
11-485/685/785, Fall 2024
 
Lab 03: Debugging Deep Learning Networks 

TAs: Ketan Chaudhary, Alexander Moker, Khushali Daga

* This recitation builds upon “Recitation 0N: Debugging” and provides a comprehensive overview of common scenarios, 
as well as a bank of debugging tools. 
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In Computer Science, debugging is always a big, 
painful part of the work. 

In Deep Learning, it’s even bigger and more painful 
because of multiple sources of errors. 
 

- Implementation bugs 
- Dataset construction 
- Data/model fit
- Hyperparameter choice 

 Neural net training fails silently… 

Debugging deep learning networks 



Goal of this lab: 

Learn a skill of debugging deep learning 
networks on your own 🚀
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1. How to debug HW Parts 1

a. VS Code Debugger (setting breakpoints)
b. Interactive Python Debugger (pdb)

2. How to debug HW Parts 2

a. Data loading and preprocessing  
i. EDA and Viz tools 

b. Building a model
i. Hyperparameters consolidation

ii. Checking dimensions and layers 
c. Training and monitoring 

i. Optimizing training time 
ii. Optimizing memory 

iii. Interpreting training performance 
d. Testing and Kaggle submission 

Agenda



How to debug HW Parts 1



VS Code Debugger – Live Demo



How to debug HW Parts 2



Pdb – Live Demo



HW Parts 2 ideal workflow

Step 0: Download the notebook. 

Step 1: Complete all #TODOs and ensure your code runs and 
reaches very low cutoff. 

Step 2: Divide the experiments among the study group 
members to achieve the high cutoff. 



HW Parts 2 components 

1: Data loading and preprocessing

2: Building a model

3: Training and monitoring

4: Testing and Kaggle submission

How to debug each part?



1. Data Loading and Preprocessing
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#1.1 Taking a moment to review a single file from the dataset

Question 1: What's in our data? What are the inputs (x) and targets (y)? What should we do with our data to 
achieve great modeling results? 
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#1.2 Creating a train dataset class – mfcc → frames 

Question 2: How to transform the original MFCC files into frames. How do their dimensions change?

Operation in the train/val dataset class Resulting dimensions 

1. Load the mfcc (audio) files 2 files (just a toy example)
Each file is a matrix of size 10 (time steps) × 28 (features).

2. Normalize each mfcc file No change 

3. Concatenate all mfcc files into one One matrix of size 20 (10+10) × 28

4. Pad the data with context of 10 at top & bottom One matrix of size 40 (10 + 20 +10) × 28

5. Break the data into frames of size 2*context+1 Each frame is a matrix of size 21 (2 * context + 1) x 28 (features)
Total number of frames is 20 (40 - 21 + 1)

6. Applies time/frequency masking to each frame No change 

7. Flatten and convert to a tensor Each frame is converted from 2d into 1d with 588 (21*28) elements

8. Group frames into batches of size 5 4 (20 // 5) batches with 5 frames in each batch
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#1.2 Creating a train dataset class – transcripts → phonemes

Question 3: How to transform the original transcripts into phonemes. How do their dimensions change?

Operation in the train/val dataset class Resulting dimensions 

1. Load the transcript files 2 files (just a toy example)
Each file is of size 12 (time steps)

2. Remove [SOS] and [EOS] from each file Each file is of size 10 (time steps)

3. Concatenate all files into one One file of size 20 (10+10)

4. Convert the file into numerical format 
(phoneme-to-indices mapping) and convert to a 
tensor 

No change 

5. Group phonemes into batches of size 5 4 (20 // 5) batches with 5 phonemes in each batch
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#1.2 Creating a train dataset class – one training sample

Question 4: What does the training sample look like after processing through the dataset/data loader?
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#1.2 Creating a train dataset class – one batch of training samples 

Question 5: What does one batch look like? What is the difference between a batch size of 4 and 15, and 
how does batch size affect RAM memory usage?

Option B
Batch size = 15

Option A 
Batch size = 4
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#1.3 Creating a test dataset class 

Question 6: What’s the difference between train and test dataset classes?

Train/val dataset class 

- MFCC (audio)
- Sort the mfcc files in the directory 
- Load the mfcc files 
- Normalize the mfcc files 
- Concatenate all mfcc files into one
- Pad the data with context 
- Break the data into frames
- Apply time/frequency masking to each frame
- Flatten each frame and convert to a tensor 
- Return a batch of frames 

- Transcripts (phonemes)
- Sort the transcript files in the directory 
- Load the transcripts 
- Remove [SOS] and [EOS] from each transcript
- Concatenate all transcripts into one 
- Convert into numerical format
- Convert each phoneme to a tensor 
- Return a batch of phonemes

Test dataset class 

- MFCC (audio)
- Sort the mfcc files in the directory 
- Load the mfcc files 
- Normalize the mfcc files 
- Concatenate all mfcc files into one
- Pad the data with context 
- Break the data into frames
- Apply time/frequency masking to each frame
- Flatten each frame and convert to a tensor 
- Return a batch of frames 

- Transcripts (phonemes)
- Sort the transcript files in the directory 
- Load the transcripts 
- Remove [SOS] and [EOS] from each transcript
- Concatenate all transcripts into one 
- Convert into numerical format
- Convert each phoneme to a tensor 
- Returns a batch of phonemes
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#1.4 Adding the context 

Question 7: Is adding context useful? If so, what should the context size be? 

