
Neural Networks:
Optimization Part 1

Intro to Deep Learning, Fall 2023

1

Story so far
• Neural networks are universal approximators

– Can model any odd thing
– Provided they have the right architecture

• We must train them to approximate any function
– Specify the architecture
– Learn their weights and biases

• Networks are trained to minimize total “loss” on a training
set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
• The gradient of the error with respect to network

parameters is computed through backpropagation
2

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• Do
–

–

• while
3

Recap: Training Neural Nets by Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer compute:

•

• 𝑇

• Until has converged
4

Total training error:

Computed using backprop

Neural network training algorithm
• Initialize all weights and biases
• Do:

–

– For all , initialize ,

– For all # Loop through training instances
• Forward pass : Compute

– Output 𝒕 ,
– Divergence 𝒕 𝒕

• Backward pass: For all compute:
– 𝐖 𝒕 𝒕 , 𝐛 𝒕 𝒕

– 𝐖 𝐖 𝒕 𝒕 ; 𝐛 𝐛 𝒕 𝒕

– For all update:

𝐖 ; 𝐖

• Until has converged
5

Computing
gradient
(uses
backprop)

Gradient
descent

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

6

Poll 0

Backpropagating from the kth layer, which is the derivative for
the weights ?
 : The product of the output of the th layer and the

derivative for the affine value of the th layer (in that order)
 : The product of the derivative for the affine value at the

th layer and the output of the th layer (in that order)
 : The product of the transpose of the output of the

th layer and the derivative for the affine value of the th layer (in that
order)

 : The product of the derivative for the affine value at the
th layer and the transpose output of the th layer (in that order)

7

Poll 0

Backpropagating from the kth layer, which is the derivative for
the weights ?
 𝒌 𝟏 𝒛𝒌

: The product of the output of the th layer and the
derivative for the affine value of the th layer (in that order)

 : The product of the derivative for the affine value at the
th layer and the output of the th layer (in that order)

 : The product of the transpose of the output of the
th layer and the derivative for the affine value of the th layer (in that

order)
 : The product of the derivative for the affine value at the

th layer and the transpose output of the th layer (in that order)

8

Onward

9

Onward

• Does backprop always work?
• Convergence of gradient descent

– Rates, restrictions,
– Hessians
– Acceleration and Nestorov
– Alternate approaches

• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad

10

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually finds the minimum of the

divergence function?

(Actual question: Does gradient descent find the
right solution, even when it finds the actual
minimum)

11

Recap: The differentiable activation

• Threshold activation: Equivalent to counting errors
– Shifting the threshold from T1 to T2 does not change classification error
– Does not indicate if moving the threshold left was good or not

12

T1 T2x x

y y

• Differentiable activation: Computes “distance to answer”
– “Distance” == divergence
– Perturbing the function changes this quantity,

• Even if the classification error itself doesn’t change

T2T1

0.5 0.5

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually finds the global minimum of the loss

(average divergence)?

• In classification problems, the classification error is a
non-differentiable function of weights

• The divergence function minimized is only a proxy for
classification error

• Minimizing divergence may not minimize classification
error

13

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89

• Simple problem, 3 training instances, single neuron

• Perceptron training rule trivially find a perfect solution

(1,0), +1

(0,1), +1

(-1,0), -1

14

Backprop vs. Perceptron

• Back propagation using logistic function and
divergence

• Unique minimum trivially proved to exist, backprop
finds it

(1,0), +1

(0,1), +1

(-1,0), -1

15

Unique solution exists

• Let
– E.g. 𝑢 = 𝑓 0.99 representing a 99% confidence in the class

• From the three points we get three independent equations:

• Unique solution exists
– represents a unique line regardless of the value of 𝑢

(1,0), +1

(0,1), +1

(-1,0), -1

16

Backprop vs. Perceptron

• Now add a fourth point
• is very large (point near)
• Perceptron trivially finds a solution (may take t2

iterations)

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

17

Backprop

• Consider backprop:
• Contribution of fourth point

to derivative of L2 error:

2

Notation:
= logistic activation

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

18

1-e is the actual
achievable value

Backprop

2

Notation:
= logistic activation

• For very large positive , (where)

• as

• exponentially as
• Therefore, for very large positive

19

Backprop

• The fourth point at does not change the gradient of the L2
divergence near the optimal solution for 3 points

• The optimum solution for 3 points is also a broad local minimum (0
gradient) for the 4-point problem!
– Will be found by backprop nearly all the time

• Although the global minimum with unbounded weights will separate the classes correctly

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

20

Backprop

• Local optimum solution found by backprop

• Does not separate the points even though the
points are linearly separable!

