Neural Networks: Optimization Part 1

Intro to Deep Learning, Fall 2023

Story so far

- Neural networks are universal approximators
- Can model any odd thing
- Provided they have the right architecture
- We must train them to approximate any function
- Specify the architecture
- Learn their weights and biases
- Networks are trained to minimize total "loss" on a training set
- We do so through empirical risk minimization
- We use variants of gradient descent to do so
- The gradient of the error with respect to network parameters is computed through backpropagation

Recap: Gradient Descent Algorithm

- In order to minimize any function $f(x)$ w.r.t. x
- Initialize:
$-x^{0}$
$-k=0$

- Do
$-k=k+1$
$-x^{k+1}=x^{k}-\eta \nabla_{x} f^{T}$
- while $\left|f\left(x^{k}\right)-f\left(x^{k-1}\right)\right|>\varepsilon$

Recap: Training Neural Nets by Gradient Descent

Total training error:

$$
\operatorname{Loss}=\frac{\mathbf{1}}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}} ; \mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}\right)
$$

- Gradient descent algorithm:
- Initialize all weights $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}$
- Do:
- For every layer k, compute:

$$
\begin{aligned}
& \text { - } \nabla_{\mathbf{W}_{k}} \operatorname{Loss}=\frac{1}{T} \sum_{t} \nabla_{\mathbf{W}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right) \quad \text { Computed using backprop } \\
& \text { - } \mathbf{W}_{k}=\mathbf{W}_{k}-\eta \nabla_{\mathbf{W}_{k}} \operatorname{Loss}^{T}
\end{aligned}
$$

- Until Loss has converged

Neural network training algorithm

- Initialize all weights and biases $\left(\mathbf{W}_{1}, \mathbf{b}_{1}, \mathbf{W}_{2}, \mathbf{b}_{2}, \ldots, \mathbf{W}_{N}, \mathbf{b}_{N}\right)$
- Do:
- Loss $=0$
- For all k, initialize $\nabla_{\mathbf{W}_{k}}$ Loss $=0, \nabla_{\mathbf{b}_{k}}$ Loss $=0$
- For all $t=1: T$ \# Loop through training instances
- Forward pass : Compute
- Output $Y\left(X_{t}\right)$,
- Divergence $\operatorname{Div}\left(Y_{t}, \boldsymbol{d}_{t}\right)$
- Backward pass: For all k compute:
$-\nabla_{\mathbf{W}_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right), \nabla_{\mathbf{b}_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right)$
$-\nabla_{\mathrm{W}_{k}}$ Loss $+=\nabla_{\mathrm{W}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{t}\right) ; \nabla_{\mathbf{b}_{k}}$ Loss $+=\nabla_{\mathbf{b}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)$
- For all k, update:

$$
\mathbf{W}_{k}=\mathbf{W}_{k}-\frac{\eta}{T}\left(\nabla_{\mathbf{W}_{k}} L o s s\right)^{T} ;
$$

Computing gradient (uses backprop)

$$
\mathbf{b}_{k}=\mathbf{b}_{k}-\frac{\eta}{T}\left(\nabla_{\mathbf{W}_{k}} L o s s\right)^{T} \uparrow
$$

- Until Loss has converged

Issues

- Convergence: How well does it learn
- And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- Etc..

Poll 0

Backpropagating from the kth layer, which is the derivative for the weights W_{k} ?

- $y_{k-1} \cdot \nabla_{z_{k}}$ Div: The product of the output y of the $k-1$ th layer and the derivative for the affine value z of the k th layer (in that order)
- $\nabla_{z_{k}}$ Div y_{k-1} : The product of the derivative for the affine value z at the k th layer and the output y of the $k-1$ th layer (in that order)
- $y_{k-1}^{\top} \cdot \nabla_{z_{k}}$ Div: The product of the transpose of the output y of the $k-$ 1th layer and the derivative for the affine value z of the k th layer (in that order)
- $\nabla_{z_{k}}$ Div. y_{k-1}^{\top} : The product of the derivative for the affine value z at the k th layer and the transpose output y of the $k-1$ th layer (in that order)

Poll 0

Backpropagating from the kth layer, which is the derivative for the weights W_{k} ?

- $y_{k-1} \cdot \nabla_{z_{k}}$ Div: The product of the output y of the $k-1$ th layer and the derivative for the affine value z of the k th layer (in that order)
- $\nabla_{z_{k}}$ Div y_{k-1} : The product of the derivative for the affine value z at the k th layer and the output y of the $k-1$ th layer (in that order)
- $y_{k-1}^{\top} \cdot \nabla_{z_{k}}$ Div: The product of the transpose of the output y of the $k-$ 1th layer and the derivative for the affine value z of the k th layer (in that order)
- $\nabla_{z_{k}}$ Div. y_{k-1}^{\top} : The product of the derivative for the affine value z at the k th layer and the transpose output y of the $k-1$ th layer (in that order)

Onward

Onward

- Does backprop always work?
- Convergence of gradient descent
- Rates, restrictions,
- Hessians
- Acceleration and Nestorov
- Alternate approaches
- Modifying the approach: Stochastic gradients
- Speedup extensions: RMSprop, Adagrad

Does backprop do the right thing?

- Is backprop always right?
- Assuming it actually finds the minimum of the divergence function?
(Actual question: Does gradient descent find the right solution, even when it finds the actual minimum)

Recap: The differentiable activation

- Threshold activation: Equivalent to counting errors
- Shifting the threshold from T_{1} to T_{2} does not change classification error
- Does not indicate if moving the threshold left was good or not

- Differentiable activation: Computes "distance to answer"
- "Distance" == divergence
- Perturbing the function changes this quantity,
- Even if the classification error itself doesn't change

Does backprop do the right thing?

- Is backprop always right?
- Assuming it actually finds the global minimum of the loss (average divergence)?
- In classification problems, the classification error is a non-differentiable function of weights
- The divergence function minimized is only a proxy for classification error
- Minimizing divergence may not minimize classification error

Backprop fails to separate where

- Brady, Raghavan, Slawny, '89

- Simple problem, 3 training instances, single neuron
- Perceptron training rule trivially find a perfect solution

Backprop vs. Perceptron

- Back propagation using logistic function and L_{2} divergence $\left(\operatorname{Div}=(y-d)^{2}\right)$
- Unique minimum trivially proved to exist, backprop finds it

Unique solution exists

- Let $u=f^{-1}(1-\varepsilon)$

$$
\begin{aligned}
w_{x} \cdot 1+w_{y} \cdot 0+b & =u \\
w_{x} \cdot 0+w_{y} \cdot 1+b & =u \\
w_{x} \cdot-1+w_{y} \cdot 0+b & =-u
\end{aligned}
$$

- Unique solution ($w_{x}=u, w_{x}=u, b=0$) exists
- represents a unique line regardless of the value of u

Backprop vs. Perceptron

- Now add a fourth point
- t is very large (point near $-\infty$)
- Perceptron trivially finds a solution (may take t^{2} iterations)