Can you guess which context size was applied in each of the following cases without looking at the answers?

Option A 
Context = 0 

Option B
Context = 5

Option C
Context = 20
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#1.5 Applying data normalization and transformations 

Option A 
Raw mfcc frame

Option B
Normalized mfcc 

frame

Option C
Normalized + time 

masking 

Option D
Normalized + 

frequency masking 

Question 8: Is normalizing and transforming the data helpful? 

Can you guess which preprocessing methods were applied to the data below without looking at the 
answers?



Common errors: Using too many “workers” - subprocesses responsible for loading and 
preprocessing data 

Things to try:
● Try reducing the number of workers in the dataloader.

#1.6 Selecting number of workers in dataloaders 



2. Building a Model
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#2.1 Centralization of hyperparameters 

Option A

Option B

Question 9: Which option is better: using hardcoded values or those stored in a config dictionary/yaml file?
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#2.1 Centralization of hyperparameters 

Approach 1 -  config dictionary Approach 2 - config.yaml file
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#2.2 Reading the model summary table 

Question 10: How many parameters does this model have? Which layer is the most computationally 
intense?

Total number of parameters 

The most 
computationally 
intense layer  

Computational 
intensity
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#2.3 Increasing the number of model parameters - going deep/wide 

Question 11: The student has decided to increase the number of layers but something went wrong. What’s 
the issue? 

Wrong input shape
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#2.4 Introducing batch normalization 

Question 12: The student has decided to add batch normalization but something went wrong. What’s the 
issue? 

Wrong number of elements 
for batch normalization 



3. Training and Monitoring 



3.1 Interpreting Model Performance
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Model performance interpretation 

Question 13: Any issues? Should we stop training? 

Answer: Train and validation losses go to NAN → stop training, lower the learning rate, implement gradient clipping 

Legend: Blue lines - train; Orange - validation
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Model performance interpretation 

Question 14: Any issues? Should we stop training? 

Answer: Model doesn’t converge → stop training, try implementing the learning rate scheduler to adjust the learning rate 
dynamically during training so the model won’t stuck in local minima 

Legend: Blue lines - train; Orange - validation
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Model performance interpretation 

Question 15: Any issues? Should we stop training? 

Answer: The model converges, but the performance is not great (accuracy is ~30% after ~50 epochs) → stop training, 
consider increasing the model's complexity (i.e., adding more parameters). 

Legend: Blue lines - train; orange - validation
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Model performance interpretation 

Question 16: Any issues? Should we stop training? 

Answer: The model starts to overfit after ~epoch 23 (valid loss no longer decreases) → stop training and consider 
regularizations

Legend: Blue lines - train; Orange - validation



Model performance interpretation 

Question 17: Any issues? Should we stop training? 

Answer: Classic overfitting  (validation loss increases) → top training and consider regularizations 

Legend: Solid lines - train; Dotted lines - validation
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Addressing overfitting 

Question 19: Which techniques have you already used in your homework?

1. Add more data (if possible)
2. Add normalization (cepstral, batch norm, layer norm)
3. Add data augmentation/transformation
4. Increase regularization (dropout, weight decay)
5. Error analysis 
6. Different model architectures 
7. Tune hyperparameters (manual or grid search)
8. Early stopping
9. Remove features 

Try last

Try first

https://fullstackdeeplearning.com/spring2021/lecture-7/ 

https://fullstackdeeplearning.com/spring2021/lecture-7/
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Model performance interpretation 

Question 18: Any issues? Should we stop training? 

Answer: Valid accuracy continues to increase and valid loss continues to decrease → continue training

Legend: Solid lines - train; Dotted lines - validation
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Classic Overfitting



3.2 Runtime issues 

● Read traceback to find root of error

● Read library documentation for function specifics

● Set batch size to 1 and run the code on CPU - more 

readable error messages

● Learn to use pdb → Interactive python debugger

● Stack overflow → Best



3.3 Memory issues 

○ Model trains normally
○ But after 30 epochs



Common errors: If you put too many things on GPU, you will see this:

Things to try:
● Reduce batch size
● Use cuda mixed precision → refer to this tutorial 
● Check if you used torch.inference mode() during validation and testing

○ Disables gradient calculation, only needed for backward-prop during training
○ Reduces memory consumption

● Call torch.cuda.empty cache() help reduce fragmentation of GPU memory in certain cases.

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html


Common errors: Forgetting to move data and model to GPU for training, validation and testing. 

Things to try:
● In order to train a model on the GPU → send the model and data itself to the GPU



3.4 Time issues

○ I debugged all the syntax errors and my model runs

○ But takes 40 minutes to train an epoch

○ Ideally it is supposed to take 10 minute

 



Things to check:
● If using GPU

● Batch size (32 to 128, as large as your GPU does not complain)

● Check data-loader and training loop: most iterations happen here

● Use mixed_precision while training

● Use time module to identify which part of the code is taking long



4. Testing and Kaggle submission



4. Testing and Kaggle submission



4. Testing and Kaggle submission
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Creating a submission file 

Question 20: Given the toy dataset below, how many rows of predictions should be in the submission file?

= number of rows in the 
submission file 



General strategy for model debugging

https://fullstackdeeplearning.com/spring2021/lecture-7/ 

https://fullstackdeeplearning.com/spring2021/lecture-7/


Thanks!

See you on Piazza and OHs!


