
Lab 01
Introduction to Deep Learning

(11-785/ 685/ 485)

Aug 30 2024

Announcements

● HW1 released
● Early-bird submission due Sep 06 11:59 PM
● Don’t forget HW1 Quiz on Canvas; also due Sep

06 11:59 PM
● Quiz 1 will go out today at 11:59 PM; due on

Sunday 11:59 PM
● Bootcamp tomorrow at 2:00 PM

What is Deep Learning?

Artificial Intelligence

Machine Learning

Deep Learning

The Classes

Artificial Intelligence

Machine Learning

Deep Learning

Generative AI

The Classes

Machine Learning vs Deep Learning

- Machine Learning is subset of AI that employs algorithms to analyze and

learn from data, enabling systems to make predictions or decisions without

being explicitly programmed for specific tasks.

- Often relies on structured data and requires feature engineering.

- Common Algorithms: Linear Regression, Decision Trees, Support

Vector Machines (SVM), k-Nearest Neighbors (k-NN).

- Deep Learning is a subset of machine learning that uses neural networks

with multiple layers (deep neural networks) to model complex patterns in

large datasets.

- Common Architectures: Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Transformers.

Key Differences
Aspect Machine Learning Deep Learning

Data Type Primarily structured data (e.g.,
spreadsheets, databases)

Both structured and
unstructured data (e.g., images,
audio, text)

Feature Engineering Requires manual feature engineering
based on domain knowledge

Features are automatically
extracted by Neural Networks

Model complexity Models are simpler and more
interpretable (decision Trees)

Models are complex with many
layers, often seen as “black
boxes”

Computational Power Requires less computation power Requires significant
computation power. Usually
requires GPUs, TPUs

Generative AI

● OpenAI ChatGPT
● Anthropic Claude
● OpenAI DALL-E
● Meta LLama
● Apple Intelligence

Your First MLP
In PyTorch

MLP Architecture
class Network(torch.nn.Module):

 def __init__(self, input_size, output_size):

 super(Network, self).__init__()

 self.layers = torch.nn.Sequential(

 torch.nn.Linear(input_size, 512),

 torch.nn.ReLU(),

 torch.nn.Linear(512, output_size)

)

 def forward(self, x):

 out = self.layers(x)

 return out

Training a Deep Learning Model

1. Forward Propagation

2. Loss Calculation

3. Backpropagation

4. Weight Update

5. Iterate over multiple epochs

Forward Propagation
Weighted sum

Activation function

model = Network(input_size, output_size)
predictions = model(x) # equivalent to model.forward(x)

Loss Functions
Classification vs Regression

- Regression: MSE, MAE, RMSE
- Classification: Cross Entropy, KL

criterion = torch.nn.MSELoss()

loss = criterion(predictions, labels)

Backpropagation
Computes gradient of loss function wrt network parameters

loss.backward()

Optimization & Parameter Update
Gradient Descent

Adam

optimizer = torch.optim.SGD(model.parameters(), lr= initial_lr)
optimizer.zero_grad()
optimizer.step()

Access gradients with

for param in model.parameters():

 print(param.grad)

Train vs Eval mode
Models may behave differently in training vs evaluation mode

- Dropout
- Batch normalization
- Data augmentation

model.train()

model.eval()

Device: Cuda and CPU
Model and data must be on the same device

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = model.to(device)

for i, (input, labels) in enumerate(dataloader):
 input = input.to(device)
 labels = labels.to(device)

 predictions = model(input)

Training One Epoch
def train_one_epoch(model, dataloader, optimizer,

criterion):

 model.train()

 train_loss = 0

 for i, (input, labels) in enumerate(dataloader):

 optimizer.zero_grad()

 input = input.to(device)

 labels = labels.to(device)

 predictions = model(input)

 loss = criterion(predictions, labels)

 loss.backward()

 optimizer.step()

 train_loss += loss

 train_loss /= len(dataloader)

 return train_loss

Evaluation - Inference Mode
Inference is more efficient than training

 with torch.inference_mode():

 predictions = model(input)

 loss = criterion(predictions, labels)

Also remember model.eval()

Thank You.

