HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models (Fall 2024)

Alexander Moker, Romerik Lokossou

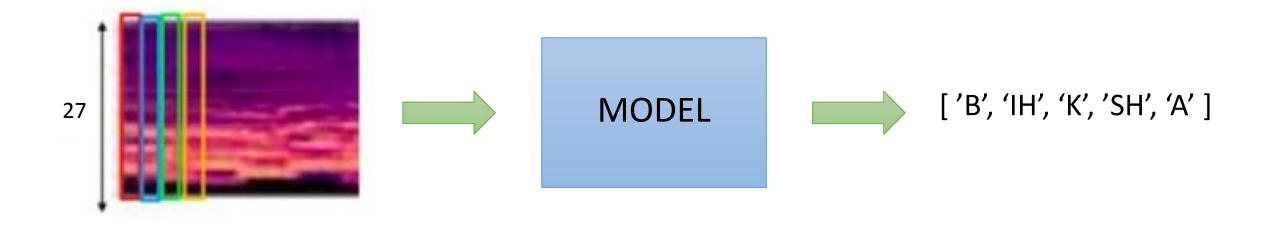
A special thanks to Jeel Shah and Shreya Kale for the slides.

Logistics

- Early submission is due **November 1**, **11:59PM ET**
 - Kaggle submission a with Lev. Dist <= 12
 - Canvas MCQ
- On time submission deadline: November 8, 11:59PM ET
- Constraints: No attention

Problem at hand

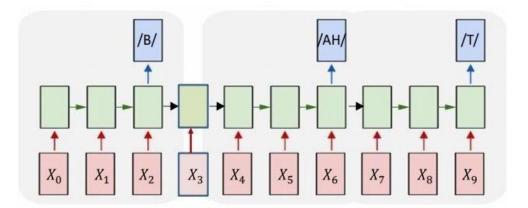
Input Utterance MFCC



Sequence of Phonemes

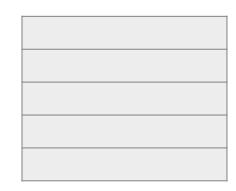
Data and Task

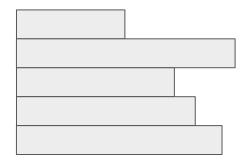
- Features: Same as HW1P2 (27D)
- Labels: Order synchronous but not time synchronous
- Should output sequence of phonemes
 - ['B', 'IH', 'K', 'SH', 'A'] (precisely the indexes)
- Loss: CTCLoss
- Metric: mean Levenshtein distance
 - Can import (given in starter notebook)
 - Sequence of Phonemes -> String and then calculate distance (Use CMUdict and ARPABet)



Batch of Variable Length Inputs: Padding

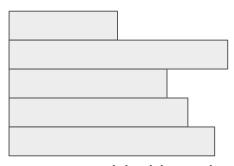
- HW1, HW2: Equal length inputs
- HW3: Variable Length sequences
- Steps:
 - Padding
 - Packing





Batch of Variable Length Inputs: Padding

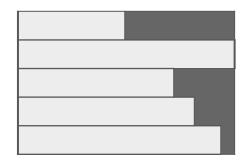
Padding



Need to store unpadded lengths as well.

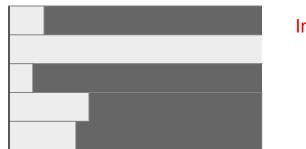
Have the variables *lengths_x*, *lengths_y* in the starter notebook

Padded to equal lengths



$$(B, *, 27) \rightarrow (B, T, 27)$$

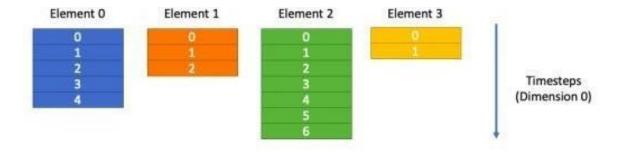
Problematic Example (When padding on whole dataset)



Inefficient with space

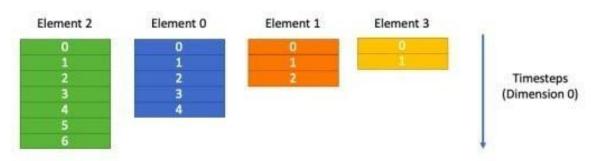
Ref: 11785 Fall 22 Bootcamp

Batch of Variable Length Inputs: Packing



List of Tensors to be packed. Each has same number of features but different time steps.

