜௜ ௜



Option 1:  Construct by hand
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Option 1:  Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.:  Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..
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Option 2: Automatic estimation 
of an MLP

• More generally, given the function to 
model, we can derive the parameters of the 
network to model it, through computation 21



Actual shape depends on 

How to learn a network?

• Solution: Estimate parameters to minimize the 
error between the target function and the 
network function 
– Find the parameter that minimizes the shaded area
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How to learn a network?

• The shaded area

• The optimal 
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Problem: is unknown

• Function must be fully specified in order to compute

– Known everywhere, i.e. for every input 

• In practice we will not have such specification
24



Sampling the function

• Sample 
– Basically, get input-output pairs for a number of samples of input ௜

• Many samples ௜ ௜ , where ௜ ௜

• Very easy to do in most problems:  just gather training data
– E.g. set of images and their class labels
– E.g. speech recordings and their transcription 25
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Drawing samples

• We must learn the entire function from these 
few examples
– The “training” samples
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The Empirical error

• The empirical estimate of the error is the average error over the training 
samples

௜ ௜

ே

௜ୀଵ

• Estimate network parameters to minimize this average error instead

ௐ
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Learning the function from training 
samples

• Aim: Find the network parameters that  “fit” the training points exactly

– Assuming network architecture is sufficient for such a fit
– Assuming unique output d at any X

• And hopefully  the resulting function is also correct where we don’t have 
training samples

28
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Story so far

• “Learning” a neural network == determining the parameters of the 
network (weights and biases) required for it to model a desired 
function
– The network must have sufficient capacity to model the function

• Ideally, we would like to optimize the network to represent the 
desired function everywhere

• However this requires knowledge of the function everywhere
• Instead, we draw “input-output” training instances from the 

function and estimate network parameters to “fit” the input-output 
relation at these instances
– And hope it fits the function elsewhere as well
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Poll 1
• Since neural networks are universal approximators, any network of any 

architecture can approximate any function to arbitrary precision (True or 
False):
– True 
– False

• Which of the following are true regarding how to compose a network to 
approximate a given function?
– The network architecture must have sufficient capacity to model the function
– The network is actually a parametric function, whose parameters are its 

weights and biases
– The parameters must be learned to best approximate the target function
– The parameters can be perfectly learned from just a few training samples of 

the target function, even if the actual target function is unknown.
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Let’s begin with a simple task

• Learning a classifier
– Simpler than regressions

• This was among the earliest problems 
addressed using MLPs

• Specifically, consider binary classification
– Generalizes to multi-class
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The Empirical Classification error

• The obvious error metric in a classifier is binary
– The classifier is either right (error=0) or wrong (error=1)

• Either , or 

• Learning the classifier: Minimizing the count of misclassifications 33
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History: The original MLP

• The original MLP as proposed by 
Rosenblatt/Minsky: a network of threshold units
– But how do you train it?

• Given only “training” instances of input-output pairs
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The simplest MLP: a single perceptron

• Learn this function
– A step function across a hyperplane
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• Learn this function
– A step function across a hyperplane

– Given only samples from it
36
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Learning the perceptron

• Given a number of input output pairs, learn the weights and bias

– ௜ ௜
ே
௜ୀଵ

– Learn ଵ ே
் , given several pairs
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Restating the perceptron

• Restating the perceptron equation by adding another dimension to 

௜ ௜

ேାଵ

௜ୀଵ

where  ேାଵ

• Note that the boundary ௜ ௜
ேାଵ
௜ୀଵ is now a hyperplane through origin

x1

x2

x3

xN
WN+1xN+1=1
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The Perceptron Problem

• Find the hyperplane that perfectly separates the two 
groups of points
– Note:  ଵ ଶ ேାଵ is a vector that is orthogonal to the hyperplane

• In fact the equation for the hyperplane itself means “the set of all Xs that are 
orthogonal to ”
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The Perceptron Problem

• Find the hyperplane ௜ ௜
ேାଵ
௜ୀଵ that perfectly separates the two groups of points

