HW3P1 Bootcamp

RNNSs, GRUs, CTC, and Greedy/Beam Search

Fall 2024

Logistics
- Early Submission : November 1st, 11:59pm

- On-Time Submission: November 8th, 11:59pm

Two approaches: Standard and Autograd

No late days can be used for Homework part 1s, please plan accordingly!

Structure of RNNs

A simple RNN that does seg-to-seq task with one RNN cell

=
v Om)
VC -:‘
i
(
3
2

Unfold

RNN Cell Forward and Backward

@ @ : Wih+ bir. + Whh + bnn)

e . Tip: very similar to linear.py in HW1P1.

E’ﬂ | We are just applying a tanh function to linear transformations of ¢
and h;_q

—

Xt

RNN Cell Forward and Backward

Why tanh?

4

A

——

v

hy = Winze + bin + Wrnhi—1 + brn)

1. Non-linearity
2. Tanhis bounded; can mitigate exploding gradient problem

RNN Phoneme Classifier

¥

.5,

8 J

e Many-to-one task ‘ ‘ - |
® Input sequence is passed through a
few layers of RNN cells

i

e The final hidden state at the final |
timestamp is passed through a linear J ‘ |
layer to give us the phoneme class \—JT q

X1 X2 X3

o

RNN Cell Linear
Forward Forward

GRU Cell Forward and Backward

ry = O-(W'r:t: "Xt + b'r:n + th ' ht—l + b'rh)

Z; = O-(Wz;v - Xy + bz:c + th : ht—l + bzh,)

n; = tanh(wnm - Xy + bn:l: +r; © (W'nh, : ht—l + b'n,h,))
ht = (]-_Zt) ®nt—|—zt®ht_1

Reset Gate:
Update Gate:
Memory Content:

Hidden State:

yit]
hit-1] > - ;\ oy . T> hit]
] r[t] 1- 1\
«d Y | 9’; Alt
> o | o) tanh |
ety
\ J

GRU Cell Forward and Backward contin.

Reset Gate: I :@W'm: - Xt + bm; + th . ht—l + b'rh)

Update Gate: Zy :@sz "Xt + bz:c + th : ht—l + bzh)
n; = ta'nh(wna: - Xy + bn:l: +r; © (W'nh : ht—l + b'n,h,))

h,=(1-2)0On;+2z ©®hy_,4

Memory Content:

Hidden State:

Why sigmoid?

e Sigmoid is limited to the values O to 1 = This can

describe how much info to pass
O Close to O: we want to “forget”
O Close to 1: we want to “remember”

v

GRU Cell Forward and Backward contin.

Reset Gate: ri =0(W,, - X¢+ b+ Wy -hy_ 1+ by)
Update Gate: 2, =0(W,, Xy +b,, + W_;,-h; 1 +b,)
Memory Content: n, = tanh(W,, - x; + b, +1r, © (W, -h; 1 +b,p))
Hidden State: hy =(1-2)0On;+2z;®h;_,4

We do an element-wise product with a linear transformation of the
previous hidden-state

GRU Cell Forward and Backward contin.

® GRU backward be the longest question in HW3P1
® Tips:
O All intermediate dWs and dbs should be correct to make sure that your dx and dh are
correct
O Useful resource: How to compute a derivative
Break down complicated equations into unary/binary operations
o e.g. f(x) = tanh(r © (Wx+b)), we want to decompose it into:
m Z1=Wx+b
m Z2=r O (Wx+b)
m f(x) =tanh(Z2)
m Derivative for each step would be easy and lastly we apply chain rule to get our
f(x)

0]

https://deeplearning.cs.cmu.edu/F23/document/readings/How%20to%20compute%20a%20derivative.pdf

Chain rule through element-wise multiplication
Assume that the shape of derivative wrt a matrix is the same as that of the matrix.
Let C = A © B (element-wise)

- This means A, B, and C have the same shape

- Only elements of the same position are related to each other — derivatives flow only position-wise.
- Therefore, dLdA = dLdC ® B and dLdB =dLdC ®© A

Chain rule through matrix multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.