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

21

Backprop

• Solution found by backprop
• Does not separate the points even though the points are linearly

separable!
• Compare to the perceptron: Backpropagation fails to separate

where the perceptron succeeds

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

22

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Several linearly separable training examples
• Simple setup: both backprop and perceptron

algorithms find solutions 23

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly 24

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly

– Assuming weights are constrained to be bounded 25

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 26

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 27

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 28

So what is happening here?
• The perceptron may change greatly upon adding just a

single new training instance
– But it fits the training data well
– The perceptron rule has low bias

• Makes no errors if possible

– But high variance
• Swings wildly in response to small changes to input

• Backprop is minimally changed by new training
instances
– Prefers consistency over perfection
– It is a low-variance estimator, at the potential cost of bias

29

Backprop fails to separate even when
possible

• This is not restricted to single perceptrons

• An MLP learns non-linear decision boundaries that are
determined from the entirety of the training data

• Adding a few “spoilers” will not change their behavior

30

Backprop fails to separate even when
possible

31

• This is not restricted to single perceptrons

• An MLP learns non-linear decision boundaries that are
determined from the entirety of the training data

• Adding a few “spoilers” will not change their behavior

Backpropagation: Finding the separator

• Backpropagation will often not find a separating
solution even though the solution is within the
class of functions learnable by the network

• This is because the separating solution is not a
feasible optimum for the loss function

• One resulting benefit is that a backprop-trained
neural network classifier has lower variance than
an optimal classifier for the training data

32

Poll

33

Minimizing the (differentiable) loss function will also minimize classification error, true or false

 True
 False (true)

Poll 1

34

Minimizing the (differentiable) loss function will also minimize classification error, true or false

 True
 False (true)

The Loss Surface

• The example (and statements)
earlier assumed the loss
objective had a single global
optimum that could be found
– Statement about variance is

assuming global optimum

• What about local optima

35

The Loss Surface
• Popular hypothesis:

– In large networks, saddle points are far more
common than local minima

• Frequency of occurrence exponential in network size

– Most local minima are equivalent
• And close to global minimum

– This is not true for small networks

• Saddle point: A point where
– The slope is zero
– The surface increases in some directions, but

decreases in others
• Some of the Eigenvalues of the Hessian are positive;

others are negative

– Gradient descent algorithms often get “stuck” in
saddle points

36

The Controversial Loss Surface
• Baldi and Hornik (89), “Neural Networks and Principal Component

Analysis: Learning from Examples Without Local Minima” : An MLP with a
single hidden layer has only saddle points and no local Minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization” : An exponential number of
saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For
large networks, most local minima lie in a band and are equivalent
– Based on analysis of spin glass models

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

• Watch this space…
37

Story so far
• Neural nets can be trained via gradient descent that minimizes a

loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model
– The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of
unpleasant saddle points or local minima
– Which backpropagation may find

38

Convergence

• In the discussion so far we have assumed the
training arrives at a local minimum

• Does it always converge?
• How long does it take?

• Hard to analyze for an MLP, but we can look at
the problem through the lens of convex
optimization

39

A quick tour of (convex) optimization

40

Convex Loss Functions

• A surface is “convex” if it is
continuously curving upward
– We can connect any two points

on or above the surface without
intersecting it

– Many mathematical definitions
that are equivalent

• Caveat: Neural network loss
surface is generally not convex
– Streetlight effect

Contour plot of convex function

41

Convergence of gradient descent

• An iterative algorithm is said to
converge to a solution if the value
updates arrive at a fixed point
– Where the gradient is 0 and further

updates do not change the estimate

• The algorithm may not actually
converge
– It may jitter around the local

minimum
– It may even diverge

• Conditions for convergence?

converging

jittering

diverging

42

Convergence and convergence rate
• Convergence rate: How fast the

iterations arrive at the solution
• Generally quantified as

– ()is the k-th iteration
– ∗is the optimal value of

• If is a constant (or upper bounded),
the convergence is linear
– In reality, its arriving at the solution

exponentially fast
() ∗ () ∗

converging

43

Convergence for quadratic surfaces

• Gradient descent to find the
optimum of a quadratic,
starting from

• Assuming fixed step size
• What is the optimal step size

to get there fastest?

