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Data  
Manipulation ● Data 

Augmentation
● Data 

Normalization



Data Augmentation
● Sometimes, it is not possible to obtain the amount of data required. In such cases, we can use 

data  augmentation techniques to generate more data and it also makes the model more 
generalizable.

● You can use image augmentation techniques such as flipping, rotating, scaling, changing 
perspective  etc. and also Time masking and frequency masking for speech data used in all the 
HW’s.

Ref: https://pytorch.org/vision/stable/transforms.html  
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html


Data Normalization
Datasets obtained may have different scales for different features. In such cases, we scale the data which  
leads to faster convergence. It is also helpful when data is collected under varying conditions such as  
lighting in an image, gain in speech data, etc.

Types of normalization techniques:

● Z-score normalization (standardization)
● Min-max scaling
● Standard scaling
● Cepstral Mean Normalization



Cepstral Mean Normalization
● Cepstral mean normalization (CMN) is a computationally efficient normalization technique 

for  robust speech recognition.

● CMN minimizes distortion by noise contamination for robust feature extraction.

● CMN has been used in different applications as this technique has proven to provide better speech  
recognitions results in different environments.

● CMN has the capabilities to reduce differences between test and training data produced by  
channel distortions.

● CMN has also been found to be able to reduce differences in feature representation 
between  speakers can also partly reduce the influence of background noise.



Ablations ● How do I think about 
Model  Architecture for 
HW1P2?



Model Architecture

● As you might know already, one of your two biggest tasks in HW1P2 is to find the right 
model  architecture for your MLP to be able to predict the phoneme of a given frame with 
context.

● Experimenting with finding the right model architecture is not easy - and takes a lot of time in a deep  
learning task.

● One of the ways to find useful architectures for your tasks is to to read papers, blogs, Piazza (for 
this  course) and understand the intricacies and measure relative performance for your task.

● Typically, Deeper and wider models tend to generally perform better (Why?)



Model Architecture - Diamond

Diamond Architecture



Model Architecture - Pyramids

Pyramid/ Inverse-Pyramid



Model Architecture - Cylinder

Cylinder



Model Architecture - Hourglass

Or Any weird Architecture



Model Architecture - Summary
While working with MLPs in HW1P2, you will have to experiment 
with  the following possibilities in your architecture

- Network shape (as discussed in previous slides)
- Deeper Layers
- Wider Layers
- Activation Functions (ReLU, Sigmoid, GELU, Softplus, Tanh)
- Batchnorm (more on this in an upcoming slide)
- Dropout (more on this in an upcoming slide)

Remember, you have a parameter limit so you have to construct  
your architecture around a limited budget of parameters. This will  
enable you to actively experiment with hyperparameters and 
model  structure than to just stick to models that are 10+ layers 
deep and  over 8000 neurons wide at each layer and let it do its 
job.



Ablations
● Schedulers



What are Schedulers used for?
● The learning rate controls how big of a step for an optimizer to reach the minima of the  

loss function.

● A learning rate scheduler adjusts the learning rate according to a pre-defined schedule  
during the training process.

● PyTorch supports:
● StepLR
● MultiStepLR
● ConstantLR
● LinearLR
● ExponentialLR
● …..



Learning Rate
● LR is one of the most important  

hyperparameters while training models. It  
controls the weight update step taken by your  
model during gradient descent, which directly  
influences convergence of your model for a  
deep learning task.

● You can experiment with different 
learning  rates (also depends on the 
optimizer you  select) as well as use a LR 
scheduler.

● The LR scheduler effectively changes the  
LR across epochs based on a function or  
fixed schedule. You can also change the 
LR  manually at certain epochs (but that 
may  not be efficient in terms of resources  
spent monitoring training).

Ref for LR schedulers: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Step LR

● The StepLR reduces the learning rate by a multiplicative factor after every predefined  
number of training steps.

scheduler = StepLR(optimizer, step_size = 4, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR


Multistep LR

● The MultiStepLR — similarly to the StepLR — also reduces the learning rate by a  
multiplicative factor but after each pre-defined milestone.

scheduler = MultiStepLR(optimizer, milestones=[8, 24, 28], gamma =0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR.html#torch.optim.lr_scheduler.MultiStepLR
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR


Exponential LR

● The ExponentialLR reduces learning rate by a multiplicative factor at every training  
step.

scheduler = ExponentialLR(optimizer, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html#torch.optim.lr_scheduler.ExponentialLR


