HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models
(Fall 2024)

Alexander Moker, Romerik Lokossou

A special thanks to Jeel Shah and Shreya Kale for the slides.

Logistics

e Early submission is due November 1, 11:59PM ET

» Kaggle submission a with Lev. Dist <= 12
* Canvas MCQ

* On time submission deadline: November 8, 11:59PM ET
* Constraints: No attention

27

Problem at hand

Input Utterance MFCC

MODEL

: [IBI’ IIHI’ IK)’ ISH)’ IAI]

Sequence of Phonemes

Data and Task

* Features: Same as HW1P2 (27D)

* Labels: Order synchronous but not time synchronous

* Should output sequence of phonemes

/B/ /AH/ [T/
* [‘B’, ‘IH’, ’K’, ‘SH’, ‘A’] (precisely the indexes) 5 ¥ A
* Loss: CTCLosS B O OB OB M OE K N N
t ¢ t ¥ £ t 1 9
* Metric: mean Levenshtein distance ol B2 Do | x| 2 P | P ([

e Can import (given in starter notebook)

* Sequence of Phonemes -> String and then calculate distance (Use CMUdict
and ARPABet)

Batch of Variable Length Inputs: Padding

* HW1, HW2: Equal length inputs
* HW3: Variable Length sequences

* Steps:
* Padding
* Packing

Batch of Variable Length Inputs: Padding

* Padding

Padded to equal lengths

Need to store unpadded lengths as well. ”
Have the variables lengths_x, lengths_y in (Br ’ 27) - (Br Tr 27)

the starter notebook Problematic Example (When padding on whole
dataset)

I cicient with space

Ref: 11785 Fall 22 Bootcamp -

Batch of Variable Length Inputs: Packing

Element 0 Element 1 Element 2 Element 3

Timesteps
(Dimension 0)
List of Tensors to be packed. Each has same number of features but different time steps.
Figure 2: List of tensors we want to pack
Element 2 Element 0 Element 1 Element 3

0

1 e e i

2 Timesteps
(Dimension 0)

Tensors sorted in descending order based on the number of time steps in each sample.

Figure 3: First we sort the list in a descending order based on mumber of timesteps in each

Ref: 11785 Fall 22 Bootcamp

Batch of Variable Length Inputs: Packing

Element 0 Element 1 Element 2 Element 3
- ,

D = # Features
) ’ (Dimension 1)

Timesteps
(Dimension 0)

‘_ 0" time-step from

’ each sample in the list
List of Tensors to be packed. Each has same number of features but different time steps. ~’ 1” tim&step e

" each sample in the list

Figure 2: List of tensors we want to pack
Timesteps -
(Dimension 0) .

Element 2 Element 0 Element 1 Element 3

4 ‘ L]
— Timesteps

(Dimension 0)

\

Tensors sorted in descending order based on the number of time steps in each sample. .
Final 2d Packed Tensor

Figure 3: First we sort the list in a descending order based on mumber of timesteps in each
Figure 4: Final Packed 2d Tensor
Ref: 11785 Fall 22 Bootcamp

Packed Sequence

e Pad_sequence()
O Pads to equal length for batching

e pack padded sequence()
O Packs batch of padded sequences
O Requires sequences + sequence lengths
e X =pad packed sequence()
O Unpacks back to a batch of padded sequences
O Outputs sequences + sequence lengths

e C(Collate Function

O Dataloader argument

O Helpful when altering data for batch

—)

Features
(Dimension 1)

0" time-step from
each sample in the list

1* time-step from
each sample in the list

Timesteps
(Dimension 0)

1
1
1
[
2
2
2
3
3
4
4
5
6

Final 2d Packed Tensor

Figure 4: Final Packed 2d Tensor

Parts of a Sequence Model

Embedding Sequence Classification

Layer > Model > Layer

Encoder - Decoder set up

Encoder Decoder*

Embedding Sequence
Model ayEe

*Not exactly a decoder in this HW as decoding happens outside the model.

Encoder

. Typically used to generate high-level representations
of given input data.

. There are no labels used to train encoders

. Are trained jointly with decoders.

« Can be any network, CNN, RNN or Linear

Decoder

 Itis a network that takes in the feature representation from the
Encoder and tries to generate the closest match to the expected
output.

« Loss function is applied on the output of the Decoder.

. Can also be trained without encoders, encoders are basically to amplify

the results of the decoder

Embedding Layer

* Optional but recommended
* Used to increase/decrease the dimensionality of the input

Encoder Decoder*®

Embedding Sequence Classification
Layer Model Layer

Embedding Layer

e Optional but recommended
* Used to increase/decrease the dimensionality of the input

*Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

1 0 0
0 1 0 0.2 0.3 0.2
Shape 0 0 1 1 0.5 1.2 Shape
10,000 x 1 ... | emb_dimx1
0 0 0 0.7 0.4 0.6
0 0 0 Real valued
vectors

‘deep’ ‘neural’ ‘net’

Embedding Layer

e Optional but recommended

* Used to increase/decrease the dimensionality of the input

* Our task:
* Input dim = 27
* Expand to emb_dim > 27 for feature extraction

27

Ref: HW1P2 Write-up

Embedding Layer: Convld Layers

* Consider the below as an input having 3 features at each time instant

Time steps —

<-- Features

Embedding Layer: Convld Layers

* We can use Convolution which increases the channels of the input as
we go deeper.

Embedding Layer: Convld Layers

* We can use Convolution to which increases the channels of the input
as we go deeper.