Gradient descent with fixed step size
to estimate scalar parameter

()

44

Convergence for quadratic surfaces
• Any quadratic objective can be written as

() ()

() ()

– Taylor expansion

• Minimizing w.r.t , we get (Newton’s method)

• Note:
()

()

• Comparing to the gradient descent rule, we see
that we can arrive at the optimum in a single step
using the optimum step size

𝟏

() ()
()

45

With non-optimal step size

• For the algorithm
will converge monotonically

• For we
have oscillating
convergence

• For we get
divergence

Gradient descent with fixed step size
to estimate scalar parameter

46

For generic differentiable convex
objectives

• Any differentiable convex objective can be approximated as

() ()
()

()
()

– Taylor expansion

• Using the same logic as before, we get (Newton’s method)

()

• We can get divergence if
47

approx

𝑚𝑖𝑛

For functions of multivariate inputs

• Consider a simple quadratic convex (paraboloid) function

– Since (is scalar), can always be made symmetric
• For strictly convex , is always positive definite, and has positive eigenvalues

• When is diagonal:

– The s are uncoupled
– For paraboloid (convex) , the values are all positive
– Just a sum of independent quadratic functions

, is a vector

48

Multivariate Quadratic with Diagonal

• Equal-value contours will ellipses with
principal axes parallel to the spatial axes

49

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axes
– All “slices” parallel to an axis are shifted versions of one another

50

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axis
– All “slices” parallel to an axis are shifted versions of one another

51

“Descents” are uncoupled

• The optimum of each coordinate is not affected by the other coordinates
– I.e. we could optimize each coordinate independently

• Note: Optimal learning rate is different for the different coordinates

, ,

52

Vector update rule

• Conventional vector update rules for gradient descent:
update entire vector against direction of gradient
– Note : Gradient is perpendicular to equal value contour

– The same learning rate is applied to all components

()
()

53

Problem with vector update rule

• The learning rate must be lower than twice the smallest
optimal learning rate for any component

– Otherwise the learning will diverge

• This, however, makes the learning very slow
– And will oscillate in all directions where

54

Dependence on learning rate

• , ,

• ,

• ,

• ,

• ,

• ,

55

Problem with vector update rule

• The learning rate must be lower than twice the smallest
optimal learning rate for any component

– Otherwise the learning will diverge

• This, however, makes the learning very slow
– And will oscillate in all directions where

56

Dependence on learning rate

•
57

Generic differentiable multivariate
convex functions

• For generic convex multivariate functions (not necessarily quadratic), we can employ
quadratic Taylor series expansions and much of the analysis still applies

• Taylor expansion
(𝒌)

𝐰
(𝒌) (𝒌) (𝒌) 𝑻

𝑬
(𝒌) (𝒌)

• The optimal step size is inversely proportional to the Eigen values of the Hessian
– The second derivative along the orthogonal coordinates
– For the smoothest convergence, these must all be equal

58

Convergence
• Convergence behaviors become increasingly unpredictable as dimensions

increase

• For the fastest convergence, ideally, the learning rate must be close to
both, the largest , and the smallest ,

– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if
,

,
is large

– The “condition” number
• Must be close to 1.0 for fast convergence

• Following (hidden) slides discuss solutions that “normalize the space by
stretching different directions differently to standardize optimal step size
– A big topic for optimization
– Unfortunately, infeasible for neural networks

59

Comments on the quadratic
• Why are we talking about quadratics?