Backprop

Notation:

$y=\sigma(z)=$ logistic activation

$$
(0,1),+1
$$

- Consider backprop:
- Contribution of fourth point to derivative of L_{2} error:

$$
(0,-\mathrm{t}),+1
$$

$$
\begin{aligned}
d i v_{4} & =\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right)^{2} \\
\frac{d d i v_{4}}{d w_{y}} & =2\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right) \sigma^{\prime}\left(-w_{y} t+b\right) t \\
\frac{d d i v_{4}}{d b} & =-2\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right) \sigma^{\prime}\left(-w_{y} t+b\right)
\end{aligned}
$$

$1-\varepsilon$ is the actual achievable value

Backoro

Notation:
$y=\sigma(z)=$ logistic activation
$d i v_{4}=\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right)^{2}$

$$
\frac{d d i v_{4}}{d w_{y}}=2\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right) \sigma^{\prime}\left(-w_{y} t+b\right) t
$$

$$
\frac{d d i v_{4}}{d b}=2\left(1-\sigma\left(-w_{y} t+b\right)\right) \sigma^{\prime}\left(-w_{y} t+b\right) t
$$

- For very large positive $t,\left|w_{y}\right|>\epsilon\left(\right.$ where $\left.\mathbf{w}=\left[w_{x}, w_{y}, b\right]\right)$
- $\left(1-\varepsilon-\sigma\left(-w_{y} t+b\right)\right) \rightarrow 1$ as $t \rightarrow \infty$
- $\sigma^{\prime}\left(-w_{y} t+b\right) \rightarrow 0$ exponentially as $t \rightarrow \infty$
- Therefore, for very large positive t

$$
\frac{d d i v_{4}}{d w_{y}}=\frac{d d i v_{4}}{d b}=0
$$

Backprop

- The fourth point at $(0,-t)$ does not change the gradient of the L_{2}
 divergence near the optimal solution for 3 points
- The optimum solution for 3 points is also a broad local minimum (0 gradient) for the 4-point problem!
- Will be found by backprop nearly all the time
- Although the global minimum with unbounded weights will separate the classes correctly

Backprop

- Local optimum solution found by backprop
- Does not separate the points even though the points are linearly separable!

Backprop

- Solution found by backprop

- Does not separate the points even though the points are linearly separable!
- Compare to the perceptron: Backpropagation fails to separate where the perceptron succeeds

Backprop fails to separate where

 perceptron succeeds

- Brady, Raghavan, Slawny, '89
- Several linearly separable training examples
- Simple setup: both backprop and perceptron algorithms find solutions

A more complex problem

- Adding a "spoiler" (or a small number of spoilers)
- Perceptron finds the linear separator,

A more complex problem

- Perceptron finds the linear separator,
- Backprop does not find a separator
- A single additional input does not change the loss function significantly
- Assuming weights are constrained to be bounded

A more complex problem

- Adding a "spoiler" (or a small number of spoilers)
- Perceptron finds the linear separator,
- For bounded w, backprop does not find a separator
- A single additional input does not change the loss function significantly

A more complex problem

- Adding a "spoiler" (or a small number of spoilers)
- Perceptron finds the linear separator,
- For bounded w, backprop does not find a separator
- A single additional input does not change the loss function significantly

A more complex problem

- Adding a "spoiler" (or a small number of spoilers)
- Perceptron finds the linear separator,
- For bounded w, backprop does not find a separator
- A single additional input does not change the loss function significantly

So what is happening here?

- The perceptron may change greatly upon adding just a single new training instance
- But it fits the training data well
- The perceptron rule has low bias
- Makes no errors if possible
- But high variance
- Swings wildly in response to small changes to input
- Backprop is minimally changed by new training instances
- Prefers consistency over perfection
- It is a low-variance estimator, at the potential cost of bias

Backprop fails to separate even when

- This is not restricted to single perceptrons
- An MLP learns non-linear decision boundaries that are determined from the entirety of the training data
- Adding a few "spoilers" will not change their behavior

Backprop fails to separate even when

- This is not restricted to single perceptrons
- An MLP learns non-linear decision boundaries that are determined from the entirety of the training data
- Adding a few "spoilers" will not change their behavior

Backpropagation: Finding the separator

- Backpropagation will often not find a separating solution even though the solution is within the class of functions learnable by the network
- This is because the separating solution is not a feasible optimum for the loss function
- One resulting benefit is that a backprop-trained neural network classifier has lower variance than an optimal classifier for the training data

Poll

Minimizing the (differentiable) loss function will also minimize classification error, true or false

- True
- False

Poll 1

Minimizing the (differentiable) loss function will also minimize classification error, true or false

- True
- False (true)

The Loss Surface

- The example (and statements) earlier assumed the loss objective had a single global optimum that could be found
- Statement about variance is assuming global optimum
- What about local optima

The Loss Surface

- Popular hypothesis:
- In large networks, saddle points are far more common than local minima
- Frequency of occurrence exponential in network size
- Most local minima are equivalent
- And close to global minimum
- This is not true for small networks
- Saddle point: A point where
- The slope is zero
- The surface increases in some directions, but decreases in others
- Some of the Eigenvalues of the Hessian are positive; others are negative
- Gradient descent algorithms often get "stuck" in
 saddle points

The Controversial Loss Surface

- Baldi and Hornik (89), "Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima" : An MLP with a single hidden layer has only saddle points and no local Minima
- Dauphin et. al (2015), "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization" : An exponential number of saddle points in large networks
- Chomoranksa et. al (2015), "The loss surface of multilayer networks" : For large networks, most local minima lie in a band and are equivalent
- Based on analysis of spin glass models
- Swirscz et. al. (2016), "Local minima in training of deep networks", In networks of finite size, trained on finite data, you can have horrible local minima
- Watch this space...

Story so far

- Neural nets can be trained via gradient descent that minimizes a loss function
- Backpropagation can be used to derive the derivatives of the loss
- Backprop is not guaranteed to find a "true" solution, even if it exists, and lies within the capacity of the network to model
- The optimum for the loss function may not be the "true" solution
- For large networks, the loss function may have a large number of unpleasant saddle points or local minima
- Which backpropagation may find

Convergence

- In the discussion so far we have assumed the training arrives at a local minimum
- Does it always converge?
- How long does it take?
- Hard to analyze for an MLP, but we can look at the problem through the lens of convex optimization

A quick tour of (convex) optimization

Convex Loss Functions

- A surface is "convex" if it is continuously curving upward
- We can connect any two points on or above the surface without intersecting it
- Many mathematical definitions that are equivalent
- Caveat: Neural network loss surface is generally not convex
- Streetlight effect

Convergence of gradient descent

- An iterative algorithm is said to converge to a solution if the value updates arrive at a fixed point
- Where the gradient is 0 and further updates do not change the estimate
- The algorithm may not actually converge
- It may jitter around the local minimum
- It may even diverge
- Conditions for convergence?