– Let vector  𝑊 = 𝑤ଵ,𝑤ଶ,… , 𝑤ேାଵ
் and vector 𝑋 = 𝑥ଵ, 𝑥ଶ, … , 𝑥ே, 1

்

– ∑ 𝑤௜𝑋௜ = 𝑊்𝑋ேାଵ
௜ୀଵ is an inner product

– 𝑊்𝑋 = 0 is the hyperplane comprising all 𝑋s orthogonal to vector 𝑊
• Learning the perceptron = finding the weight vector 𝑊 for the separating hyperplane
• 𝑊 points in the direction of the positive class 40
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The Perceptron Problem

• Learning the perceptron:  Find the weights vector such that the plane 
described by ் perfectly separates the classes
– ் is positive ( ் ) for all red dots 

• The angle between 𝑊 and positive-class vectors is less than 90

– ் is negative ் for all blue dots
• The angle between 𝑊 and negative-class vectors is greater than 90 41
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The online perceptron solution

• The popular solution, originally proposed by 
Rosenblatt is an online algorithm
– The famous “perceptron” algorithm

• Initializes and incrementally updates it each 
time we encounter an instance that is incorrectly 
classified
– Guaranteed to find the correct solution for linearly 

separable data

42



Perceptron Algorithm: Summary

• Cycle through the training instances

• Only update on misclassified instances

• If instance misclassified:
– If instance is positive class (positive misclassified as 

negative)

– If instance is negative class (negative misclassified 
as positive) 
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Perceptron Learning Algorithm

• Given training instances 
– ௜ or 

• Initialize 
• Cycle through the training instances:
• do

– For 𝑡𝑟𝑎𝑖𝑛

௜
்

௜

• If ௜ ௜

௜ ௜

• until no more classification errors

44
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A Simple Method: The Perceptron 
Algorithm

• Initialize: Randomly initialize the hyperplane
– I.e. randomly initialize the normal vector 

• Classification rule ்

– Vectors on the same side of the hyperplane as will be assigned +1 class, 
and those on the other side will be assigned  -1

• The random initial plane will make mistakes 45
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Misclassified positive instance
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Perceptron Algorithm
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Perceptron Algorithm
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The new weight vector
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Perceptron Algorithm

54

The new decision boundary
Perfect classification, no more updates, we are done
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Perceptron Algorithm
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The new decision boundary
Perfect classification, no more updates, we are done
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If the classes are linearly separable, guaranteed to 
converge in a finite number of steps



Convergence of Perceptron Algorithm

• Guaranteed to converge if classes are linearly 
separable

– After no more than misclassifications

• Specifically when W is initialized to 0

– is length of longest training point
– is the best case closest distance of a training point 

from the classifier
• Same as the margin in an SVM

– Intuitively – takes many increments of size to undo 
an error resulting from a step of size 
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Perceptron Algorithm
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g is the best-case margin
R is the length of the longest vector
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The Perceptron Solution: 
when classes are not linearly separable

• When classes are not linearly separable, not possible to find a separating hyperplane
– No “support” plane for reflected data
– Some points will always lie on the other side

• Model does not support perfect classification of this data
• Perceptron algorithm will never converge 58
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A simpler solution

• Reflect all the negative instances across the origin
– Negate every component of vector 𝑋

• If we use class notation for the labels (instead of ), we can simply 
write the “reflected” values as ᇱ

– Will retain the features 𝑋 for the positive class, but reflect/negate them for the negative class 
59
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The Perceptron Solution

• Learning the perceptron:  Find a plane such that all the modified 
( ) features lie on one side of the plane
– Such a plane can always be found if the classes are linearly separable

60
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The Perceptron Solution: 
Linearly separable case

• When classes are linearly separable: a trivial solution

௜
ᇱ

௜

௜ ௜

௜

• Other solutions are also possible, e.g. max-margin solution
61
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The Perceptron Solution: 
when classes are not linearly separable

62

Key:  Red 1, Blue = -1

• When classes are not linearly separable, not possible to find a separating hyperplane
– No “support” plane for reflected data
– Some points will always lie on the other side

• Model does not support perfect classification of this data



History: A more complex problem

• Learn an MLP for this function
– 1 in the yellow regions, 0 outside

• Using just the samples
• We know this can be perfectly represented using an MLP
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More complex decision boundaries

• Even using the perfect architecture…

• … can we use perceptron learning rules to learn 
this classification function?
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The pattern to be learned at the 
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
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The pattern to be learned at the 
lower level

• Consider a single linear classifier that must be learned from the training data
– Can it be learned from this data?
–

•
66
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The pattern to be learned at the 
lower level