– Quadratic functions form some kind of benchmark
– Convergence of gradient descent is linear

• Meaning it converges to solution exponentially fast

• The convergence for other kinds of functions can be viewed against this
benchmark

• Actual losses will not be quadratic, but may locally have other structure
– Local between current location and nearest local minimum

• Some examples in the following slides..
– Strong convexity
– Lifschitz continuity
– Lifschitz smoothness

– ..and how they affect convergence of gradient descent

60

Quadratic convexity

• A quadratic function has the form

– Every “slice” is a quadratic bowl

• In some sense, the “standard” for gradient-descent based optimization
– Others convex functions will be steeper in some regions, but flatter in others

• Gradient descent solution will have linear convergence
– Take steps to get within of the optimal solution

61

Strong convexity

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

62

Strong convexity

63

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

Types of continuity

• Most functions are not strongly convex (if they are convex)
• Instead we will talk in terms of Lifschitz smoothness
• But first : a definition
• Lifschitz continuous: The function always lies outside a cone

– The slope of the outer surface is the Lifschitz constant

–
64

From wikipedia

Lifschitz smoothness

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)
65

Lifschitz smoothness

66

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)

Types of smoothness

67

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Types of smoothness

68

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Convergence Problems
• For quadratic (strongly) convex functions, gradient descent is exponentially

fast
– Linear convergence

• Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow

() ∗ () ∗

– And inversely proportional to learning rate

() ∗ () ∗

– Takes iterations to get to within of the solution

– An inappropriate learning rate will destroy your happiness

• Second order methods will locally convert the loss function to quadratic
– Convergence behavior will still depend on the nature of the original function

• Continuing with the quadratic-based explanation…
69

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate
must be close to both, the largest and the
smallest
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if is large

– The “condition” number is small
70

One reason for the problem

71

• The objective function has different eccentricities in different directions
– Resulting in different optimal learning rates for different directions
– The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two

directions are coupled! Moving in one direction changes the gradient along the other

• Solution: Normalize the objective to have identical eccentricity in all directions
– Then all of them will have identical optimal learning rates
– Easier to find a working learning rate

Solution: Scale the axes

• Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
– Equal-value contours are circular
– Movement along the coordinate axes become independent

• Note: equation of a quadratic surface with circular equal-value contours can be
written as

72

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

73

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

74

By inspection:

Scaling the axes
• We have

• Equating linear and quadratic coefficients, we get

• Solving: ,
75

Scaling the axes

• We have

• Solving for we get

,

76

Scaling the axes

• We have

• Solving for we get

,

77

The Inverse Square Root of A

• For any positive definite , we can write

– Eigen decomposition
– is an orthogonal matrix
– is a diagonal matrix of non-zero diagonal entries

• Defining
– Check

• Defining
– Check:

78

Returning to our problem

•

• Computing the gradient, and noting that is
symmetric, we can relate and :

79

Returning to our problem

•

• Gradient descent rule:

–

– Learning rate is now independent of direction

• Using , and

80

Modified update rule

•

• Leads to the modified gradient descent rule

81

.

For non-axis-aligned quadratics..

• If is not diagonal, the contours are not axis-aligned
– Because of the cross-terms 𝑎 𝑤 𝑤

– The major axes of the ellipsoids are the Eigenvectors of 𝐀, and their diameters are
proportional to the Eigen values of 𝐀

• But this does not affect the discussion
– This is merely a rotation of the space from the axis-aligned case
– The component-wise optimal learning rates along the major and minor axes of the equal-

contour ellipsoids will be different, causing problems
• The optimal rates along the axes are Inversely proportional to the eigenvalues of 𝐀

82

For non-axis-aligned quadratics..

• The component-wise optimal learning rates along the major and
minor axes of the contour ellipsoids will differ, causing problems
– Inversely proportional to the eigenvalues of

• This can be fixed as before by rotating and resizing the different
directions to obtain the same normalized update rule as before:

() ()
83

Generic differentiable multivariate
convex functions

• Taylor expansion
(𝒌)

𝐰
(𝒌) (𝒌) (𝒌) 𝑻

𝑬
(𝒌) (𝒌)

84

Generic differentiable multivariate
convex functions

• Taylor expansion

(𝒌)
𝐰

(𝒌) (𝒌) (𝒌) 𝑻
𝑬

(𝒌) (𝒌)

• Note that this has the form

• Using the same logic as before, we get the normalized update rule
() () ()

𝐰
() 𝑇

• For a quadratic function, the optimal is 1 (which is exactly Newton’s method)
– And should not be greater than 2!