Convergence and convergence rate

- Convergence rate: How fast the iterations arrive at the solution
- Generally quantified as

$$
R=\frac{\left|f\left(x^{(k+1)}\right)-f\left(x^{*}\right)\right|}{\left|f\left(x^{(k)}\right)-f\left(x^{*}\right)\right|}
$$

- $x^{(k+1)}$ is the k -th iteration
- x^{*} is the optimal value of x
- If R is a constant (or upper bounded), the convergence is linear
- In reality, its arriving at the solution exponentially fast

$$
\left|f\left(x^{(k)}\right)-f\left(x^{*}\right)\right| \leq R^{k}\left|f\left(x^{(0)}\right)-f\left(x^{*}\right)\right|
$$

Convergence for quadratic surfaces

$$
\begin{aligned}
& \text { Minimize } E=\frac{1}{2} a w^{2}+b w+c \\
& \mathrm{w}^{(k+1)}=\mathrm{w}^{(k)}-\eta \frac{d E\left(\mathrm{w}^{(k)}\right)}{d \mathrm{w}} \text { Gradient descent with fixed step size } \eta \\
& \text { to estimate scalar parameter } \mathrm{w}
\end{aligned}
$$

- Gradient descent to find the optimum of a quadratic, starting from $\mathrm{w}^{(k)}$
- Assuming fixed step size η
- What is the optimal step size η to get there fastest?

Convergence for quadratic surfaces

$$
E=\frac{1}{2} a w^{2}+b w+c
$$

- Any quadratic objective can be written as

$$
\mathrm{w}^{(k+1)}=\mathrm{w}^{(k)}-\eta \frac{d E\left(\mathrm{w}^{(k)}\right)}{d \mathrm{w}}
$$

$$
\begin{aligned}
E(w)=E\left(\mathrm{w}^{(k)}\right) & +E^{\prime}\left(\mathrm{w}^{(k)}\right)\left(w-\mathrm{w}^{(k)}\right) \\
& +\frac{1}{2} E^{\prime \prime}\left(\mathrm{w}^{(k)}\right)\left(w-\mathrm{w}^{(k)}\right)^{2}
\end{aligned}
$$

- Taylor expansion

- Minimizing w.r.t w, we get (Newton's method)

$$
w_{\min }=\mathrm{w}^{(k)}-E^{\prime \prime}\left(\mathrm{w}^{(k)}\right)^{-1} E^{\prime}\left(\mathrm{w}^{(k)}\right)
$$

- Note:

$$
\frac{d E\left(\mathrm{w}^{(k)}\right)}{d \mathrm{w}}=E^{\prime}\left(\mathrm{w}^{(k)}\right)
$$

- Comparing to the gradient descent rule, we see that we can arrive at the optimum in a single step using the optimum step size

$$
\eta_{\text {opt }}=E^{\prime \prime}\left(\mathrm{w}^{(k)}\right)^{-1}=a^{-1}
$$

With non-optimal step size

$$
\mathrm{w}^{(k+1)}=\mathrm{w}^{(k)}-\eta \frac{d E\left(\mathrm{w}^{(k)}\right)}{d \mathrm{w}}
$$

Gradient descent with fixed step size η to estimate scalar parameter w

- For $\eta<\eta_{\text {opt }}$ the algorithm will converge monotonically
- For $2 \eta_{\text {opt }}>\eta>\eta_{\text {opt }}$ we have oscillating convergence
- For $\eta>2 \eta_{\text {opt }}$ we get divergence

For generic differentiable convex objectives

- Any differentiable convex objective $E(w)$ can be approximated as $E \approx E\left(\mathrm{w}^{(k)}\right)+\left(w-\mathrm{w}^{(k)}\right) \frac{d E\left(\mathrm{w}^{(k)}\right)}{d w}+\frac{1}{2}\left(w-\mathrm{w}^{(k)}\right)^{2} \frac{d^{2} E\left(\mathrm{w}^{(k)}\right)}{d w^{2}}+\cdots$
- Taylor expansion
- Using the same logic as before, we get (Newton's method)

$$
\eta_{o p t}=\left(\frac{d^{2} E\left(\mathrm{w}^{(k)}\right)}{d w^{2}}\right)^{-1}
$$

- We can get divergence if $\eta \geq 2 \eta_{\text {opt }}$

For functions of multivariate inputs

$$
E=g(\mathbf{w}), \mathbf{w} \text { is a vector } \mathbf{w}=\left[w_{1}, w_{2}, \ldots, w_{N}\right]
$$

- Consider a simple quadratic convex (paraboloid) function

$$
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{w}^{T} \mathbf{b}+c
$$

- Since $E^{T}=E$ (E is scalar), A can always be made symmetric
- For strictly convex E, \mathbf{A} is always positive definite, and has positive eigenvalues
- When \mathbf{A} is diagonal:

$$
E=\frac{1}{2} \sum_{i}\left(a_{i i} w_{i}^{2}+b_{i} w_{i}\right)+c
$$

- The w_{i} s are uncoupled
- For paraboloid (convex) E, the $a_{i i}$ values are all positive
- Just a sum of N independent quadratic functions

Multivariate Quadratic with Diagonal A

$$
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{w}^{T} \mathbf{b}+c=\frac{1}{2} \sum_{i}\left(a_{i i} w_{i}^{2}+b_{i} w_{i}\right)+c
$$

- Equal-value contours will ellipses with principal axes parallel to the spatial axes

Multivariate Quadratic with Diagonal A

- Equal-value contours will be parallel to the axes
- All "slices" parallel to an axis are shifted versions of one another

$$
E=\frac{1}{2} a_{i i} w_{i}^{2}+b_{i} w_{i}+c+C\left(\neg w_{i}\right)
$$

Multivariate Quadratic with Diagonal A

$E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A w}+\mathbf{w}^{T} \mathbf{b}+c=\frac{1}{2} \sum_{i}\left(a_{i i} w_{i}^{2}+b_{i} w_{i}\right)+c$

- Equal-value contours will be parallel to the axis
- All "slices" parallel to an axis are shifted versions of one another

$$
E=\frac{1}{2} a_{i i} w_{i}^{2}+b_{i} w_{i}+c+C\left(\neg w_{i}\right)
$$

"Descents" are uncoupled

$E=\frac{1}{2} a_{11} w_{1}^{2}+b_{1} w_{1}+c+C\left(\neg w_{1}\right)$

$$
E=\frac{1}{2} a_{22} w_{2}^{2}+b_{2} w_{2}+c+C\left(\neg w_{2}\right)
$$

$$
\eta_{1, o p t}=a_{11}^{-1}
$$

$$
\eta_{2, o p t}=a_{22}^{-1}
$$

- The optimum of each coordinate is not affected by the other coordinates
- I.e. we could optimize each coordinate independently
- Note: Optimal learning rate is different for the different coordinates

Vector update rule

- Conventional vector update rules for gradient descent: update entire vector against direction of gradient
- Note : Gradient is perpendicular to equal value contour
- The same learning rate is applied to all components