CosineAnnealingLR

● The CosineAnnealingLR reduces learning rate by a cosine function.
● While you could technically schedule the learning rate adjustments to follow 

multiple  periods, the idea is to decay the learning rate over half a period for the 
maximum  number of iterations.

scheduler = CosineAnnealingLR(optimizer, T_max = 32,eta_min = 1e-4)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html#torch.optim.lr_scheduler.CosineAnnealingLR


ReduceLRonPlateau

Reduce learning rate when a metric has stopped improving. This scheduler reads a metrics  
quantity and if no improvement is seen for a ‘patience’ number of epochs, the learning rate is  
reduced.



Ablations
● Normalization 

Methods



Normalizations

● Batch Norm (paper)
● Layer Norm (paper)
● Weight Norm (paper)
● Instance Norm (paper)
● Group Norm (paper)
● Batch-Instance Norm (paper)
● Switchable Norm (paper)

https://arxiv.org/pdf/1502.03167.pdf%27
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://arxiv.org/pdf/1803.08494.pdf
https://arxiv.org/pdf/1805.07925.pdf
https://arxiv.org/pdf/1811.07727v1.pdf


BatchNorm

● Normalizing batch of inputs to eliminate  
internal covariate shift

● torch.nn.BatchNorm1d(num_features) -  
Applies Batch Normalization over a 2D or  
3D input

● For 4D inputs (N,C,H,W) -  
torch.nn.BatchNorm2d(num_features
)



Batch 
Normalization



Layer Norm

Problems with Batch Norm

● Poor performance if the batch size is small, possible for high dimensional inputs
● Running mean and variance might not be the best thing to calculate for sequential  

algorithms like RNNs
Layer normalization calculates mean and variance for each item within the batch  

Pytorch syntax - torch.nn.LayerNorm(normalized_shape)



Some Other Methods

● Weight Norm
○ Normalizes weights of each layer
○ torch.nn.utils.weight_norm(nn.Linear(20, 40), name='weight')

● Group Norm
○ Applies normalization over a mini-batch of inputs but splitted in  

groups of size num_channels/num_groups
○ torch.nn.GroupNorm(num_groups, num_channels)

● Instance Norm
○ Calculates normalization parameters across individual  

channels/features for each input
○ torch.nn.InstanceNorm1d(num_features)
○ torch.nn.InstanceNorm2d(num_features)



Hyperparameter  
Optimization



What are Hyperparameters?

● Explicitly specified parameters that control the training process

Parameter Hyperparameter

Parameters are internal to the model - model 
weights,  biases,

Hyperparameters are the explicitly specified  
parameters that control the training 
process.

Parameters are essential for making predictions. Hyperparameters are essential for optimizing 
the  model.

These are learned & set by the model by itself. These are set manually by a machine 
learning  engineer/practitioner.



Why do we need to tune hyperparameters?

1. Improve Model Accuracy.
2. Faster convergence for Model.
3. Work with resource constraints (training time,  

infrastructure, cost requirements etc.).
4. Because I need to reach the HIGH cutoff.



Examples of Hyperparameters

● Batch Size
● Learning Rate
● Scheduler Parameters
● Dropout Probability
● Context
● Size of layers/number of layers
● Optimizer
● Weight Initialization

For Convolutional Neural Networks 
(HW2P2)
● Kernel size
● Stride



Context ( but first …task preliminaries)
Text: “HELLO”
 Phonemes: “HH” “AH” “L” “OW”

STFT + Mel

Log + DCT + 
Norm



How do we actually add context?
Assume a T x F MFCC as below. Let’s say we want the frame at index 2 with context of 1

Pad at 
the ends 
with 
context 

Start index = 2
Stop index = 2 + (2*1) + 1 = 5

Slice from [2:5]

You now have bidirectional 
context for the indexed frame!



Context: a hyperparameter

The case for longer context:
(1) Frames are short (20 to 40ms) and may not capture the whole sound
(2) You shall know a word  phoneme by the company it keeps. It is easier to predict what a 
phoneme is if you know what its neighbours are.

The case for shorter context: MLPs are not well suited for sequences. The 
performance will degrade if the context is too high.

Another reason why context that’s too long will not be useful here?

Solution: Experiment with different context sizes 



Optimizer
- Gradient descent is the preferred way to optimize neural networks and many other machine 

learning  algorithms but is often used as a black box.