Figure 2: List of tensors we want to pack



Tensors sorted in descending order based on the number of time steps in each sample.

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Ref: 11785 Fall 22 Bootcamp

Batch of Variable Length Inputs: Packing

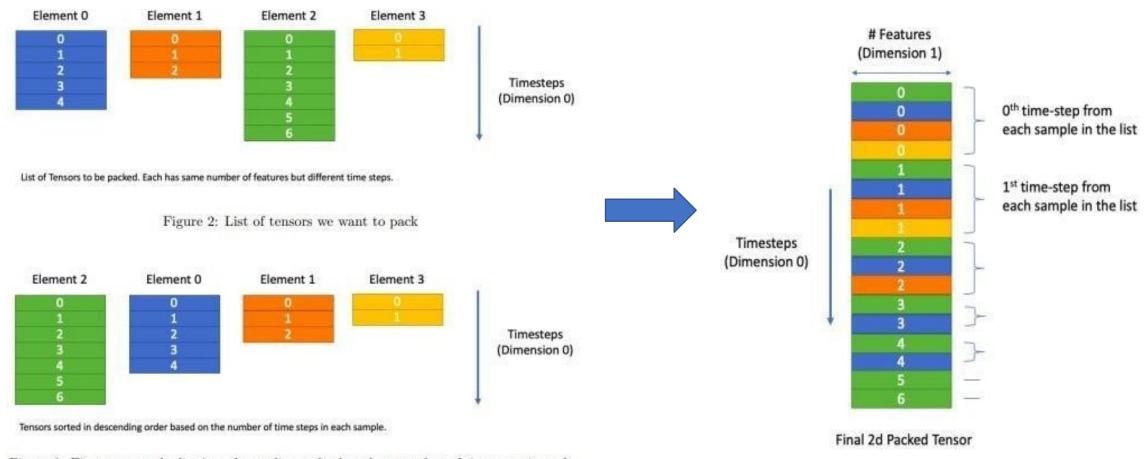


Figure 3: First we sort the list in a descending order based on number of timesteps in each

Figure 4: Final Packed 2d Tensor

Ref: 11785 Fall 22 Bootcamp

Packed Sequence

- Pad_sequence()
 - O Pads to equal length for batching
- pack_padded_sequence()
 - O Packs batch of padded sequences
 - O Requires sequences + sequence lengths
- X = pad_packed_sequence()
 - O Unpacks back to a batch of padded sequences
 - O Outputs sequences + sequence lengths
- Collate Function
 - Dataloader argument
 - Helpful when altering data for batch

