
11-785/685/485
Fall 2024
Lab 2

Network Optimization
Ablations, Hyperparameter Tuning, Normalizations

Romerik Lokossou| Alex Gichamba| Purusottam Samal

Data
Manipulation ● Data

Augmentation
● Data

Normalization

Data Augmentation
● Sometimes, it is not possible to obtain the amount of data required. In such cases, we can use

data augmentation techniques to generate more data and it also makes the model more
generalizable.

● You can use image augmentation techniques such as flipping, rotating, scaling, changing
perspective etc. and also Time masking and frequency masking for speech data used in all the
HW’s.

Ref: https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

Data Normalization
Datasets obtained may have different scales for different features. In such cases, we scale the data which
leads to faster convergence. It is also helpful when data is collected under varying conditions such as
lighting in an image, gain in speech data, etc.

Types of normalization techniques:

● Z-score normalization (standardization)
● Min-max scaling
● Standard scaling
● Cepstral Mean Normalization

Cepstral Mean Normalization
● Cepstral mean normalization (CMN) is a computationally efficient normalization technique

for robust speech recognition.

● CMN minimizes distortion by noise contamination for robust feature extraction.

● CMN has been used in different applications as this technique has proven to provide better speech
recognitions results in different environments.

● CMN has the capabilities to reduce differences between test and training data produced by
channel distortions.

● CMN has also been found to be able to reduce differences in feature representation
between speakers can also partly reduce the influence of background noise.

Ablations ● How do I think about
Model Architecture for
HW1P2?

Model Architecture

● As you might know already, one of your two biggest tasks in HW1P2 is to find the right
model architecture for your MLP to be able to predict the phoneme of a given frame with
context.

● Experimenting with finding the right model architecture is not easy - and takes a lot of time in a deep
learning task.

● One of the ways to find useful architectures for your tasks is to to read papers, blogs, Piazza (for
this course) and understand the intricacies and measure relative performance for your task.

● Typically, Deeper and wider models tend to generally perform better (Why?)

Model Architecture - Diamond

Diamond Architecture

Model Architecture - Pyramids

Pyramid/ Inverse-Pyramid

Model Architecture - Cylinder

Cylinder

Model Architecture - Hourglass

Or Any weird Architecture

Model Architecture - Summary
While working with MLPs in HW1P2, you will have to experiment
with the following possibilities in your architecture

- Network shape (as discussed in previous slides)
- Deeper Layers
- Wider Layers
- Activation Functions (ReLU, Sigmoid, GELU, Softplus, Tanh)
- Batchnorm (more on this in an upcoming slide)
- Dropout (more on this in an upcoming slide)

Remember, you have a parameter limit so you have to construct
your architecture around a limited budget of parameters. This will
enable you to actively experiment with hyperparameters and
model structure than to just stick to models that are 10+ layers
deep and over 8000 neurons wide at each layer and let it do its
job.

Ablations
● Schedulers

What are Schedulers used for?
● The learning rate controls how big of a step for an optimizer to reach the minima of the

loss function.

● A learning rate scheduler adjusts the learning rate according to a pre-defined schedule
during the training process.

● PyTorch supports:
● StepLR
● MultiStepLR
● ConstantLR
● LinearLR
● ExponentialLR
● …..

Learning Rate
● LR is one of the most important

hyperparameters while training models. It
controls the weight update step taken by your
model during gradient descent, which directly
influences convergence of your model for a
deep learning task.

● You can experiment with different
learning rates (also depends on the
optimizer you select) as well as use a LR
scheduler.

● The LR scheduler effectively changes the
LR across epochs based on a function or
fixed schedule. You can also change the
LR manually at certain epochs (but that
may not be efficient in terms of resources
spent monitoring training).