- How exactly do you train your model in practice? How do you change the parameters of your model, 
byhow much, and when?

- Enter optimizers. They tie together the loss function and model parameters by updating the model in
response to the output of the loss function. The loss function is the guide to the terrain, telling 
theoptimizer when it’s moving in the right or wrong 
direction.

- More formally, Optimizers are algorithms or methods used to change the attributes of your neural  
network such as weights and hyperparameters such as learning rate to minimize loss during 
training.

- Examples of Optimizer Methods - Stochastic Gradient Descent (SGD), Adam (Adaptive Moment  
Estimation), AdamW, Sharpness Aware Minimization (SAM), Adagrad, RMSProp, etc.

Resource to learn about Optimizers: https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/


Optimizer
● Stochastic Gradient Descent (SGD) is one of the first  

and most heavily used optimizers. But now, there 
are  many other optimizers such as Nesterov 
Accelerated  Gradient (NAG), Adam, AdamW, 
Rmsprop, etc.

● Generally, Adam converges faster in most cases  
whereas SGD might converge slower but can find 
a  better minima/generalize better.

● More theory on Optimizer Methods will be 

taught  in a lecture by the Professor in the near 

future :)

● There is a suggested approach of initially  
using Adam and then switching to SGD:  
https://arxiv.org/abs/1712.07628.

https://arxiv.org/abs/1712.07628


Overfitting
When the model trains for too long on sample data or when the model is too complex, it can start 
to  learn the “noise,” or irrelevant information, within the dataset.

When the model memorizes the noise and fits too closely to the training set, the model becomes  
“overfitted,” and it is unable to generalize well to new data.

To combat overfitting, we use techniques to minimize the loss while also minimizing the weights. 
These  techniques are often categorized under the name regularization.



Dropout
The term “dropout” refers to dropping out the  
neurons (input and hidden layer) in a neural 
network.

All the forward and backwards connections with 
a  dropped node are temporarily removed, thus  
creating a new network architecture out of the  
parent network.

Different nodes are dropped by a 
dropout  probability of p during each 
forward pass.

This leads to complex co-adaptations, which in turn  
reduces the overfitting problem because of which  
the model generalises better on the unseen 
dataset.



● Another facet to improve your performance is using weight initialization for your  
hidden layers. This can result in faster convergence as well as finding better 
minima.

● There are a number of initializations you can try, ex. Xavier, Kaiming, Uniform, Gaussian, 
etc.  Depending on the type of activation function (ReLU, Sigmoid, etc.) and hidden layer  
(linear, CNN, RNN, etc.) the initialization strategy would vary.

● Initializations also sometimes help resolve the issue of vanishing or exploding gradients.
● Note: PyTorch uses some initialization techniques for all of its layers, read them 

before  applying your own initialization strategies.

Ref: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf  
https://arxiv.org/pdf/1502.01852.pdf  
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899

Weight Initialization

Xavier kaiming

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/%40shoray.goel/kaiming-he-initialization-a8d9ed0b5899


Other 
Techniques

• Early Stopping

Literally, just stop the training when 
you  see the validation score 
decreasing,  where overfitting is likely 
to begin.

• Gradient Clipping

Once the gradient is over the threshold, 
clip  and keep them to the threshold value. 
This  helps avoid exploding gradients, 
especially  useful in recurrent networks as 
you will see  later in the course.



Tips for HW P2s



Mixed Precision Training
• Mixed Precision Training (Pytorch > 1.6.0)

• combine FP32 and FP16 during training 
while  achieving same accuracy as FP32 
training

• Why use Mixed Precision?
• faster training (2-3x)
• less memory usage
• larger batch size, larger model, larger input

• How? What about loss of information?
• We keep a master copy of weights in FP32.

• This is converted into FP16 during part of 
each  training iteration (one forward pass,
back-propagation and weight update).

• At the end of the iteration, the weight gradients  
are converted back to FP32 and used to update  
the master weights during the optimizer step.



Mixed Precision Training

https://pytorch.org/docs/stable/notes/amp_examples.html

• Mixed Precision Training  
works only for some GPUs,  
including Tesla T4, V100 
and  A100 GPUs. It does not 
work  with a P100 GPU.

https://pytorch.org/docs/stable/notes/amp_examples.html


Things to keep in mind for HWs
● DO NOT spend time exploring all possible architectural and hyperparameter variations yourself. This 

is  where you make use of the course collaboration policy to take help of your study group to divide 

and  conquer your HW ablation studies.