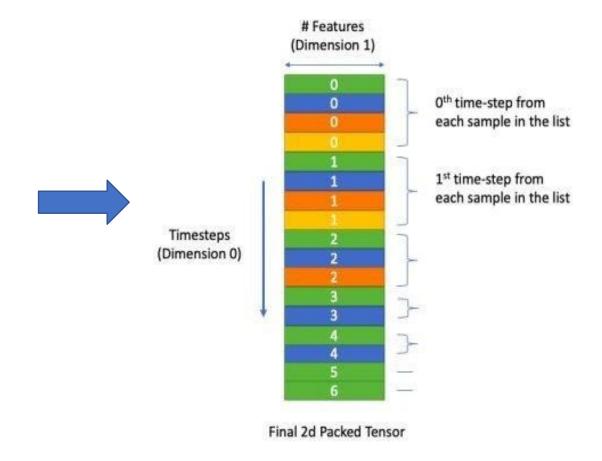
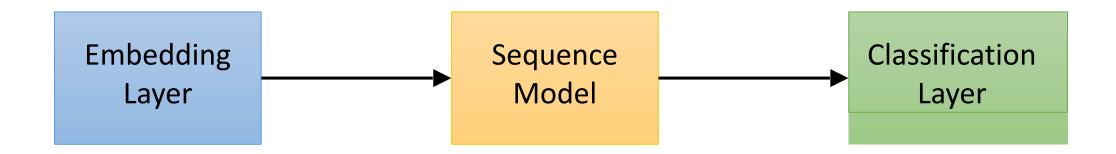
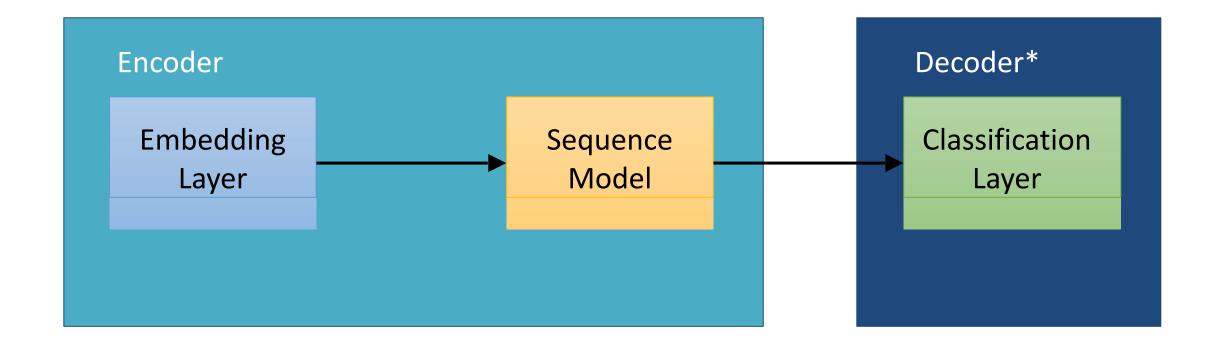


Figure 4: Final Packed 2d Tensor

Parts of a Sequence Model



Encoder - Decoder set up



^{*}Not exactly a decoder in this HW as decoding happens outside the model.

Encoder

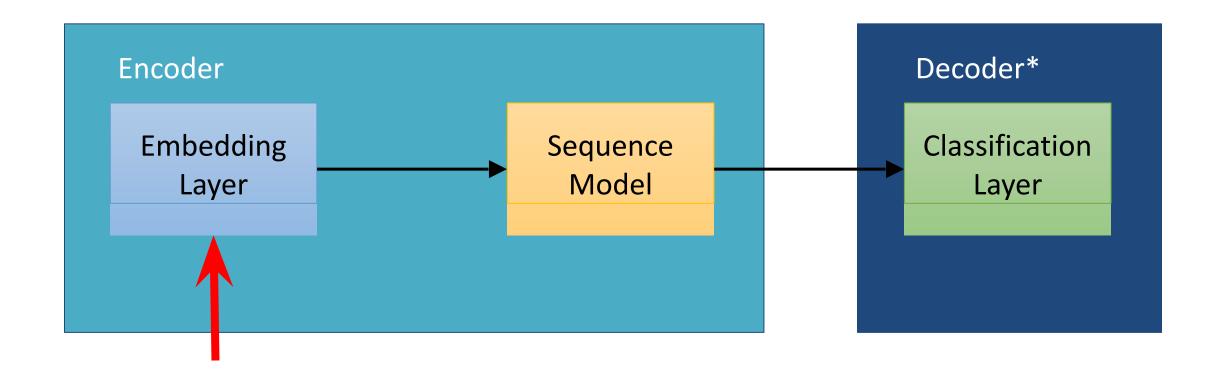
- Typically used to generate high-level representations of given input data.
- There are no labels used to train encoders
- Are trained jointly with decoders.
- Can be any network, CNN, RNN or Linear

Decoder

- It is a network that takes in the feature representation from the Encoder and tries to generate the closest match to the expected output.
- Loss function is applied on the output of the Decoder.
- Can also be trained without encoders, encoders are basically to amplify the results of the decoder