85

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–

Fit a quadratic at each
point and find the
minimum of that
quadratic

86

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

87

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

88

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

89

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
90

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
91

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
92

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
93

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
94

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
95

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
96

Issues: 1. The Hessian
• Normalized update rule

• For complex models such as neural networks, with a
very large number of parameters, the Hessian

is extremely difficult to compute
– For a network with only 100,000 parameters, the Hessian

will have 1010 cross-derivative terms

– And its even harder to invert, since it will be enormous

97

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

98

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

99

Issues: 1 – contd.
• A great many approaches have been proposed in the

literature to approximate the Hessian in a number of ways
and improve its positive definiteness
– Boyden-Fletcher-Goldfarb-Shanno (BFGS)

• And “low-memory” BFGS (L-BFGS)
• Estimate Hessian from finite differences

– Levenberg-Marquardt
• Estimate Hessian from Jacobians
• Diagonal load it to ensure positive definiteness

– Other “Quasi-newton” methods

• Hessian estimates may even be local to a set of variables

• Not particularly popular anymore for large neural networks..
100

Issues: 2. The learning rate

• Much of the analysis we just saw was based on trying
to ensure that the step size was not so large as to cause
divergence within a convex region

–

101

Issues: 2. The learning rate

• For complex models such as neural networks the loss
function is often not convex
– Having can actually help escape local optima

• However always having will ensure that you
never ever actually find a solution

102

Decaying learning rate

• Start with a large learning rate
– Greater than 2 (assuming Hessian normalization)
– Gradually reduce it with iterations

Note: this is actually a
reduced step size

103

Decaying learning rate
• Typical decay schedules

– Linear decay:

– Quadratic decay:

– Exponential decay: , where

• A common approach (for nnets):
1. Train with a fixed learning rate until loss (or performance on

a held-out data set) stagnates
2. , where (typically 0.1)
3. Return to step 1 and continue training from where we left off

104

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Convergence issues abound
– The loss surface has many saddle points

• Although, perhaps, not so many bad local minima
• Gradient descent can stagnate on saddle points

– Vanilla gradient descent may not converge, or may
converge toooooo slowly

• The optimal learning rate for one component may be too
high or too low for others

105

Poll 2

106

Slide 117

Mark all true statements

 Step sizes that are greater than twice the inverse of the second derivative can cause gradient
descent to diverge (true)

 This is always a bad thing
 Gradient descent will not converge without decaying learning rates

Poll 2

107

Slide 117

Mark all true statements

 Step sizes that are greater than twice the inverse of the second derivative can cause gradient
descent to diverge (true)

 This is always a bad thing
 Gradient descent will not converge without decaying learning rates

Story so far : Second-order methods

• Second-order methods “normalize” the variation
along the components to mitigate the problem of
different optimal learning rates for different
components
– But this requires computation of inverses of second-

order derivative matrices

– Computationally infeasible

– Not stable in non-convex regions of the loss surface

– Approximate methods address these issues, but
simpler solutions may be better

108

Story so far : Learning rate

• Divergence-causing learning rates may not be a
bad thing
– Particularly for ugly loss functions

• Decaying learning rates provide good
compromise between escaping poor local minima
and convergence

• Many of the convergence issues arise because we
force the same learning rate on all parameters

109

Lets take a step back

• Problems arise because of requiring a fixed
step size across all dimensions
– Because step are “tied” to the gradient

• Let’s try releasing this requirement

()
()

110

Derivative-inspired algorithms

• Algorithms that use derivative information for
trends, but do not follow them absolutely

• Rprop
• Quick prop

111

RProp

• Resilient propagation
• Simple algorithm, to be followed independently for each

component
– I.e. steps in different directions are not coupled

• At each time
– If the derivative at the current location recommends continuing in the

same direction as before (i.e. has not changed sign from earlier):
• increase the step, and continue in the same direction

– If the derivative has changed sign (i.e. we’ve overshot a minimum)
• reduce the step and reverse direction

112

Rprop

• Select an initial value and compute the derivative
– Take an initial step against the derivative

• In the direction that reduces the function

–
()

–

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

113

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a longer step
• =

•

a > 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

114

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a step
• =

•

a > 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

115

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤 = 𝑤 + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤 = 𝑤 − ∆𝑤

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

116

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤 = 𝑤 + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤 = 𝑤 − ∆𝑤

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

117

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤 = 𝑤 + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤 = 𝑤 − ∆𝑤

b < 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

118

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤 = 𝑤 + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤 = 𝑤 − ∆𝑤

b < 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

119

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize , , , , , ,

–
(, ,)

, ,

– , , , ,

– While not converged:
• 𝑤 , , = 𝑤 , , − ∆𝑤 , ,

• 𝐷 𝑙, 𝑖, 𝑗 =
(, ,)