Ref for LR schedulers: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html

Step LR

● The StepLR reduces the learning rate by a multiplicative factor after every predefined
number of training steps.

scheduler = StepLR(optimizer, step_size = 4, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR

Multistep LR

● The MultiStepLR — similarly to the StepLR — also reduces the learning rate by a
multiplicative factor but after each pre-defined milestone.

scheduler = MultiStepLR(optimizer, milestones=[8, 24, 28], gamma =0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR.html#torch.optim.lr_scheduler.MultiStepLR
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR

Exponential LR

● The ExponentialLR reduces learning rate by a multiplicative factor at every training
step.

scheduler = ExponentialLR(optimizer, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html#torch.optim.lr_scheduler.ExponentialLR

CosineAnnealingLR

● The CosineAnnealingLR reduces learning rate by a cosine function.
● While you could technically schedule the learning rate adjustments to follow

multiple periods, the idea is to decay the learning rate over half a period for the
maximum number of iterations.

scheduler = CosineAnnealingLR(optimizer, T_max = 32,eta_min = 1e-4)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html#torch.optim.lr_scheduler.CosineAnnealingLR

ReduceLRonPlateau

Reduce learning rate when a metric has stopped improving. This scheduler reads a metrics
quantity and if no improvement is seen for a ‘patience’ number of epochs, the learning rate is
reduced.

Ablations
● Normalization

Methods

Normalizations

● Batch Norm (paper)
● Layer Norm (paper)
● Weight Norm (paper)
● Instance Norm (paper)
● Group Norm (paper)
● Batch-Instance Norm (paper)
● Switchable Norm (paper)

https://arxiv.org/pdf/1502.03167.pdf%27
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://arxiv.org/pdf/1803.08494.pdf
https://arxiv.org/pdf/1805.07925.pdf
https://arxiv.org/pdf/1811.07727v1.pdf

BatchNorm

● Normalizing batch of inputs to eliminate
internal covariate shift

● torch.nn.BatchNorm1d(num_features) -
Applies Batch Normalization over a 2D or
3D input

● For 4D inputs (N,C,H,W) -
torch.nn.BatchNorm2d(num_features
)

Batch
Normalization

Layer Norm

Problems with Batch Norm

● Poor performance if the batch size is small, possible for high dimensional inputs
● Running mean and variance might not be the best thing to calculate for sequential

algorithms like RNNs
Layer normalization calculates mean and variance for each item within the batch

Pytorch syntax - torch.nn.LayerNorm(normalized_shape)

Some Other Methods

● Weight Norm
○ Normalizes weights of each layer
○ torch.nn.utils.weight_norm(nn.Linear(20, 40), name='weight')

● Group Norm
○ Applies normalization over a mini-batch of inputs but splitted in

groups of size num_channels/num_groups
○ torch.nn.GroupNorm(num_groups, num_channels)

● Instance Norm
○ Calculates normalization parameters across individual

channels/features for each input
○ torch.nn.InstanceNorm1d(num_features)
○ torch.nn.InstanceNorm2d(num_features)

Hyperparameter
Optimization

What are Hyperparameters?

● Explicitly specified parameters that control the training process

Parameter Hyperparameter

Parameters are internal to the model - model
weights, biases,

Hyperparameters are the explicitly specified
parameters that control the training
process.

Parameters are essential for making predictions. Hyperparameters are essential for optimizing
the model.

These are learned & set by the model by itself. These are set manually by a machine
learning engineer/practitioner.

Why do we need to tune hyperparameters?

1. Improve Model Accuracy.
2. Faster convergence for Model.
3. Work with resource constraints (training time,

infrastructure, cost requirements etc.).
4. Because I need to reach the HIGH cutoff.

Examples of Hyperparameters

● Batch Size
● Learning Rate
● Scheduler Parameters
● Dropout Probability
● Context
● Size of layers/number of layers
● Optimizer
● Weight Initialization

For Convolutional Neural Networks
(HW2P2)
● Kernel size
● Stride

Context (but first …task preliminaries)
Text: “HELLO”
 Phonemes: “HH” “AH” “L” “OW”

STFT + Mel

Log + DCT +
Norm

How do we actually add context?
Assume a T x F MFCC as below. Let’s say we want the frame at index 2 with context of 1

Pad at
the ends
with
context

Start index = 2
Stop index = 2 + (2*1) + 1 = 5

Slice from [2:5]

You now have bidirectional
context for the indexed frame!

Context: a hyperparameter

The case for longer context:
(1) Frames are short (20 to 40ms) and may not capture the whole sound
(2) You shall know a word phoneme by the company it keeps. It is easier to predict what a
phoneme is if you know what its neighbours are.

The case for shorter context: MLPs are not well suited for sequences. The
performance will degrade if the context is too high.

Another reason why context that’s too long will not be useful here?