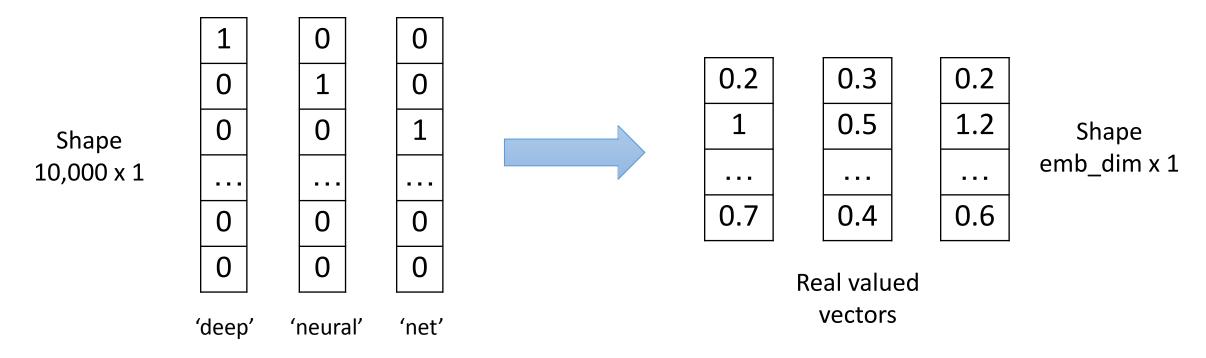
Embedding Layer

- Optional but recommended
- Used to increase/decrease the dimensionality of the input



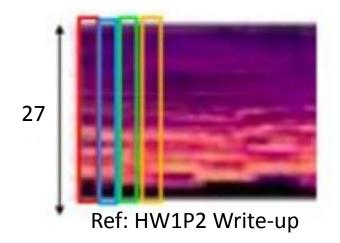
Embedding Layer

- Optional but recommended
- Used to increase/decrease the dimensionality of the input
- Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

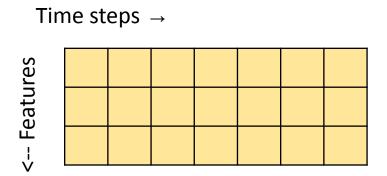


Embedding Layer

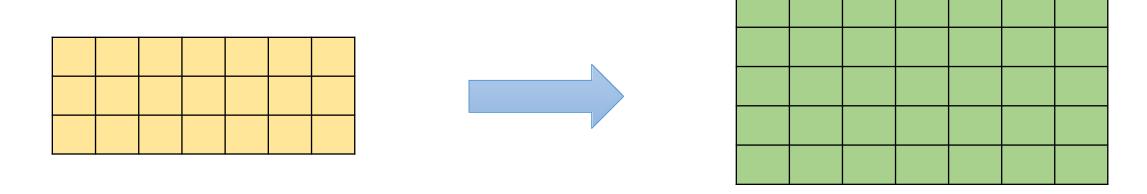
- Optional but recommended
- Used to increase/decrease the dimensionality of the input
- Our task:
 - Input dim = 27
 - Expand to emb_dim > 27 for feature extraction



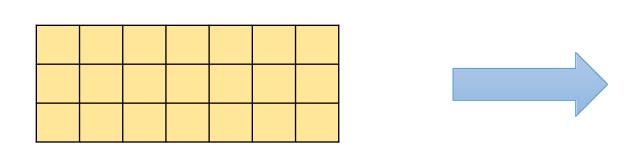
• Consider the below as an input having 3 features at each time instant

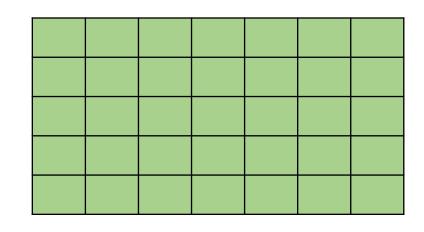


• We can use Convolution which increases the channels of the input as we go deeper.



 We can use Convolution to which increases the channels of the input as we go deeper.