• Consider a single linear classifier that must be learned from the training data
– Can it be learned from this data?
– Will require relabelling some instances to learn this line

• Which ones?
67
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Poll 2
• For the double-pentagon problem, given the data shown on slide 60 and 

given that all but the one neuron highlighted in yellow are already 
correctly learned, can we use the perceptron learning algorithm to learn 
the one remaining neuron?
– Yes 
– No

• What problems do you see in using the perceptron rule to learn the 
remaining perceptron?
– Perceptron learning will require linearly separable classes to learn the model 

that classifies the data perfectly, but the data are not linearly separable 
– Perceptron learning will require relabelling the data to make them linearly 

separable with the correct decision boundary 
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The pattern to be learned at the 
lower level

• Consider a single linear classifier that must be learned from the training data
– Can it be learned from this data?
–

•
70
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The pattern to be learned at the 
lower level

71
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• Consider a single linear classifier that must be learned from the training data
– Can it be learned from this data?
– The individual classifier actually requires the kind of labelling shown here

• Which is not given!!



The pattern to be learned at the 
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
– Challenge: Must also learn the labels for the lowest units! 72
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The pattern to be learned at the 
lower level

• For a single line:
– Try out every possible way of relabeling the blue dots 

such that we can learn a line that keeps all the red dots 
on one side! 73
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The pattern to be learned at the 
lower level

• This must be done for each of the lines (perceptrons)
• Such that, when all of them are combined by the higher-

level perceptrons we get the desired pattern
– Basically an exponential search over inputs 74

x1 x2

x2

x1



75

x1 x2

x2

Must know the desired output of every 
neuron for every training instance, in 
order to learn this neuron
The outputs should be such that the
neuron individually has a linearly
separable task
The linear separators must combine to
form the desired boundary

This must be done for every neuron

Getting any of them wrong will result in
incorrect output!

Individual neurons represent one of the lines
that compose the figure (linear classifiers)
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Learning a multilayer perceptron

• Training this network using the perceptron rule is a combinatorial optimization 
problem

• We don’t know the outputs of the individual intermediate neurons in the network 
for any training input

• Must also determine the correct output for each neuron for every training 
instance

• At least exponential (in inputs) time complexity!!!!!!
76

Training data only specifies
input and output of network

Intermediate outputs (outputs
of individual neurons) are not specified
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Greedy algorithms: Adaline and 
Madaline

• Perceptron learning rules cannot directly be 
used to learn an MLP
– Exponential complexity of assigning intermediate 

labels
• Even worse when classes are not actually separable

• Can we use a greedy algorithm instead?
– Adaline / Madaline
– On slides, will skip in class (check the quiz)
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A little bit of History: Widrow

• First known attempt at an analytical solution to training 
the perceptron and the MLP

• Now famous as the LMS algorithm
– Used everywhere
– Also known as the “delta rule”

Bernie Widrow
• Scientist, Professor, Entrepreneur
• Inventor of most useful things in 

signal processing and machine 
learning!
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History: ADALINE

• Adaptive linear element 
(Hopf and Widrow, 1960)

• Actually just a regular perceptron
– Weighted sum on inputs and bias passed 

through a thresholding function

• ADALINE differs in the learning rule

Using 1-extended vector
notation to account for bias
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History: Learning in ADALINE

• During learning, minimize the squared 
error assuming to be real output

• The desired output is still binary!

Error for a single input

80



History: Learning in ADALINE

• If we just have a single training input, 
the gradient descent update rule is

Error for a single input
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The ADALINE learning rule

• Online learning rule

• After each input , that has 
target (binary) output , compute 
and update: ௜ ௜

௧

• This is the famous delta rule
– Also called the LMS update rule

82



The Delta Rule
• In fact both the Perceptron 

and ADALINE use variants 
of the delta rule!
– Perceptron: Output used in 

delta rule is 

– ADALINE: Output used to 
estimate weights is 

• For both 𝑥

𝑧

1

𝑦𝑑

𝛿

𝑥

𝑧

1

𝑦
𝑑

𝛿

Perceptron

ADALINE
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Aside: Generalized delta rule
• For any differentiable activation function 

the following update rule is used

𝒇(𝒛)

• This is the famous Widrow-Hoff update rule
– Lookahead: Note that this is exactly 

backpropagation in multilayer nets if we let 
represent the entire network between and 