Problem with vector update rule

$$
\begin{gathered}
\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)}-\eta \nabla_{\mathbf{w}} E^{T} w_{i}^{(k+1)}=w_{i}^{(k)}-\eta \frac{\partial E\left(w_{i}^{(k)}\right)}{\partial \mathrm{w}} \\
\eta_{i, \text { opt }}=\left(\frac{\partial^{2} E\left(w_{i}^{(k)}\right)}{\partial w_{i}^{2}}\right)^{-1}=a_{i i}^{-1}
\end{gathered}
$$

Dependence on learning rate

- $\eta_{1, \text { opt }}=1 ; \eta_{2, o p t}=0.33$
- $\eta=2.1 \eta_{2, o p t}$
- $\eta=2 \eta_{2, o p t}$
- $\eta=1.5 \eta_{2, o p t}$
- $\eta=\eta_{2, o p t}$
- $\eta=0.75 \eta_{2, o p t}$

Problem with vector update rule

$$
\begin{gathered}
\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)}-\eta \nabla_{\mathbf{w}} E^{T} w_{i}^{(k+1)}=w_{i}^{(k)}-\eta \frac{\partial E\left(w_{i}^{(k)}\right)}{\partial \mathrm{w}} \\
\eta_{i, \text { opt }}=\left(\frac{\partial^{2} E\left(w_{i}^{(k)}\right)}{\partial w_{i}^{2}}\right)^{-1}=a_{i i}^{-1}
\end{gathered}
$$

- The learning rate must be lower than twice the smallest optimal learning rate for any component

$$
\eta<2 \min _{i} \eta_{i, o p t}
$$

- Otherwise the learning will diverge
- This, however, makes the learning very slow
- And will oscillate in all directions where $\eta_{i, o p t} \leq \eta<2 \eta_{i, o p t}$

Dependence on learning rate

- $\eta_{1, o p t}=1 ; \eta_{2, o p t}=0.91 ; \quad \eta=1.9 \eta_{2, o p t}$

Generic differentiable multivariate

 convex functions

- For generic convex multivariate functions (not necessarily quadratic), we can employ quadratic Taylor series expansions and much of the analysis still applies
- Taylor expansion
$E(\mathbf{w}) \approx E\left(\mathbf{w}^{(k)}\right)+\nabla_{\mathrm{w}} E\left(\mathbf{w}^{(k)}\right)\left(\mathbf{w}-w^{(k)}\right)+\frac{1}{2}\left(\mathbf{w}-w^{(k)}\right)^{T} H_{E}\left(w^{(k)}\right)\left(\mathbf{w}-w^{(k)}\right)$
- The optimal step size is inversely proportional to the Eigen values of the Hessian
- The second derivative along the orthogonal coordinates
- For the smoothest convergence, these must all be equal

Convergence

- Convergence behaviors become increasingly unpredictable as dimensions increase
- For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i, o p t}$ and the smallest $\eta_{i, o p t}$
- To ensure convergence in every direction
- Generally infeasible
- Convergence is particularly slow if $\frac{\max _{i} \eta_{i, \text { opt }}}{\min _{i} \eta_{i, o p t}}$ is large
- The "condition" number
- Must be close to 1.0 for fast convergence
- Following (hidden) slides discuss solutions that "normalize the space by stretching different directions differently to standardize optimal step size
- A big topic for optimization
- Unfortunately, infeasible for neural networks

Comments on the quadratic

- Why are we talking about quadratics?
- Quadratic functions form some kind of benchmark
- Convergence of gradient descent is linear
- Meaning it converges to solution exponentially fast
- The convergence for other kinds of functions can be viewed against this benchmark
- Actual losses will not be quadratic, but may locally have other structure
- Local between current location and nearest local minimum
- Some examples in the following slides..
- Strong convexity
- Lifschitz continuity
- Lifschitz smoothness
- ..and how they affect convergence of gradient descent

Quadratic convexity

- A quadratic function has the form $\frac{1}{2} \mathbf{w}^{T} \mathbf{A w}+\mathbf{w}^{T} \mathbf{b}+c$
- Every "slice" is a quadratic bowl
- In some sense, the "standard" for gradient-descent based optimization
- Others convex functions will be steeper in some regions, but flatter in others
- Gradient descent solution will have linear convergence
- Take $O(\log 1 / \varepsilon)$ steps to get within ε of the optimal solution

Strong convexity

- A strongly convex function is at least quadratic in its convexity
- Has a lower bound to its second derivative
- The function sits within a quadratic bowl
- At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of $2^{\text {nd }}$ derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic

Strong convexity

- A strongly convex function is at least quadratic in its convexity
- Has a lower bound to its second derivative
- The function sits within a quadratic bowl
- At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of $2^{\text {nd }}$ derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic

Types of continuity

From wikipedia

- Most functions are not strongly convex (if they are convex)
- Instead we will talk in terms of Lifschitz smoothness
- But first : a definition
- Lifschitz continuous: The function always lies outside a cone
- The slope of the outer surface is the Lifschitz constant
$-|f(x)-f(y)| \leq L|x-y|$

Lifschitz smoothness

- Lifschitz smooth: The function's derivative is Lifschitz continuous
- Need not be convex (or even differentiable)
- Has an upper bound on second derivative (if it exists)
- Can always place a quadratic bowl of a fixed curvature within the function
- Minimum curvature of quadratic must be >= upper bound of second derivative of function (if it exists)

Lifschitz smoothness

- Lifschitz smooth: The function's derivative is Lifschitz continuous
- Need not be convex (or even differentiable)
- Has an upper bound on second derivative (if it exists)
- Can always place a quadratic bowl of a fixed curvature within the function
- Minimum curvature of quadratic must be >= upper bound of second derivative of function (if it exists)

Types of smoothness

- A function can be both strongly convex and Lipschitz smooth
- Second derivative has upper and lower bounds
- Convergence depends on curvature of strong convexity (at least linear)
- A function can be convex and Lifschitz smooth, but not strongly convex
- Convex, but upper bound on second derivative
- Weaker convergence guarantees, if any (at best linear)
- This is often a reasonable assumption for the local structure of your loss function

Types of smoothness

- A function can be both strongly convex and Lipschitz smooth
- Second derivative has upper and lower bounds
- Convergence depends on curvature of strong convexity (at least linear)
- A function can be convex and Lifschitz smooth, but not strongly convex
- Convex, but upper bound on second derivative
- Weaker convergence guarantees, if any (at best linear)
- This is often a reasonable assumption for the local structure of your loss function

Convergence Problems

- For quadratic (strongly) convex functions, gradient descent is exponentially fast
- Linear convergence
- Assuming learning rate is non-divergent
- For generic (Lifschitz Smooth) convex functions however, it is very slow

$$
\left|f\left(w^{(k)}\right)-f\left(w^{*}\right)\right| \propto \frac{1}{k}\left|f\left(w^{(0)}\right)-f\left(w^{*}\right)\right|
$$

- And inversely proportional to learning rate

$$
\left|f\left(w^{(k)}\right)-f\left(w^{*}\right)\right| \leq \frac{1}{2 \eta k}\left|w^{(0)}-w^{*}\right|
$$

- Takes $O(1 / \epsilon)$ iterations to get to within ϵ of the solution
- An inappropriate learning rate will destroy your happiness
- Second order methods will locally convert the loss function to quadratic
- Convergence behavior will still depend on the nature of the original function
- Continuing with the quadratic-based explanation...