Solution: Experiment with different context sizes

Optimizer
- Gradient descent is the preferred way to optimize neural networks and many other machine

learning algorithms but is often used as a black box.

- How exactly do you train your model in practice? How do you change the parameters of your model,
byhow much, and when?

- Enter optimizers. They tie together the loss function and model parameters by updating the model in
response to the output of the loss function. The loss function is the guide to the terrain, telling
theoptimizer when it’s moving in the right or wrong
direction.

- More formally, Optimizers are algorithms or methods used to change the attributes of your neural
network such as weights and hyperparameters such as learning rate to minimize loss during
training.

- Examples of Optimizer Methods - Stochastic Gradient Descent (SGD), Adam (Adaptive Moment
Estimation), AdamW, Sharpness Aware Minimization (SAM), Adagrad, RMSProp, etc.

Resource to learn about Optimizers: https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/

Optimizer
● Stochastic Gradient Descent (SGD) is one of the first

and most heavily used optimizers. But now, there
are many other optimizers such as Nesterov
Accelerated Gradient (NAG), Adam, AdamW,
Rmsprop, etc.

● Generally, Adam converges faster in most cases
whereas SGD might converge slower but can find
a better minima/generalize better.

● More theory on Optimizer Methods will be

taught in a lecture by the Professor in the near

future :)

● There is a suggested approach of initially
using Adam and then switching to SGD:
https://arxiv.org/abs/1712.07628.

https://arxiv.org/abs/1712.07628

Overfitting
When the model trains for too long on sample data or when the model is too complex, it can start
to learn the “noise,” or irrelevant information, within the dataset.

When the model memorizes the noise and fits too closely to the training set, the model becomes
“overfitted,” and it is unable to generalize well to new data.

To combat overfitting, we use techniques to minimize the loss while also minimizing the weights.
These techniques are often categorized under the name regularization.

Dropout
The term “dropout” refers to dropping out the
neurons (input and hidden layer) in a neural
network.

All the forward and backwards connections with
a dropped node are temporarily removed, thus
creating a new network architecture out of the
parent network.

Different nodes are dropped by a
dropout probability of p during each
forward pass.

This leads to complex co-adaptations, which in turn
reduces the overfitting problem because of which
the model generalises better on the unseen
dataset.

● Another facet to improve your performance is using weight initialization for your
hidden layers. This can result in faster convergence as well as finding better
minima.

● There are a number of initializations you can try, ex. Xavier, Kaiming, Uniform, Gaussian,
etc. Depending on the type of activation function (ReLU, Sigmoid, etc.) and hidden layer
(linear, CNN, RNN, etc.) the initialization strategy would vary.

● Initializations also sometimes help resolve the issue of vanishing or exploding gradients.
● Note: PyTorch uses some initialization techniques for all of its layers, read them

before applying your own initialization strategies.

Ref: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899

Weight Initialization

Xavier kaiming

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/%40shoray.goel/kaiming-he-initialization-a8d9ed0b5899

Other
Techniques

• Early Stopping

Literally, just stop the training when
you see the validation score
decreasing, where overfitting is likely
to begin.

• Gradient Clipping

Once the gradient is over the threshold,
clip and keep them to the threshold value.
This helps avoid exploding gradients,
especially useful in recurrent networks as
you will see later in the course.

Tips for HW P2s

Mixed Precision Training
• Mixed Precision Training (Pytorch > 1.6.0)

• combine FP32 and FP16 during training
while achieving same accuracy as FP32
training

• Why use Mixed Precision?
• faster training (2-3x)
• less memory usage
• larger batch size, larger model, larger input

• How? What about loss of information?
• We keep a master copy of weights in FP32.

• This is converted into FP16 during part of
each training iteration (one forward pass,
back-propagation and weight update).

• At the end of the iteration, the weight gradients
are converted back to FP32 and used to update
the master weights during the optimizer step.

Mixed Precision Training

https://pytorch.org/docs/stable/notes/amp_examples.html

• Mixed Precision Training
works only for some GPUs,
including Tesla T4, V100
and A100 GPUs. It does not
work with a P100 GPU.

https://pytorch.org/docs/stable/notes/amp_examples.html

Things to keep in mind for HWs
● DO NOT spend time exploring all possible architectural and hyperparameter variations yourself. This

is where you make use of the course collaboration policy to take help of your study group to divide

and conquer your HW ablation studies.