* No. Filters=5

e Kernel= 3; Padding= 1, Stride=1 3D

e Kernel=5; Padding= 2; Stride=1 5D
(Or anything similar)

Embedding Layer: Convld Layers

Objective:
change input from (B = batchsize, T = max time length, 27 = features) to (B, T, 64)

e Transpose/Permute:
o PyTorch convld expects tensors of shape (N, C, L)
i.e. (batch size, in channels, length)
o Permuting the input aligns the feature dim with C:
(B, T, 27) - (B, 27, T)

e Apply convolution (B, 27, T) — (B, 64, T)
e Transpose/Permute: (B, 64, T) — (B, T, 64)
e Pack and pass to sequence model

Assuming batch_first = True
(You may also have it as (T, B, 27)

Embedding Layer: Convld Layers

If stride > 1, we effectively reduce the time steps

\

sx10e”

Strige~ 2

Embedding Layer: Convld Layers

e Stride > 1 reduces computation for LSTM and training is faster.
* However, too much reduction in time steps will lead to loss of
information (we don’t recommend downsampling more than 4x)

Embedding Layer: Convld Layers

e Stride > 1 reduces computation for LSTM and training is faster.
* However, too much reduction in time steps will lead to loss of

information (we don’t recommend downsampling more than 4x)

* Note: Stride > 1 alters number of time steps. You need to change
lengths_x accordingly

* Use convolution formula (X - K + 2*P)//S (or)
e Clamp lengths to length of embedding (torch function)

Embedding Layer: Convld Layers

* You can try convolution layers based on
residual blocks
* Hint: Remember HW2P2!

%
weight layer
F(x) "rehJ
weight layer
F(x) +x

https://www.cv-foundation.org/openaccess/content cvpr 2016/papers/He Deep Residual Learning CVPR 2016 paper.pdf

X
identity

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Sequence Model

Encoder Decoder*

Embedding Sequence

Model

Sequence Model

* Can use RNN, GRU, LSTM (recommended) from torch.nn

o Expects packed padded sequence method (check documentation)

® ® > ® ®

T T\f T\
FE = N N =
@ ¢

http://colah.qithub.io/posts/2015-08-Understandin
g- LSTMs/

http://colah.github.io/posts/2015-08-Understanding-
http://colah.github.io/posts/2015-08-Understanding-

Sequence Model

* Important parameters/hyper parameters in nn.LSTM()
= input_size (27 or embedding_size)
* hidden_dim
= num_layers
= dropout (An aside on dropout: Don’t use nn.dropout(p), use nn.LSTM(dropout=p) instead)
= bidirectional

= Note: when bidirection = True, LSTM outputs a shape of hidden _dim in the
forward direction and hidden _dim in the backward direction (in
total, 2*hidden_dim)

PBLSTM

pyramidal Bi-directional LSTM. Described in the Listen-Attend-Spell paper

The pBLSTM is a variant of Bi-LSTMs that downsamples sequences by a factor of 2
by concatenating adjacent pairs of inputs before running a conventional Bi-LSTM
on the reduced-length sequence

This can be implemented using reshape

https://arxiv.org/abs/1508.01211

Pyramidal Bi-LSTM (pBLSTM)

Downsampling + Bi-LSTM

Notice the
dimension is
2*hidden since
the LSTM is
bidirectional

=)

Input=2*3, Hidden=5

BLSTM

pBLSTM - pseudocode

Listing 1 pBLSTM

X = (batchsize, length, dim) is a minibatch of input sequences, possibly from a previous layer
Assuming dataloader ensures that all input sequences in the batch are the same length
function 0 = pBLSTM(X, LSTMwidth, Params)

Reshape inputs to have half the length, but twice the dimensionality

X_downsampled = reshape(X,B,L/2,2*D)

output = BiLSTM(X_downsampled, LSTMwidth, Params)

return output
end

Classification Layer

Encoder Decoder*®

Embedding Sequence

Model

Classification Layer

*Same as HW1P2 - just an MLP
e Qutput from the sequence model goes to the classification layer

* Variations
* Deeper
* Wider
* Different activations
* Dropout

Hyperparameters and Regularization

* Cepstral Normalization:
X - (X—=mean)/std
* Different weight initialization (for Conv and Linear layers)

* Weight decay with optimizer

Hyperparameters and Regularization

* Scheduler is very important

* ReduceLRonPlateau (Most of our ablation)
* Lev distance might start to oscillate at lower values
* Step LR
e QOptimizer
e AdamW, Adam

e Learning Rate - start with a small learning rate
(1e-3)

Hyperparameters and Regularization

e Dropout is key
o Can use dropout in all the 3 layers: Embedding, Sequence model and

classification
o You can also start with a small dropout rate and increase after the model gets trained

® Locked Dropout for LSTM layer
o Locked Dropout can be used to apply the same dropout mask to every time step
o You can refer to PyTorch NLP’s implementation of locked dropout here
o Pay attention to whether modules adhere to batch first format or not

https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/nn/lock_dropout.html

Hyperparameters and Regularization

* Torch Audio Transforms [docs]

* Time Masking (vertical)
* Frequency Masking (horizontal)

Original Original

=20
-30
-40
-50 - -
0 50 100 150 200 250
frame frame
Masked along time axis Masked along frequency axis
200 200
20 175
10 150
0 125
]
-10 o' 100
&
=20 IE)
-30 50
-40 25
-50 0

frame frame

Hyperparameters and Regularization

* Beam width
* Higher beam width may give better results (advisable to keep test beam width
below 50 for computation purposes)
* Sometimes bw = 1 (greedy search) also gives good results

 Tip: Don’t use a high beam width while validating in each epoch (time per
epoch will be higher)

Final Tips

* Make sure to split work within your study
groups

 Don’t forget to also checkout lab 9! The slides
go into a good bit of detail on ctcloss, beam
search, among other things!

All the best :)