Let C = AB (matrix multiplication). The shapes of A, B, C are a x b, b x ¢, and ¢ x a respectively.

Think about which all elements of C does A(i, j) influence.

It influences all elements of C in row i through multiplication with the j-th element in every
column of B.

So, dLdA(i, j) = sum[k=1 to c] dLdC(i, k)B(j, k)

Doing this for every element gives dLdA = dLdC X B.T (matrix multiplication)

DONT JUST MATCH SHAPES. UNDERSTAND HOW VALUES MATCH INSTEAD. SHAPES WILL FOLLOW.

GRU Inference - Character Predictor

Many-to-many task, the model is supposed to have an output for each timestamp.

Different from RNN Phoneme classifier, here we need to pass the hidden state at each timestamp to a
linear layer to predict the character at each t, instead of just the previous timestamp'’s hidden state.

CTC

1. Extend Target With
Blank

2. Forward Probabilities

3. Backward Probabilities

4. Posterior Probabilities

5. CICLoss

& R " "
/B/ o : yr vy s Kl ve 1 vE R ve ys Y
| YN 7Y v o T B
/| Yo 1 Yz 1 Vs yi
| vl yi¥ v s Vs .
0 1 2 3 4 5 6 7

v

CTC Introduction

Used to calculate loss when the length of input sequences and output labels do not match and there is no
fixed alignment between the input and output.

/8 NG SN NENVEENVEREVEAREARE:
| YN 7Y v o T B
T yi | Y ¥ % vE
| vy i vz | Ys" Vi ¢

;0 1 2 3 4 5 6 7

v

CTC

1. Extend target with blank

extend symbols
B [Iy |IY | F ~—————3» |BLANK| B |BLANK| IY BLANK 1Y |BLANK| F BLANK

Figure 13: Extend symbols

[[I | skip connect [| [[[
BLANK B BLANK IY BLANK IY BLANK F BLANK 0 0|0 |1 /0 0 0 1 0

Figure 14: Skip connections

* Skips are permitted across a blank, but only if the symbols on

either side are different
* Because a blank is mandatory between repetitions of a symbol but not
required between distinct symbols

FORWARD ALGORITHM (with blanks)

[Sext] = extendedsequencewithblanks
N = length(Sext) # Length of ext@quence
#The forward recursion
First, at t = 1 \
alpha(l,1) = y(1,Sext (1) s is the
alpha(1,2) = y(1,Sex
alpha(1l,3:N) = 0 @ @
for t = 2:T *

alpha(t,1) =Nglgsh (t-1,1) \\ 1))

for i = 2:N

alpha(t,i) = alph i®+ alpha(t-1,i-1)
ooy if (i > 2 && Sext (i Sext (i-2))
2. Forward Probabilities algha (t,4) 4= algha(E-1,4-2)

alpha(t,i) *= y(t,Sext(i))

a (t, T,) — P (SO . Sr, st — ST Ix) Without explicitly composing the output table

.5 B

/B/ [\ ‘ i KO ve (SWwE Kl ve XL vE K| ve y7 Vs
Y| v N it s REH % Ve

) | vE | Y ¥ v L

N | o' i ya | s Ya 4
;_0 1 2 3 4 5 6 7

v

CTC

3. Backward Probabilities

B (t,r) = probability of graph including node at (t,r)

1 .
B(t,r) = —-Bt1)
Ve

[Sext] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
First, at t =T

betahat (T,N) = y(T,Sext(N))
betahat (T,N-1) = y(T, Sext (N-1))
betahat (T,1:N-2) = 0
for t = T-1 downto 1
betahat (t,N) = betahat (t+ 7Sext (N))
for i = N-1 downto 1 %
betahat (t,i) = b 1,1) +qbe F141))
if (i<=N-2 && Se I= Sext (if @
etahat®L+
betahat (t, 1) N t,SeXt(l\\