Convergence

- Convergence behaviors become increasingly unpredictable as dimensions increase
- For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i, o p t}$ and the smallest $\eta_{i, o p t}$
- To ensure convergence in every direction
- Generally infeasible
- Convergence is particularly slow if $\frac{\max _{i} \eta_{i, o p t}}{\min _{i} \eta_{i, o p t}}$ is large
- The "condition" number is small

One reason for the problem

- The objective function has different eccentricities in different directions
- Resulting in different optimal learning rates for different directions
- The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two directions are coupled! Moving in one direction changes the gradient along the other
- Solution: Normalize the objective to have identical eccentricity in all directions
- Then all of them will have identical optimal learning rates
- Easier to find a working learning rate

Solution: Scale the axes

- Scale (and rotate) the axes, such that all of them have identical (identity) "spread"
- Equal-value contours are circular
- Movement along the coordinate axes become independent
- Note: equation of a quadratic surface with circular equal-value contours can be written as

$$
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+c
$$

Scaling the axes

- Original equation:

$$
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}+c
$$

- We want to find a (diagonal) scaling matrix S such that

$$
\mathrm{S}=\left[\begin{array}{ccc}
s_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & s_{N}
\end{array}\right], \quad \widehat{\mathbf{w}}=\mathrm{S} \mathbf{w}
$$

- And

$$
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+\mathrm{c}
$$

Scaling the axes

- Original equation:

$$
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}+c
$$

- We want to find a (diagonal) scaling matrix S such that

$$
\mathrm{S}=\left[\begin{array}{ccc}
s_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & s_{N}
\end{array}\right], \quad \widehat{\mathbf{w}}=\mathrm{S} \mathbf{w}
$$

- And

$$
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+\mathrm{c}
$$

By inspection:
$S=A^{0.5}$

Scaling the axes

- We have

$$
\begin{gathered}
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}+c \\
\widehat{\mathbf{w}}=\mathrm{S} \mathbf{w} \\
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+\mathbf{c} \\
= \\
\frac{1}{2} \mathbf{w}^{T} \mathrm{~S}^{T} \mathrm{~S} \mathbf{w}+\hat{\mathbf{b}}^{T} \mathrm{~S} \mathbf{w}+c
\end{gathered}
$$

- Equating linear and quadratic coefficients, we get

$$
\mathrm{S}^{T} \mathrm{~S}=\mathbf{A}, \quad \hat{\mathbf{b}}^{T} \mathrm{~S}=\mathbf{b}^{T}
$$

- Solving: $S=\mathbf{A}^{0.5}, \quad \hat{\mathbf{b}}=\mathbf{A}^{-0.5} \mathbf{b}$

Scaling the axes

- We have

$$
\begin{gathered}
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}+c \\
\widehat{\mathbf{w}}=\mathrm{S} \mathbf{w} \\
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+\mathbf{c}
\end{gathered}
$$

- Solving for S we get

$$
\widehat{\mathbf{w}}=\mathbf{A}^{0.5} \mathbf{w}, \quad \hat{\mathbf{b}}=\mathbf{A}^{-0.5} \mathbf{b}
$$

Scaling the axes

- We have

$$
\begin{gathered}
E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}+c \\
\widehat{\mathbf{w}}=\mathrm{S} \mathbf{w} \\
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+\mathbf{c}
\end{gathered}
$$

- Solving for S we get

$$
\widehat{\mathbf{w}}=A^{0.5} \mathbf{w}
$$

$$
\hat{\mathbf{b}}=\mathbf{a}^{-0.5} \mathbf{b}
$$

The Inverse Square Root of A

- For any positive definite \mathbf{A}, we can write

$$
\mathbf{A}=\mathbf{E} \boldsymbol{\Lambda} \mathbf{E}^{\mathrm{T}}
$$

- Eigen decomposition
- E is an orthogonal matrix
$-\Lambda$ is a diagonal matrix of non-zero diagonal entries
- Defining $\mathbf{A}^{0.5}=\mathbf{E} \boldsymbol{\Lambda}^{0.5} \mathbf{E}^{\mathrm{T}}$
$-\operatorname{Check}\left(\mathbf{A}^{0.5}\right)^{\mathrm{T}} \mathbf{A}^{0.5}=\mathbf{E} \boldsymbol{\Lambda} \mathbf{E}^{\mathrm{T}}=\mathbf{A}$
- Defining $\mathbf{A}^{-0.5}=\mathbf{E} \boldsymbol{\Lambda}^{-0.5} \mathbf{E}^{\mathrm{T}}$
- Check: $\left(\mathbf{A}^{-0.5}\right)^{\mathrm{T}} \mathbf{A}^{-0.5}=\mathbf{E} \boldsymbol{\Lambda}^{-1} \mathbf{E}^{\mathrm{T}}=\mathbf{A}^{-1}$

Returning to our problem

$$
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+c
$$

- Computing the gradient, and noting that $\mathbf{A}^{0.5}$ is symmetric, we can relate $\nabla_{\widehat{\mathbf{w}}} E$ and $\nabla_{\mathbf{w}} E$:

$$
\begin{aligned}
& \nabla_{\widehat{\mathbf{w}}} E=\widehat{\mathbf{w}}^{T}+\hat{\mathbf{b}}^{T} \\
& =\mathbf{w}^{T} \mathbf{A}^{0.5}+\mathbf{b}^{T} \mathbf{A}^{-0.5} \\
& =\left(\mathbf{w}^{T} \mathbf{A}+\mathbf{b}^{T}\right) \mathbf{A}^{-0.5} \\
& =\nabla_{\mathbf{w}} E \cdot \mathbf{A}^{-0.5}
\end{aligned}
$$

Returning to our problem

$$
E=\frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}}+\hat{\mathbf{b}}^{T} \widehat{\mathbf{w}}+c
$$

- Gradient descent rule:
$-\widehat{\mathbf{w}}^{(k+1)}=\widehat{\mathbf{w}}^{(k)}-\eta \nabla_{\widehat{\mathbf{w}}} E\left(\widehat{\mathbf{w}}^{(k)}\right)^{T}$
- Learning rate is now independent of direction
- Using $\widehat{\mathbf{w}}=\mathbf{A}^{0.5} \mathbf{w}$, and $\nabla_{\widehat{\mathbf{w}}} E(\widehat{\mathbf{w}})^{T}=\mathbf{A}^{-0.5} \nabla_{\mathbf{w}} E(\mathbf{w})^{T}$

