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Classification
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Face Classification and Verification



Face Classification
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Face Verification
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Distance vs Similarity between Vectors

How to compare two face features?

Distance: ||f; — £ = [|f1]|2 + ||f2]|? — 2616
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Why Classification Network is not Good for Verification?

Features learned by the classifier with Cross-Entropy only is not
discriminative enough



A Closer Look at Cross-Entropy
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A Closer Look at Cross-Entropy
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A Closer Look at Cross-Entropy
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A Closer Look at Cross-Entropy
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A Closer Look at Cross-Entropy
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Feature Space
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Cross-Entropy leads to radius feature representations:

e |t strengthens the feature length/magnitude of correctly classified samples



Problem of Radius Feature Space
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How to Learn Better Features?



What are Good Features for Verification?

e Features of the same classes have larger similarity than other classes
o ldeally with some margin
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What are Good Features for Verification?

e Features of the same classes have larger similarity than other classes
o ldeally with some margin

e Optimization objectives:
o Maximize the intra-class (same class) similarity
o Minimize the inter-class (different class) similarity
o Encourage a margin between intra-class and inter-class similarity

e Loss objective: Zn — Zp +m
e But...how to define 2" and 2P



Two Paradigms

e Margin-based Softmax Losses

o Sphereface
o Cosface

o Arcface
O

e Metric/Pair-based Losses

o Triplet Loss
o N-Pair Loss
O
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Margin-based Softmax

In Cross-Entropy, Weight vector WV ; of Weight matrix |}/ can be viewed as
anchor for each class

Intra-class logit score: 2¥ = WyT f

Inter-class logit score: 27 = W]-Tf,j =+

Cross-Entropy with normal Softmax is optimizing m]aj; y(z”) — 2

What is missing? Margin!



How to Introduce Margin in Softmax

e Normalize the feature and weight vectors -> dot product becomes cosine angle
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How to Introduce Margin in Softmax

e Normalize the feature and weight vectors -> dot product becomes cosine angle
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e Scale the feature to overcome the optimization problem with logit score [-1, 1]
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Effect of Scale s
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How to Introduce Margin in Softmax

e Normalize the feature and weight vectors -> dot product becomes cosine angle

eWy f
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e Scale the feature to overcome the optimization problem with logit score [-1, 1]
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e Introduce margin...at where?




CosFace Softmax Loss

Additive Margin
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SphereFace Softmax Loss

Angular Margin
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ArcFace Softmax Loss

Additive angular Margin
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Margin Visualization
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Different types of margin can be combined -> CombinedMarginFace



CombinedMargin Face



Metric/Pair-based Loss

Based on pairs...with Data Sampler

T
Intra-class logit score: X = fp f

Inter-class logit score: zn p— fo



Triplet Loss

Lrripter = max (£, f — £+ m, 0)

fp

* maximize —>: minimize



How to Construct Positive and Negative Pairs?

e Simple way: construct from data batch
o Might not have samples from the same classes

e Use Data Sampler to construct data batch with both samples of positive
classes and negative classes

e Hard mining: find the most difficult pairs



N-Pair Loss/Contrastive Loss

Why Triplet Loss is not good enough?

Only one positive pair and one negative pair
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More on N-Pair/Contrastive Loss
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More on N-Pair/Contrastive Loss
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More on N-Pair/Contrastive Loss
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More on N-Pair/Contrastive Loss

1 — eTr _ ¢T¢ e Optimization goal the same as
g\ 1+ Z_Zl exp(f,.f - » f) Cross-Entropy
- N—_1 e But negative pairs are different
log (1 + exp log Z exp (fg;f _ prf)> e Margin can also be added
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A Unified View of Both Paradigm

Can we introduce multiple positive pairs and multiple negative pairs?
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Unified Formulation

e This is a unified formulation
zn —Z —I—m)
log| 1+ E E ti

e You can derive softmax, arcface, triplet, n-pair losses from this formulation
o By setting the number of positives/negatives and how to construct them

e Circle loss can also be derived from this function
e Supervised Contrastive loss is another loss function with multiple p/ns



Augmentation & Regularization



Label Smoothing

One-hot target: [0, O, O, 1, O]
Smoothed (Is=0.1) target: [0.025, 0.025, 0.025, 0.9, 0.025]
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Label smoothing learns more separable features with smaller feature norm

Similar to the effect of s in Softmax
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Mixup/Cutout/Cutmix

Mixup [48] Cutout [3]