• It is possibly the most-used update rule in 
machine learning and signal processing
– Variants of it appear in almost every problem
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Multilayer perceptron: MADALINE

• Multiple Adaline
– A multilayer perceptron with threshold activations
– The MADALINE

+

+

+

+

+

85



MADALINE Training

• Update only on error
–

– On inputs for which output and target values differ 

+

+

+

+

+

-
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  

+

+

+

+

+
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  

+

+

+

+

+

-
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  
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+

+

+

-
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MADALINE

• Greedy algorithm, effective for small networks
• Not very useful for large nets

– Too expensive
– Too greedy
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Story so far
• “Learning” a network = learning the weights and biases to compute a target function

– Will require a network with sufficient “capacity”

• In practice, we learn networks by “fitting” them to match the input-output relation of 
“training” instances drawn from the target function

• A linear decision boundary can be learned by a single perceptron (with a threshold-
function activation) in linear time if classes are linearly separable

• Non-linear decision boundaries require networks of perceptrons

• Training an MLP with threshold-function activation perceptrons will require 
knowledge of the input-output relation for every training instance, for every 
perceptron in the network
– These must be determined as part of training
– For threshold activations,  this is an NP-complexity combinatorial optimization problem
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History..

• The realization that training an entire MLP was 
a combinatorial optimization problem stalled 
development of neural networks for well over 
a decade!
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The problem

• Our binary error metric is not useful
– To improve the classifier we must move the blue dotted line 

left
– But if we move it only slightly, moving it either right or left 

results in no change in error 94
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Why this problem?

• The perceptron is a flat function with zero derivative everywhere, 
except at 0 where it is non-differentiable
– You can vary the weights a lot without changing the error
– There is no indication of which direction to change the weights to 

reduce error 95



This only compounds on larger 
problems

• Individual neurons’ weights can change significantly without changing 
overall error

• The simple MLP is a flat, non-differentiable function
– Actually a function with 0 derivative nearly everywhere, and no derivatives at 

the boundaries
96

x1 x2

x2



A second problem: What we actually 
model

• Real-life data are rarely clean
– Not linearly separable
– Rosenblatt’s perceptron learning rule wouldn’t 

work in the first place
97



The solution

• Change our way of computing the mismatch such that modifying the 
classifier slightly lets us know if we are going the right way or not
– This requires changing both, our activation functions, and the manner in 

which we evaluate the mismatch between the classifier output and the 
target output

– Our mismatch function will now not actually count errors, but a proxy for it
98
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Solution: Differentiable activation

• Let’s make the neuron differentiable, with non-zero derivatives over 
much of the input space
– Small changes in weight can result in non-negligible changes in output
– This enables us to estimate the parameters using gradient descent 

techniques..
99
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Differentiable Mismatch function

• Threshold activation: shifting the threshold from T1 to T2 does not change 
classification error
– Does not indicate if moving the threshold left was good or not
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T1 T2x x

y y

• Smooth, continuously varying activation: Classification based on whether the 
output is greater than 0.5 or less
– Quantify how much the output differs from the desired target value (0 or 1)
– Moving the function left or right changes this quantity, even if the classification error itself 

doesn’t change
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Poll 3
• Which of the following are true of the threshold activation

– Increasing (or decreasing) the threshold will not change the overall classification error unless 
the threshold moves past a misclassified training sample

– We cannot know if a change (increase of decrease) of the threshold moves it in the correct 
direction that will result in a net decrease in classification error

– The derivative of the classification error with respect to the threshold gives us an indication of 
whether to increase or decrease the threshold

• Which of the following are true of the continuous activation (sigmoid)
– Shifting the function left or right will not change the overall classification error unless the 

crossover point (where the function crosses 0.5) moves past a misclassified training sample
– Shifting the function will change the total distance of the value of the function from its target 

value at the training instances
– The derivative of the total distance with respect to the shift of the function gives us an 

indication of which direction to shift the function to improve classification error
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The two key requirements for 
learnability
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• Continuously varying activation
– Differentiable

• Continuously varying error function
– Also differentiable
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Continuous Activations

• Replace the threshold activation with continuous graded activations
– E.g.  RELU, softplus, sigmoid etc.