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta \mathbf{A}^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

Modified update rule

- $\widehat{\mathbf{w}}^{(k+1)}=\widehat{\mathbf{w}}^{(k)}-\eta \nabla_{\widehat{\mathbf{w}}} E\left(\widehat{\mathbf{w}}^{(k)}\right)^{T}$
- Leads to the modified gradient descent rule

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta \mathbf{A}^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

For non-axis-aligned quadratics..

$$
\begin{aligned}
& E=\frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w}+\mathbf{w}^{T} \mathbf{b}+c \\
& E=\frac{1}{2} \sum_{i} a_{i i} w_{i}^{2}+\sum_{i \neq j} a_{i j} w_{i} w_{j} \\
& +\sum_{i} b_{i} w_{i}+c
\end{aligned}
$$

- If \mathbf{A} is not diagonal, the contours are not axis-aligned
- Because of the cross-terms $a_{i j} w_{i} w_{j}$
- The major axes of the ellipsoids are the Eigenvectors of A, and their diameters are proportional to the Eigen values of \mathbf{A}
- But this does not affect the discussion
- This is merely a rotation of the space from the axis-aligned case
- The component-wise optimal learning rates along the major and minor axes of the equalcontour ellipsoids will be different, causing problems
- The optimal rates along the axes are Inversely proportional to the eigenvalues of \mathbf{A}

For non-axis-aligned quadratics..

- The component-wise optimal learning rates along the major and minor axes of the contour ellipsoids will differ, causing problems
- Inversely proportional to the eigenvalues of A
- This can be fixed as before by rotating and resizing the different directions to obtain the same normalized update rule as before:

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta \mathbf{A}^{-1} \mathbf{b}
$$

Generic differentiable multivariate

 convex functions- Taylor expansion

$$
E(\mathrm{w}) \approx E\left(\mathbf{w}^{(k)}\right)+\nabla_{\mathrm{w}} E\left(\mathbf{w}^{(k)}\right)\left(\mathrm{w}-\mathbf{w}^{(k)}\right)+\frac{1}{2}\left(\mathrm{w}-w^{(k)}\right)^{T} H_{E}\left(w^{(k)}\right)\left(\mathrm{w}-w^{(k)}\right)+\cdots
$$

Generic differentiable multivariate

convex functions

- Taylor expansion

$$
E(\mathbf{w}) \approx E\left(\mathbf{w}^{(k)}\right)+\nabla_{\mathrm{w}} E\left(\mathbf{w}^{(k)}\right)\left(\mathrm{w}-w^{(k)}\right)+\frac{1}{2}\left(\mathrm{w}-w^{(k)}\right)^{T} H_{E}\left(w^{(k)}\right)\left(\mathrm{w}-w^{(k)}\right)+\cdots
$$

- Note that this has the form $\frac{1}{2} \mathbf{w}^{T} \mathbf{A w}+\mathbf{w}^{T} \mathbf{b}+c$
- Using the same logic as before, we get the normalized update rule

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

- For a quadratic function, the optimal η is 1 (which is exactly Newton's method)
- And should not be greater than 2!

Minimization by Newton's method $(\eta=1)$

Fit a quadratic at each point and find the minimum of that quadratic

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\mathbf{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method $(\eta=1)$

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method $(\eta=1)$

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method $(\eta=1)$

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Minimization by Newton's method

- Iterated localized optimization with quadratic approximations

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

$-\eta=1$

Issues: 1. The Hessian

- Normalized update rule

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

- For complex models such as neural networks, with a very large number of parameters, the Hessian $H_{E}\left(\boldsymbol{w}^{(k)}\right)$ is extremely difficult to compute
- For a network with only 100,000 parameters, the Hessian will have 10^{10} cross-derivative terms
- And its even harder to invert, since it will be enormous

Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
- Goes away from, rather than towards the minimum

Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
- Goes away from, rather than towards the minimum
- Now requires additional checks to avoid movement in directions corresponding to -ve Eigenvalues of the Hessian

Issues: 1 - contd.

- A great many approaches have been proposed in the literature to approximate the Hessian in a number of ways and improve its positive definiteness
- Boyden-Fletcher-Goldfarb-Shanno (BFGS)
- And "low-memory" BFGS (L-BFGS)
- Estimate Hessian from finite differences
- Levenberg-Marquardt
- Estimate Hessian from Jacobians
- Diagonal load it to ensure positive definiteness
- Other "Quasi-newton" methods
- Hessian estimates may even be local to a set of variables
- Not particularly popular anymore for large neural networks..

Issues: 2. The learning rate

- Much of the analysis we just saw was based on trying to ensure that the step size was not so large as to cause divergence within a convex region
$-\eta<2 \eta_{\text {opt }}$

Issues: 2. The learning rate

- For complex models such as neural networks the loss function is often not convex
- Having $\eta>2 \eta_{\text {opt }}$ can actually help escape local optima
- However always having $\eta>2 \eta_{\text {opt }}$ will ensure that you never ever actually find a solution

Decaying learning rate

- Start with a large learning rate
- Greater than 2 (assuming Hessian normalization)
- Gradually reduce it with iterations

Decaying learning rate

- Typical decay schedules
- Linear decay: $\eta_{k}=\frac{\eta_{0}}{k+1}$
- Quadratic decay: $\eta_{k}=\frac{\eta_{0}}{(k+1)^{2}}$
- Exponential decay: $\eta_{k}=\eta_{0} e^{-\beta k}$, where $\beta>0$
- A common approach (for nnets):

1. Train with a fixed learning rate η until loss (or performance on a held-out data set) stagnates
2. $\quad \eta \leftarrow \alpha \eta$, where $\alpha<1$ (typically 0.1)
3. Return to step 1 and continue training from where we left off

Story so far : Convergence

- Gradient descent can miss obvious answers
- And this may be a good thing
- Convergence issues abound
- The loss surface has many saddle points
- Although, perhaps, not so many bad local minima
- Gradient descent can stagnate on saddle points
- Vanilla gradient descent may not converge, or may converge toooooo slowly
- The optimal learning rate for one component may be too high or too low for others

Poll 2

Mark all true statements

- Step sizes that are greater than twice the inverse of the second derivative can cause gradient descent to diverge
- This is always a bad thing
- Gradient descent will not converge without decaying learning rates

Poll 2

Mark all true statements

- Step sizes that are greater than twice the inverse of the second derivative can cause gradient descent to diverge (true)
- This is always a bad thing
- Gradient descent will not converge without decaying learning rates

Story so far : Second-order methods

- Second-order methods "normalize" the variation along the components to mitigate the problem of different optimal learning rates for different components
- But this requires computation of inverses of secondorder derivative matrices
- Computationally infeasible
- Not stable in non-convex regions of the loss surface
- Approximate methods address these issues, but simpler solutions may be better