● Spend some time discussing possible variations together and divide it among each other, and log 

your  experiments in your wandb team. Divide and Conquer is the way to succeed in HWs in this 

course.

● Spending time on a portion/sample of the dataset initially might help you make choices quicker on 

what  works and doesn’t work. This can be very useful when exploring wildly different strategies at the  

beginning, and then filtering out variants that work and training them on the full dataset to eliminate  

further nuanced variations in the subset of architectures and hyperparameters.



Things to keep in mind for HWs

● A huge portion of your time might go into just monitoring your training on Colab/AWS and 
being  anxious about your architecture’s performance.

● We recommend starting early for this very reason so that you don’t have to worry about wasting 
too  much time on architecture search to see what works well and doesn’t in the last minute, 
forcing you  to keep your eyes glued to training and wasting time doing nothing else.

● You will be provided with the medium cutoff architecture soon, look out for a post on 
Piazza  regarding it in the coming week, and use it as a first step to ensure you get 70 
points.





How to use Wandb effectively



Tips for Weights and Biases
• You might already be familiar with weights and biases at this point, given we have provided you code to  

work with in the starter notebook for HW1P2. It is simple code to get you started, but you can do so 
much  more with weights and biases such as hyperparameter sweeps. Please refer to Recitation 0, to 
learn more  about Wandb. We highly recommend using it, at least for logging metrics at the minimum.

• If you haven’t already - Use weights and biases as given in the starter notebook to log your experiments.

• Create a team in weights and biases and ask your study group members to join it, so that you can 
share  ablation results with each other as you are conducting experiments as a group. This reduces 
anxiety in  your architecture/hyperparameter search by a LOT and we highly recommend doing this.



Version Control and Artifacts
● Save Model Checkpoints, configs, architecture
● Access it from anywhere
● Resume logging from previous runs



Wandb for sweeps
Covered in Recitation 0P- part2
Colab notebook  

Video

Insights from sweep:  
https://wandb.ai/11785-sg/CIFAR-Sweep/s  
weeps/5h4vbyqk

https://colab.research.google.com/drive/11zq1dbHhCqW0XW_CTaLhAa150Bd3cBSQ?usp=sharing
https://youtu.be/MUvbZlxvZYI
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah


HW1P2 
Tips



Hints for HW1P2:
● Always keep this in mind: “Practice maketh a man perfect!” Besides the theory behind different  

algorithms and different tricks, Deep Learning is kind like an experimental topic. If you wonder 
what  tricks can achieve best results or which parameters suit the model well, just give it try!

● Remember to shuffle the training data set. Note: Do not shuffle the test or validation set.

● Choose learning rate wisely: too large LR will result in the model taking huge steps in weight 
updates  and diverging/not converging while too small can hardly get rid of local optima.

● Choose batch size: according to the property of SGD, smaller batch size leads to better convergence  
rate. But smaller batch size would deteriorate the performance of BatchNorm layer and running  
speed. In general, different batch size wouldn’t cause too much difference. Larger batch size tends 
to  have better performance but will occupy more memory in GPU.



Hints for HW1P2:

● Explore ensembling - some examples are (more on this will be explained in a future lecture and 
recitation)

○ Training multiple models and taking a majority vote during classification

○ self-ensemble: average the parameters of your model at different training epochs.

○ Remember, you are however limited to 24 million parameters in total for your final overall 
network.

● Don’t forget optimize.zero_grad() while training, and torch.inference_mode() while evaluating.

● Experiment with LR schedulers, they are very crucial in improving model performance - 

CosineAnnealing,  ExponentialLR, StepLR, MultiStepLR, ReduceLROnPlateau, etc are some examples to 

explore.

○ Learning rate must shrink with time for convergence!

● Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory.



More Hints for HW1P2:
● DataLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory 

=  True (Colab will gradually restrict the num_workers from 8 to 4 to 2 and then only 1, unfortunately )

● If you are getting CUDA related errors, switch your code to CPU and run it - more often than not, it will 
give  you a better error output and point you towards what is wrong/buggy with your code.

● Setting bias = False in weight layers before BatchNorms might be useful, as each BatchNorm layer 
will  re-center the data anyway, removing the bias and making it a useless trainable parameter.

● Try possible tricks or models that you can find in the papers or posts online!

● Always Remember to checkpoint your model after each epoch  
in your code!