• The activations are differentiable almost everywhere
– Have derivatives almost everywhere
– And have “subderivatives” at non-differentiable corners

• Bounds on the derivative that can substitute for derivatives in our setting
• More on these later 105
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The sigmoid activation is special

• This particular one has a nice interpretation

• It can  be interpreted as 
106
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Non-linearly separable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

107

107

x1

x2



Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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The probability of y=1

• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point
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The logistic regression model

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems
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Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1
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When X is a 2-D variable

x1

x2

Decision: y > 0.5?
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Perceptrons and probabilities

• We will return to the fact that perceptrons
with sigmoidal activations actually model class 
probabilities in a later lecture

• But for now moving on..
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Perceptrons with differentiable 
activation functions

• is a differentiable function of 

–
ௗఙ ௭

ௗ௭
is well-defined and finite for all 

• Using the chain rule, is a differentiable function of both inputs 𝒊 and 
weights 𝒊

• This means that we can compute the change in the output for small
changes in either the input or the weights 125
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Overall network is differentiable

• Every individual perceptron is differentiable w.r.t its inputs and its 
weights (including “bias” weight)
– Small changes in the parameters result in measurable changes in output

• Using the chain rule can compute how small perturbations of a 
parameter change the output of the network
– The network output is differentiable with respect to the parameter

126
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Overall function is differentiable

127

• By extension, the overall function is differentiable w.r.t every parameter in 
the network
– We can compute how small changes in the parameters change the output

• For non-threshold activations the derivative are finite and generally non-zero

• We will derive the actual derivatives using the chain rule later

Figure does not  show
bias connections



The two key requirements for 
learnability

128

• Continuously varying activation
– Differentiable

• Continuously varying error function
– Also differentiable
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The error function

• Define a divergence function with the following properties
– 𝑑𝑖𝑣 𝑓 𝑋;𝑾 , 𝑔 𝑋 = 0 if 𝑓 𝑋;𝑾 = 𝑔 𝑋

– 𝑑𝑖𝑣 𝑓 𝑋;𝑾 , 𝑔 𝑋 > 0 if 𝑓 𝑋;𝑾 ≠ 𝑔 𝑋

– 𝑑𝑖𝑣 𝑓, 𝑔 is differentiable with respect to 𝑓

• The divergence function quantifies mismatch between the network output and target 
function
– For classification, this is usually not the classification error but a proxy to it
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How to learn a network

• When has the capacity to exactly represent 

• div() is a divergence function that goes to zero when 
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Minimizing expected divergence

• More generally, assuming is a random variable
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Recap: Sampling the function

• We don’t have g(X) so sample 
– Obtain input-output pairs for a number of samples of input 
– Good sampling: the samples of will be drawn from 

• Estimate function from the samples
132
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The Empirical risk

• The expected divergence (or risk) is the average divergence over the entire input space

௑

• The empirical estimate of the expected risk is the average divergence over the samples
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Training the network: Empirical Risk 
Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Quantification of error on the ith instance:  ௜ ௜

– Empirical average divergence (Empirical Risk) on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
divergence (empiricial risk)

ௐ

– I.e. minimize the empirical risk over the drawn samples 134



Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Error on the ith instance:  ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 135

Note :  Its really a measure of error, but using standard terminology, 
we will call it a “Loss”

Note 2: The empirical risk is only an empirical approximation 
to the true risk which is our actual minimization
objective

Note 3: For a given training set the loss is only a function of W



ERM for neural networks

– What is the exact form of Div()?  More on this later

• Optimize network parameters to minimize the 
total error over all training inputs

Actual output of network:

Desired output of network: 

Error on i-th training input: 

ଵ ଶ ௄

Average training error(loss):
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Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization
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Story so far
• We learn networks by “fitting” them to training instances drawn from a target function

• Learning networks of threshold-activation perceptrons requires solving a hard 
combinatorial-optimization problem
– Because we cannot compute the influence of small changes to the parameters on the overall error

• Instead we use continuous activation functions with non-zero derivatives to enables us 
to estimate network parameters
– This makes the output of the network differentiable w.r.t every parameter in the network
– The logistic activation perceptron actually computes the a posteriori probability of the output given 

the input

• We define differentiable divergence between the output of the network and the 
desired output for the training instances
– And a total error, which is the average divergence over all training instances

• We optimize network parameters to minimize this error
– Empirical risk minimization

• This is an instance of function minimization 
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