Story so far : Learning rate

- Divergence-causing learning rates may not be a bad thing
- Particularly for ugly loss functions
- Decaying learning rates provide good compromise between escaping poor local minima and convergence
- Many of the convergence issues arise because we force the same learning rate on all parameters

Lets take a step back

- Problems arise because of requiring a fixed step size across all dimensions
- Because step are "tied" to the gradient
- Let's try releasing this requirement

Derivative-inspired algorithms

- Algorithms that use derivative information for trends, but do not follow them absolutely
- Rprop
- Quick prop

RProp

- Resilient propagation
- Simple algorithm, to be followed independently for each component
- I.e. steps in different directions are not coupled
- At each time
- If the derivative at the current location recommends continuing in the same direction as before (i.e. has not changed sign from earlier):
- increase the step, and continue in the same direction
- If the derivative has changed sign (i.e. we've overshot a minimum)
- reduce the step and reverse direction

Rprop

- Select an initial value \widehat{w} and compute the derivative
- Take an initial step Δw against the derivative
- In the direction that reduces the function

$$
\begin{aligned}
& -\Delta w=\operatorname{sign}\left(\frac{d E(\widehat{w})}{d w}\right) \Delta w \\
& -\widehat{w}=\widehat{w}-\Delta w
\end{aligned}
$$

Rprop

- Compute the derivative in the new location
- If the derivative has not changed sign from the previous location, increase the step size and take a longer step
$\alpha>1$ - $\Delta w=\alpha \Delta w$
- $\widehat{w}=\widehat{w}-\Delta w$

Rprop

- Compute the derivative in the new location
- If the derivative has not changed sign from the previous location, increase the step size and take a step
$\alpha>1$ - $\Delta w=\alpha \Delta w$
- $\widehat{w}=\widehat{w}-\Delta w$

Rprop

- Compute the derivative in the new location
- If the derivative has changed sign

Rprop

- Compute the derivative in the new location
- If the derivative has changed sign
- Return to the previous location
- $\widehat{w}=\widehat{w}+\Delta w$

Rprop

- Compute the derivative in the new location
- If the derivative has changed sign
- Return to the previous location
- $\widehat{w}=\widehat{w}+\Delta w$

$$
\beta<1 \quad \begin{gathered}
-\quad \text { Shrink the step } \\
\cdot \Delta w=\beta \Delta w
\end{gathered}
$$

Rprop

- Compute the derivative in the new location
- If the derivative has changed sign
- Return to the previous location
- $\widehat{w}=\widehat{w}+\Delta w$

- Take the smaller step forward
- $\widehat{w}=\widehat{w}-\Delta w$

Rprop (simplified)

- Set $\alpha=1.2, \beta=0.5$
- For each layer l, for each i, j :
- Initialize $w_{l, i, j}, \Delta w_{l, i, j}>0$,
$-\operatorname{prev} D(l, i, j)=\frac{\operatorname{dLoss}\left(w_{l, i, j}\right)}{d w_{l, i, j}}$
$-\Delta w_{l, i, j}=\operatorname{sign}(\operatorname{prev} D(l, i, j)) \Delta w_{l, i, j}$
- While not converged:
- $w_{l, i, j}=w_{l, i, j}-\Delta w_{l, i, j}$
- $D(l, i, j)=\frac{d \operatorname{Loss}\left(w_{l, i, j}\right)}{d w_{l, i, j}}$

Ceiling and floor on step

- If $\operatorname{sign}(\operatorname{prev} D(l, i, j))==\operatorname{sign}(D(l, i, j))$:
$-\Delta w_{l, i, j}=\min \left(\alpha \Delta w_{l, i, j}, \Delta_{\max }\right)$
- $\operatorname{prevD}(l, i, j)=D(l, i, j)$
- else:
$-w_{l, i, j}=w_{l, i, j}+\Delta w_{l, i, j}$
$-\Delta w_{l, i, j}=\max \left(\beta \Delta w_{l, i, j}, \Delta_{\text {min }}\right)$

Rprop (simplified)

- Set $\alpha=1.2, \beta=0.5$
- For each layer l, for each i, j :
- Initialize $w_{l, i, j}, \Delta w_{l, i, j}>0$,
$-\operatorname{prev} D(l, i, j)=\frac{\operatorname{dLoss}\left(w_{l, i, j}\right)}{d w_{l, i, j}}$
$-\Delta w_{l, i, j}=\operatorname{sign}(\operatorname{prev} D(l, i, j)) \Delta w_{l, i, j}$
- While not converged:
- $w_{l, i, j}=w_{l, i, j}-\Delta w_{l, i, j}$

Obtained via backprop
Note: Different parameters updated independently

- $D(l, i, j)=\frac{\operatorname{dLoss}\left(w_{l, i, j}\right)}{d w_{l, i, j}}$
- If $\operatorname{sign}(\operatorname{prev} D(l, i, j))==\operatorname{sign}(D(l, i, j))$:

$$
\begin{aligned}
& -\Delta w_{l, i, j}=\alpha \Delta w_{l, i, j} \\
& -\operatorname{prev} D(l, i, j)=D(l, i, j)
\end{aligned}
$$

- else:
$-w_{l, i, j}=w_{l, i, j}+\Delta w_{l, i, j}$
$-\Delta w_{l, i, j}=\beta \Delta w_{l, i, j}$

RProp

- A remarkably simple first-order algorithm, that is frequently much more efficient than gradient descent.
- And can even be competitive against some of the more advanced second-order methods
- Only makes minimal assumptions about the loss function
- No convexity assumption

Poll 3

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark all true statements

- Rprop will revert to the earlier estimate and take a smaller step
- Rprop will change direction and begin taking steps in the opposite direction

Poll 3

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark all true statements

- Rprop will revert to the earlier estimate and take a smaller step (true)
- Rprop will change direction and begin taking steps in the opposite direction

QuickProp

- Quickprop employs the Newton updates with two modifications

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\eta H_{E}\left(\boldsymbol{w}^{(k)}\right)^{-1} \nabla_{\mathbf{w}} E\left(\mathbf{w}^{(k)}\right)^{T}
$$

- But with two modifications

QuickProp: Modification 1

Within each component

- It treats each dimension independently
- For $i=1: N$

$$
w_{i}^{k+1}=w_{i}^{k}-E^{\prime \prime}\left(w_{i}^{k} \mid w_{j}^{k}, j \neq i\right)^{-1} E^{\prime}\left(w_{i}^{k} \mid w_{j}^{k}, j \neq i\right)
$$

- This eliminates the need to compute and invert expensive Hessians

QuickProp: Modification 2

Within each component

- It approximates the second derivative through finite differences
- For $i=1: N$

$$
w_{i}^{k+1}=w_{i}^{k}-D\left(w_{i}^{k}, w_{i}^{k-1}\right)^{-1} E^{\prime}\left(w_{i}^{k} \mid w_{j}^{k}, j \neq i\right)
$$

- This eliminates the need to compute expensive double derivatives

QuickProp

Finite-difference approximation to double derivative obtained assuming a quadratic E ()