¢

betahatQg, 1)
#Compute beta from betahat
for t = T downto 1
for i = N downto 1
beta(t,i) = betahat(t,i)/y(t,Sext(i))

Without explicitly composing the output table

B/ [\XO

N7

: 0
Y 1 2"

/F | v

yi

N yf

Yy
Y3

Y3

2 | ve y7 V8

N | oyl

Iy
V1

1y
V2

1y
Y3

Vi

t+ 0

1

2

3

1y 1y
Y7 Y8

\ 4

COMPUTING POSTERIORS
#N is the number of symbols in the target output
#8(i) is the ith symbol in target output
#y(t,i) is the output of the network for t.h symbol at time t
| #T = length of input

#Assuming the forward are completed

alpha = forward(y, S) # forward t.\.es computed
' I ‘ beta = backward(y, S) # back ilities ted

#Now computa the poatem.cr

for t = 1:T b

4. Posterior Probability sunganma (£) = 0

for i = 1:N

gamma (t,1i) = alph (t,1) \
P(st = ST"Slx) = a(t,r)ﬁ(t, T) sumgamma (t) += gamma(t,i

« The posterior is given by B aonna (6 1) = qumma(t, 1) / sungamma (t)

Pl =580 = 22 P Tl)
8/ NG : iRC v: SN Kl XL yE RKCLoe 7 8
Y| v N v izl BEH 7" Vs
/F | vE v v [s i
oLy || v] s P 4

;0 1 2 3 4 5 6 7

v

COMPUTING DERIVATIVES

#N is the number of symbols in the tar utput
#S(i) is the ith symbol in target o
CTC #y(t,i) is the output of the netwo ‘%: e ith symbol at time t
#T = length of input 6
#Assuming the forward are \d first g
alpha = forward(y, S) d prol i omputed
5. LOSS beta = backward(y, S) @ckva:d pr iffies computed
*

gamma = computeposterXors (alpfla,

Compute posterior: alpha x
- R
DIV ==Y > P =sISXlogV(t,s=s) dDI1V 1
—_ y(t r) #Compute derivatives
’

T SESy.SK-1

l - _l for t = 1:T
DIV = _ZZY(t'r)lOgytS(r) dyt yt 7 :S(T)=l ?Z;t_’il;ml:; 0 # Initialize all derivatives at time t to 0
t r dy(t,S(i)) -= gamma(t,i) / y(t,S(i))
& N\

B B > B > B B > B > B B B
/B/ \Ko N | V1 Y2 N\ Ya_N [V Vs Ve Y7 Vs

1 1Y 1Y 1Y 1Y 1Y
/Y| Yo X | 1 V2 V3 V7 Vs

F E F F
JF/ Yo Vi N Y2 Y3 Vs

Ny ||t | [| Mys Py
;0 1 2 3 4 5 6 7

v

CTC Decoding

1. Greedy Search
2. Beam Search

T=1 T=2 T=3
current proposed current proposed current proposed
hypotheses extensions hypotheses extensions hypotheses extensions

©

A

empty k
string S

A standard beam search algorithm with an
alphabet of {¢, a, b} and a beam size of three.