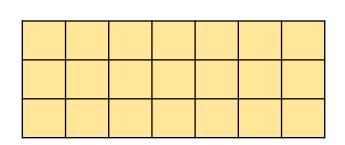
- No. Filters = 5
- Kernel= 3; Padding= 1; Stride= 1 3D
- Kernel= 5; Padding= 2; Stride= 1
 (Or anything similar)

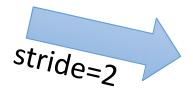
Objective:

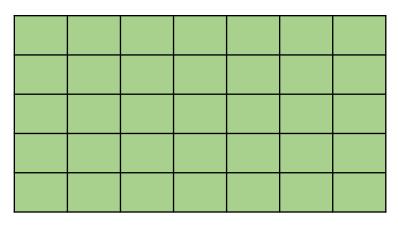
change input from (B = batchsize, T = max time length, 27 = features) to (B, T, 64)

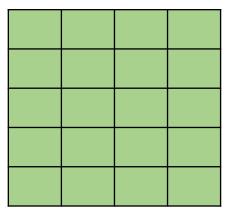
- Transpose/Permute:
 - PyTorch conv1d expects tensors of shape (N, C, L)
 i.e. (batch size, in channels, length)
 - Permuting the input aligns the feature dim with C:
 (B, T, 27) → (B, 27, T)
- Apply convolution (B, 27, T) \rightarrow (B, 64, T)
- Transpose/Permute: (B, 64, T) \rightarrow (B, T, 64)
- Pack and pass to sequence model

If stride > 1, we effectively reduce the time steps





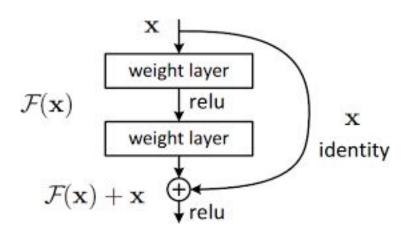




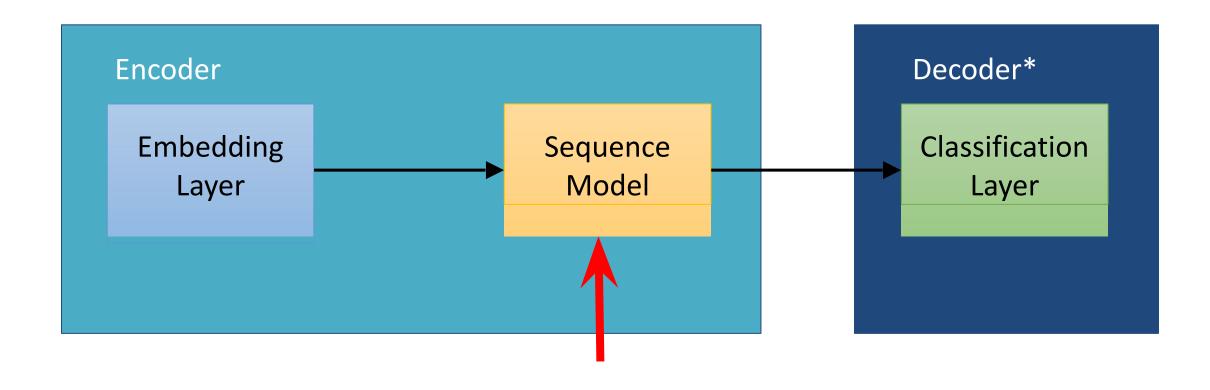
- Stride > 1 reduces computation for LSTM and training is faster.
- However, too much reduction in time steps will lead to loss of information (we don't recommend downsampling more than 4x)

- Stride > 1 reduces computation for LSTM and training is faster.
- However, too much reduction in time steps will lead to loss of information (we don't recommend downsampling more than 4x)
- Note: Stride > 1 alters number of time steps. You need to change lengths_x accordingly
 - Use convolution formula (X K + 2*P)//S (or)
 - Clamp lengths to length of embedding (torch function)

- You can try convolution layers based on residual blocks
- Hint: Remember HW2P2!

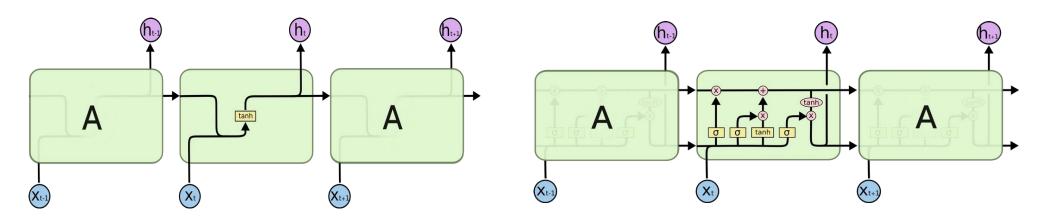


Sequence Model



Sequence Model

- Can use RNN, GRU, **LSTM** (recommended) from torch.nn
 - Expects packed_padded sequence method (check documentation)