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the $(l-1)^{\text {th }}$ layer to node j in the $l^{\text {th }}$ layer:

$$
\begin{aligned}
\Delta w_{l, i j}^{(k)}= & \frac{\Delta w_{l, i j}^{(k-1)}}{E r r^{\prime}\left(w_{l, i j}^{(k)}\right)-E r r^{\prime}\left(w_{l, i j}^{(k-1)}\right)} E r r^{\prime}\left(w_{l, i j}^{(k)}\right) \\
& w_{l, i j}^{(k+1)}=w_{l, i j}^{(k)}-\Delta w_{l, i j}^{(k)}
\end{aligned}
$$

QuickProp

Finite-difference approximation to double derivative obtained assuming a quadratic $E()$

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the $(l-1)^{\text {th }}$ layer to node j in the $l^{\text {th }}$ layer:

$$
\begin{aligned}
& \Delta w_{l, i j}^{(k)}=\frac{\Delta w_{l, i j}^{(k-1)}}{E r r^{\prime}\left(w_{l, i j}^{(k)}\right)-E r r^{\prime}\left(w_{l, i j}^{(k-1)}\right)}\left(E r r^{\prime}\left(w_{l, i j}^{(k)}\right)\right. \\
& w_{l, i j}^{(k+1)}=w_{l, i j}^{(k)}-\Delta w_{l, i j}^{(k)} \text { Computed using } \\
& \text { backprop }
\end{aligned}
$$

Quickprop

- Employs Newton updates with empirically derived derivatives
- Prone to some instability for non-convex objective functions
- But is still one of the fastest training algorithms for many problems

Story so far : Convergence

- Gradient descent can miss obvious answers
- And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence

A closer look at the convergence problem

- With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

A closer look at the convergence problem

- With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others
- Proposal:
- Keep track of oscillations
- Emphasize steps in directions that converge smoothly
- Shrink steps in directions that bounce around..

The momentum methods

- Maintain a running average of all past steps
- In directions in which the convergence is smooth, the average will have a large value
- In directions in which the estimate swings, the positive and negative swings will cancel out in the average
- Update with the running average, rather than the current gradient

Momentum Update

- The momentum method maintains a running average of all gradients until the current step

$$
\begin{gathered}
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}\right)^{\top} \\
W^{(k)}=W^{(k-1)}+\Delta W^{(k)}
\end{gathered}
$$

- Typical β value is 0.9
- The running average steps
- Get longer in directions where gradient retains the same sign
- Become shorter in directions where the sign keeps flipping

Training by gradient descent

- Initialize all weights $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}$
- Do:
- For all i, j, k, initialize $\nabla_{W_{k}}$ Loss $=0$
- For all $t=1: T$
- For every layer k :

> - Compute $\nabla_{W_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right)$
> - Compute $\nabla_{W_{k}} \operatorname{Loss}+=\frac{1}{T} \nabla_{W_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right)$

- For every layer k :

$$
W_{k}=W_{k}-\eta\left(\nabla_{W_{k}} \operatorname{Loss}\right)^{T}
$$

- Until Loss has converged

Training with momentum

- Initialize all weights $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}$
- Do:
- For all layers k, initialize $\nabla_{W_{k}}$ Loss $=0, \Delta W_{k}=0$
- For all $t=1: T$
- For every layer k :
- Compute gradient $\nabla_{W_{k}} \boldsymbol{\operatorname { D i v }}\left(Y_{t}, d_{t}\right)$
$-\nabla_{W_{k}} \operatorname{Loss}+=\frac{1}{T} \nabla_{W_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right)$
- For every layer k

$$
\begin{gathered}
\Delta W_{k}=\beta \Delta W_{k}-\eta\left(\nabla_{W_{k}} \text { Loss }\right)^{T} \\
W_{k}=W_{k}+\Delta W_{k}
\end{gathered}
$$

- Until Loss has converged

Momentum Update

- The momentum method

$$
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}\right)^{T}
$$

- At any iteration, to compute the current step:

Momentum Update

- The momentum method

$$
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}\right)^{T}
$$

- At any iteration, to compute the current step:
- First computes the gradient step at the current location

Momentum Update

- The momentum method

$$
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}\right)^{T}
$$

- At any iteration, to compute the current step:
- First computes the gradient step at the current location
- Then adds in the scaled previous step
- Which is actually a running average

Momentum Update

- The momentum method

$$
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}\right)^{T}
$$

- At any iteration, to compute the current step:
- First computes the gradient step at the current location
- Then adds in the scaled previous step
- Which is actually a running average
- To get the final step

Momentum update

- Momentum update steps are actually computed in two stages
- First: We take a step against the gradient at the current location
- Second: Then we add a scaled version of the previous step
- The procedure can be made more optimal by reversing the order of operations..

Nestorov's Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:

Nestorov's Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
- First extend the previous step

Nestorov's Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
- First extend the previous step
- Then compute the gradient step at the resultant position

Nestorov's Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
- First extend the previous step
- Then compute the gradient step at the resultant position
- Add the two to obtain the final step

Nestorov's Accelerated Gradient

- Nestorov's method

$$
\begin{gathered}
\Delta W^{(k)}=\beta \Delta W^{(k-1)}-\eta \nabla_{W} \operatorname{Loss}\left(W^{(k-1)}+\beta \Delta W^{(k-1)}\right)^{T} \\
W^{(k)}=W^{(k-1)}+\Delta W^{(k)}
\end{gathered}
$$

Nestorov's Accelerated Gradient

- Comparison with momentum (example from Hinton)
- Converges much faster

Training with Nestorov

- Initialize all weights $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}$
- Do:
- For all layers k, initialize $\nabla_{W_{k}}$ Loss $=0, \Delta W_{k}=0$
- For every layer k

$$
W_{k}=W_{k}+\beta \Delta W_{k}
$$

- For all $t=1: T$
- For every layer k :
- Compute gradient $\nabla_{W_{k}} \operatorname{Div}\left(Y_{t}, d_{t}\right)$
$-\nabla_{W_{k}} \operatorname{Loss}+=\frac{1}{T} \nabla_{W_{k}} \boldsymbol{\operatorname { D i v }}\left(Y_{t}, d_{t}\right)$
- For every layer k

$$
\begin{gathered}
W_{k}=W_{k}-\eta\left(\nabla_{W_{k}} \text { Loss }\right)^{T} \\
\Delta W_{k}=\beta \Delta W_{k}-\eta\left(\nabla_{W_{k}} \text { Loss }\right)^{T}
\end{gathered}
$$

- Until Loss has converged

Momentum and trend-based methods..

- We will return to this topic again, very soon..

Poll 4

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient descent, true or false

- True
- False

Poll 4

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient descent, true or false

- True
- False (correct) - momentum only changes step size

Story so far

- Gradient descent can miss obvious answers
- And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence
- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods

Coming up

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
- Divergences..
- Activations
- Normalizations