Greedy Search

e Taking the most probable output at each time step

Compress

B - A A T - =—=> "BAT"

025| X [083] X |035| X |029| X |035| X |042| X |032| =———=> 3.94e-4
Symbol Product
Set
0.25 0.27 0.35 ‘0.11 ‘ ‘0.18 ‘ 0.22 0.32
A 0.20 0.20 0.20 0.29 0.35 0.07 0.05
B 0.15 0.33 0.11 0.24 0.06 0.16 0.26
C 0.20 0.13 0.06 0.13 0.12 0.13 0.31
T 0.10 0.07 0.28 0.23 0.29 0.42 0.08

o+ttt t 1t 1

Xo X4 X2 Xa X4 X5 X5

Remember, when extending a path with a new symbol, you’ll encounter three scenarios:

1. The new symbol is the same as the last symbol on the path.
2. The last symbol of the path is blank.

Beam Search

Efficient Beam Search:

Input: SymbolSets, y_probs, BeamWidth
Output: BestPath, MergedPathScores

0. Initialize:
1. BestPaths with a blank symbol path with a score of 1.0.
2. TempBestPaths as an empty dictionary.
1. For each timestep in y_probs:
1. Extract the current symbol probabilities.
2. For each path, score in BestPaths limited by BeamWidth:
1. For each new symbol in the current symbol probabilities:
1. Based on the last symbol of the path, determine the new path.
2. Update the score for the new path in TempBestPaths.

3. Update BestPaths with TempBestPaths.
4. Clear TempBestPaths.

2. Initialize MergedPathScores as an empty dictionary.
3. For each path, score in BestPaths:
1. Remove the ending blank symbol from the path.
2. Update the score for the translated path in MergedPathScores.

3. Update the BestPath and BestScore if the score is better.

4. Return BestPath and MergedPathScores.

3. The last symbol of the path is different from the new symbol and is not blank.

tempBestPathsWithScores. : {}
bestPathsWithScores : {(~): 1.0}

blank Symbol Set
" g B
For the top k bestpaths,

y_probs{0] iterate over each of the symbols.
Extend each best path and update its scores

=y 0.49 0.03 0.47
tempBestPathsWithScores. : {(-): 0.48, (‘a'): 0.08, (b'): 0.47}
bestPathsWithScores : [({*-'), 0.49), ((b'), 0.47), ((a'), 0.03]]
o ! b
. tempBestPathsWithScores. :
{(+1):0.1862, (a'): 0.229, (‘a-'): 0.0114, (ab'): 0.0054, (b'); 0.1728, (b-):
y_probs[1] 0.1786, ('ba’): 0.2068}
bestPathsWithScores : [(('a'), 0.229), (('ba), 0.207), ((-"), 0.186)]
T=t 0.38 0.44 0.18
o g [y
tempBestPathsWithScores. :
{(-1): 0.0037, (a"): 0.166, ('a-): 0.0046, ('ab’): 0.132, (1'): 0.108, (ba):
y_probs(2) 0.083, (ba-): 0.004, (bab): 0.1195)
T=2 0.02 0.40 0.58

MERGE tempBestPathsWithScores to get final Scores

Prune blanks from the end of a path and merge with exisling scores of
pruned paths

Return bestPath, mergedPathScores

‘a'->0.17058

Figure 20: Efficient Beam Search procedure

Beam Search

Thank you!

Q&A

	Slide 1: HW3P1 Bootcamp
	Slide 2: Logistics
	Slide 3: Structure of RNNs
	Slide 4: RNN Cell Forward and Backward
	Slide 5: RNN Cell Forward and Backward Why tanh?
	Slide 6: RNN Phoneme Classifier
	Slide 7: GRU Cell Forward and Backward
	Slide 8: GRU Cell Forward and Backward contin.
	Slide 9: GRU Cell Forward and Backward contin.
	Slide 10: GRU Cell Forward and Backward contin.
	Slide 11: Chain rule through element-wise multiplication
	Slide 12: Chain rule through matrix multiplication
	Slide 14: GRU Inference - Character Predictor
	Slide 15: CTC
	Slide 16: CTC Introduction
	Slide 17: CTC
	Slide 18: CTC
	Slide 19: CTC
	Slide 20: CTC
	Slide 21: CTC
	Slide 22: CTC Decoding
	Slide 23: Greedy Search
	Slide 24: Beam Search
	Slide 25: Beam Search
	Slide 26: Thank you! Q&A