, ,

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤 , , = min (𝛼∆𝑤 , , , ∆)

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤 , , = 𝑤 , , + ∆𝑤 , ,

– ∆𝑤 , , = max (𝛽∆𝑤 , , , ∆)

Ceiling and floor on step

120

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize , , , , , ,

–
(, ,)

, ,

– , , , ,

– While not converged:
• 𝑤 , , = 𝑤 , , − ∆𝑤 , ,

• 𝐷 𝑙, 𝑖, 𝑗 =
(, ,)

, ,

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤 , , = 𝛼∆𝑤 , ,

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤 , , = 𝑤 , , + ∆𝑤 , ,

– ∆𝑤 , , = 𝛽∆𝑤 , ,

Obtained via backprop

Note: Different parameters updated
independently

121

RProp
• A remarkably simple first-order algorithm,

that is frequently much more efficient than
gradient descent.
– And can even be competitive against some of the

more advanced second-order methods

• Only makes minimal assumptions about the
loss function
– No convexity assumption

122

Poll 3

123

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking
a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark
all true statements

 Rprop will revert to the earlier estimate and take a smaller step (true)
 Rprop will change direction and begin taking steps in the opposite direction

Poll 3

124

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking
a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark
all true statements

 Rprop will revert to the earlier estimate and take a smaller step (true)
 Rprop will change direction and begin taking steps in the opposite direction

QuickProp

• Quickprop employs the Newton updates with two modifications
() () ()

𝐰
() 𝑇

• But with two modifications

125

QuickProp: Modification 1

• It treats each dimension independently
• For

• This eliminates the need to compute and invert expensive Hessians

𝑤

𝐸(𝑤)

𝑤𝑘𝑤

Within each component

126

QuickProp: Modification 2

• It approximates the second derivative through finite differences
• For

• This eliminates the need to compute expensive double derivatives

𝑤

𝐸(𝑤)

𝑤𝑘𝑤

Within each component

127

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

() ()
 ()

()
()

Finite-difference approximation to double derivative
obtained assuming a quadratic

,
()

,
()

,
()

,
() ,

()

,
() ,

() ,
()

128

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

() ()
 ()

()
()

Finite-difference approximation to double derivative
obtained assuming a quadratic

,
()

,
()

,
()

,
() ,

()

,
() ,

() ,
()

Computed using
backprop

129

Quickprop

• Employs Newton updates with empirically
derived derivatives

• Prone to some instability for non-convex
objective functions

• But is still one of the fastest training
algorithms for many problems

130

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to
the differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve
convergence

131

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

132

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

133

The momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

134

Momentum Update

• The momentum method maintains a running average of all gradients until
the current step

() ()
() () ()

– Typical value is 0.9

• The running average steps
– Get longer in directions where gradient retains the same sign
– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

135

Training by gradient descent

• Initialize all weights

• Do:
– For all , initialize

– For all
• For every layer :

– Compute

– Compute

– For every layer :
𝑇

• Until has converged
136

Training with momentum

• Initialize all weights
• Do:

– For all layers , initialize ,

– For all
• For every layer :

– Compute gradient

–

– For every layer
𝑇

• Until has converged
137

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

138

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

139

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the scaled previous step
• Which is actually a running average

140

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average

– To get the final step
141

Momentum update

• Momentum update steps are actually computed in two stages
– First: We take a step against the gradient at the current location
– Second: Then we add a scaled version of the previous step

• The procedure can be made more optimal by reversing the order of
operations..

142

1

2

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
143

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
144

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

145

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

146

Nestorov’s Accelerated Gradient

• Nestorov’s method

147

Nestorov’s Accelerated Gradient

• Comparison with momentum (example from
Hinton)

• Converges much faster

148

Training with Nestorov
• Initialize all weights
• Do:

– For all layers , initialize ,

– For every layer

– For all
• For every layer :

– Compute gradient

–

– For every layer
𝑇

𝑇

• Until has converged
149

Momentum and trend-based
methods..

• We will return to this topic again, very soon..

150

Poll 4

151

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient
descent, true or false

 True
 False (correct) – momentum only changes step size

Poll 4

152

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient
descent, true or false

 True
 False (correct) – momentum only changes step size

Story so far
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence

• Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

153

Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

154