● Spend some time discussing possible variations together and divide it among each other, and log

your experiments in your wandb team. Divide and Conquer is the way to succeed in HWs in this

course.

● Spending time on a portion/sample of the dataset initially might help you make choices quicker on

what works and doesn’t work. This can be very useful when exploring wildly different strategies at the

beginning, and then filtering out variants that work and training them on the full dataset to eliminate

further nuanced variations in the subset of architectures and hyperparameters.

Things to keep in mind for HWs

● A huge portion of your time might go into just monitoring your training on Colab/AWS and
being anxious about your architecture’s performance.

● We recommend starting early for this very reason so that you don’t have to worry about wasting
too much time on architecture search to see what works well and doesn’t in the last minute,
forcing you to keep your eyes glued to training and wasting time doing nothing else.

● You will be provided with the medium cutoff architecture soon, look out for a post on
Piazza regarding it in the coming week, and use it as a first step to ensure you get 70
points.

How to use Wandb effectively

Tips for Weights and Biases
• You might already be familiar with weights and biases at this point, given we have provided you code to

work with in the starter notebook for HW1P2. It is simple code to get you started, but you can do so
much more with weights and biases such as hyperparameter sweeps. Please refer to Recitation 0, to
learn more about Wandb. We highly recommend using it, at least for logging metrics at the minimum.

• If you haven’t already - Use weights and biases as given in the starter notebook to log your experiments.

• Create a team in weights and biases and ask your study group members to join it, so that you can
share ablation results with each other as you are conducting experiments as a group. This reduces
anxiety in your architecture/hyperparameter search by a LOT and we highly recommend doing this.

Version Control and Artifacts
● Save Model Checkpoints, configs, architecture
● Access it from anywhere
● Resume logging from previous runs

Wandb for sweeps
Covered in Recitation 0P- part2
Colab notebook

Video

Insights from sweep:
https://wandb.ai/11785-sg/CIFAR-Sweep/s
weeps/5h4vbyqk

https://colab.research.google.com/drive/11zq1dbHhCqW0XW_CTaLhAa150Bd3cBSQ?usp=sharing
https://youtu.be/MUvbZlxvZYI
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah

HW1P2
Tips

Hints for HW1P2:
● Always keep this in mind: “Practice maketh a man perfect!” Besides the theory behind different

algorithms and different tricks, Deep Learning is kind like an experimental topic. If you wonder
what tricks can achieve best results or which parameters suit the model well, just give it try!

● Remember to shuffle the training data set. Note: Do not shuffle the test or validation set.

● Choose learning rate wisely: too large LR will result in the model taking huge steps in weight
updates and diverging/not converging while too small can hardly get rid of local optima.

● Choose batch size: according to the property of SGD, smaller batch size leads to better convergence
rate. But smaller batch size would deteriorate the performance of BatchNorm layer and running
speed. In general, different batch size wouldn’t cause too much difference. Larger batch size tends
to have better performance but will occupy more memory in GPU.

Hints for HW1P2:

● Explore ensembling - some examples are (more on this will be explained in a future lecture and
recitation)

○ Training multiple models and taking a majority vote during classification

○ self-ensemble: average the parameters of your model at different training epochs.

○ Remember, you are however limited to 24 million parameters in total for your final overall
network.

● Don’t forget optimize.zero_grad() while training, and torch.inference_mode() while evaluating.

● Experiment with LR schedulers, they are very crucial in improving model performance -

CosineAnnealing, ExponentialLR, StepLR, MultiStepLR, ReduceLROnPlateau, etc are some examples to

explore.

○ Learning rate must shrink with time for convergence!

● Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory.

More Hints for HW1P2:
● DataLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory

= True (Colab will gradually restrict the num_workers from 8 to 4 to 2 and then only 1, unfortunately)

● If you are getting CUDA related errors, switch your code to CPU and run it - more often than not, it will
give you a better error output and point you towards what is wrong/buggy with your code.

● Setting bias = False in weight layers before BatchNorms might be useful, as each BatchNorm layer
will re-center the data anyway, removing the bias and making it a useless trainable parameter.

● Try possible tricks or models that you can find in the papers or posts online!

● Always Remember to checkpoint your model after each epoch
in your code!