http://colah.github.io/posts/2015-08-Understandin g- LSTMs/

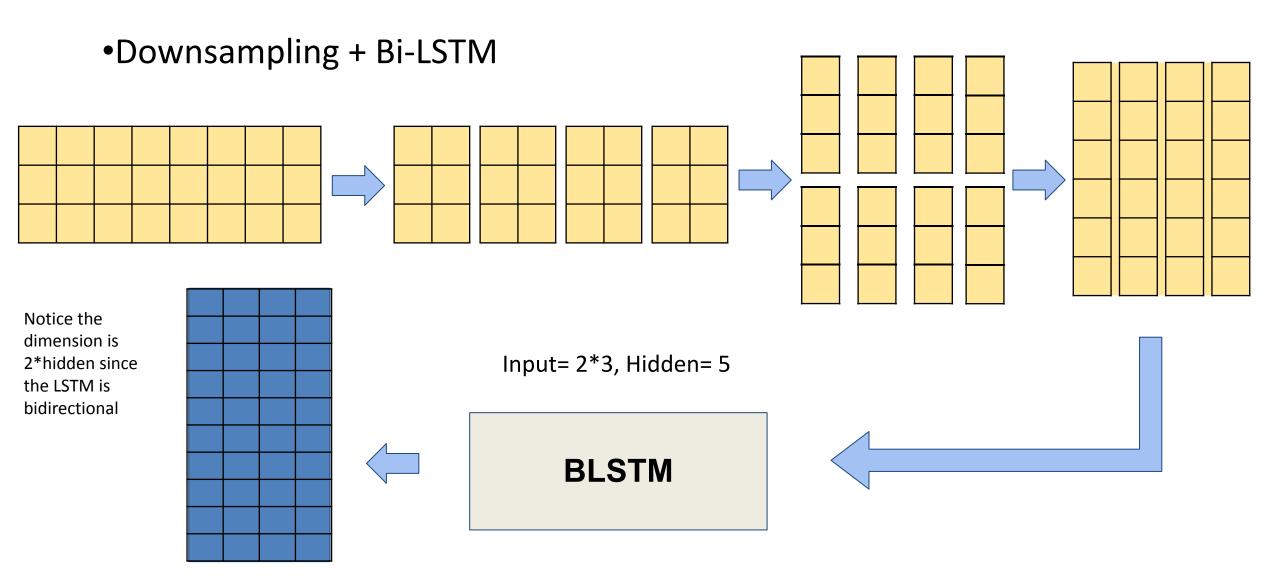
Sequence Model

- Important parameters/hyper parameters in nn.LSTM()
 - input_size (27 or embedding_size)
 - hidden dim
 - num_layers
 - dropout (An aside on dropout: Don't use nn.dropout(p), use nn.LSTM(dropout=p) instead)
 - bidirectional
 - Note: when bidirection = True, LSTM outputs a shape of hidden_dim in the forward direction and hidden_dim in the backward direction (in total, 2*hidden_dim)

pBLSTM

- pyramidal Bi-directional LSTM. Described in the <u>Listen-Attend-Spell paper</u>
- The pBLSTM is a variant of Bi-LSTMs that downsamples sequences by a factor of 2
 by concatenating adjacent pairs of inputs before running a conventional Bi-LSTM
 on the reduced-length sequence
- This can be implemented using reshape

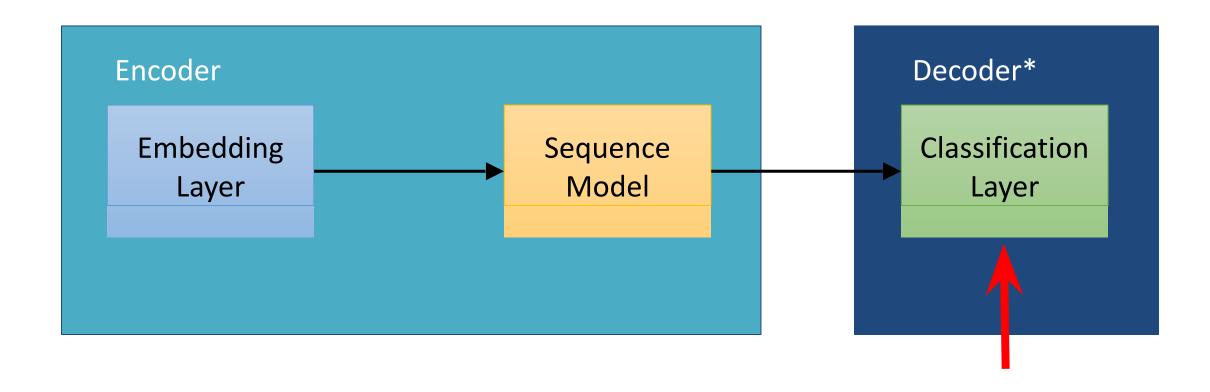
Pyramidal Bi-LSTM (pBLSTM)



pBLSTM - pseudocode

Listing 1 pBLSTM

Classification Layer



Classification Layer

- Same as HW1P2 just an MLP
- Output from the sequence model goes to the classification layer
- Variations
 - Deeper
 - Wider
 - Different activations
 - Dropout

Cepstral Normalization:

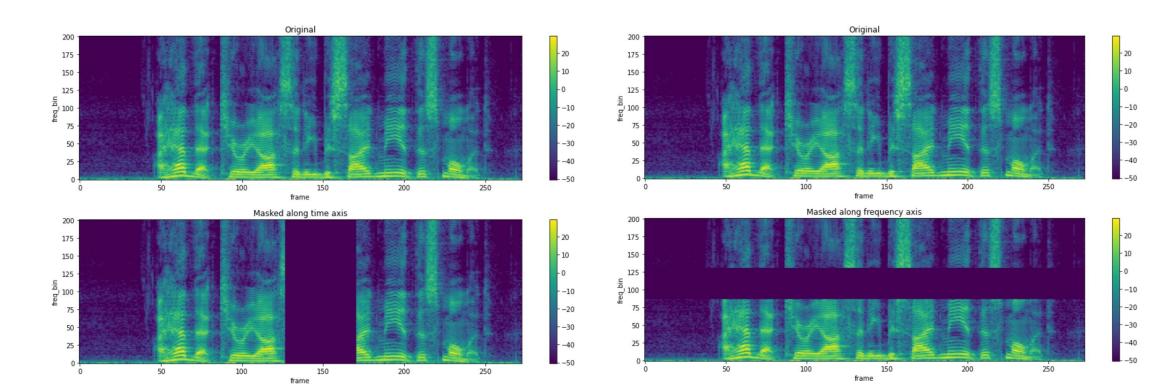
$$X \rightarrow (X - mean)/std$$

- Different weight initialization (for Conv and Linear layers)
- Weight decay with optimizer

- Scheduler is very important
 - ReduceLRonPlateau (Most of our ablation)
 - Lev distance might start to oscillate at lower values
 - Step LR
- Optimizer
 - AdamW, Adam
- Learning Rate start with a small learning rate (1e-3)

- Dropout is key
 - Can use dropout in all the 3 layers: Embedding, Sequence model and classification
 - You can also start with a small dropout rate and increase after the model gets trained
- Locked Dropout for LSTM layer
 - Locked Dropout can be used to apply the same dropout mask to every time step
 - You can refer to PyTorch NLP's implementation of locked dropout <u>here</u>
 - Pay attention to whether modules adhere to batch first format or not

- Torch Audio Transforms [docs]
 - Time Masking (vertical)
 - Frequency Masking (horizontal)



- Beam width
 - Higher beam width may give better results (advisable to keep test beam width below 50 for computation purposes)
 - Sometimes bw = 1 (greedy search) also gives good results
 - Tip: Don't use a high beam width while validating in each epoch (time per epoch will be higher)

Final Tips

- Make sure to split work within your study groups
- Don't forget to also checkout lab 9! The slides go into a good bit of detail on ctcloss, beam search, among other things!

All the best:)