Graph Neural Networks

11785 Deep Learning
Fall 2024

Gabrial Zencha & Carmel SAGBO
11-785, Fall 2024

Models so far

* MLPs are universal function approximators

— Boolean functions, classifiers, and regressions

* MLPs can be trained through variations of
gradient descent

— Gradients can be computed by backpropagation

MLP Model

Or, more generally a
vector input

' output layer
Input

layer
e Can recognize patterns in data
— E.g. digits
— Or any other vector data

Models so far
* CNNs designed for image and spatial data

— Convolutional layers learn spatial patterns (e.g., edges,
textures).

— Pooling layers reduce spatial dimensions while retaining key
features.

* CNNs can be trained through variations of gradient
descent

— Gradients can be computed by backpropagation 4

CNN Model

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 K—A
(5 X 5) ke".‘EI Max-Pooling (5 2 5) kerr.1el Max-Pooling (with
valid padding 2x2) valid padding (2x2) !

n2 channels \

INPUT nl channels nl channels n2 channels
(28x28x1) (24 x24 x n1) (12 x 12 x n1) (8x8xn2) (4x4xn2)

n3 units

Models so far
* Sequence-to-Sequence Models: sequential data.

— RNNs, LSTMS, Transformers

— Encode input sequence and decode the encoded sequence.

* RNNs, LSTMS, Transformers can be trained through
variations of gradient descent

— Gradients can be computed by backpropagation

Sequence-to-Sequence Model

many-to-one one-to-many

Figure: Sebastan Raschia, Viarid Mirfsil, Aython
Machine Learning. Srd Eainon. Biemingham, UK: Pacike
Publsting 2019

many-to-many many-to-many

Data seen so far (Euclidean Data)

Data that resides in structured, grid-like spaces with well-defined dimensions and coordinate systems

— Tabular Data (MLPs): Rows and columns.
— Images (CNNs): 2D grids of pixel intensities.

— Videos (3D CNNs): Sequential frames forming a
spatiotemporal grid.

— Sequences (RNNs, LSTMs Transformers): 1D ordered data like
text or time-series.

Non Euclidean Data

Data that resides in irregular, non-grid-like structures where relationships are not confined to regular
Euclidean spaces.

— Graphs: Nodes and edges representing entities and
relationships.

m Social networks: People connected by friendships.

m Molecules: Atoms connected by chemical bonds.

m Knowledge graphs: Entities linked by relationships.
— Manifolds: Curved surfaces, e.g., 3D shapes or mesh data.

— Point Clouds: Sets of points in 3D space without a grid
structure (e.g., LIDAR data).

Real-World Data is Often Non-Euclidean

P —
.....

Traffic Netorks

10

Real-World Data is Often Non-Euclidean

Social Networks

11

Real-World Data is Often Non-Euclidean

LA JOCONDE
A WASHINGTON

DA VINCI

pausIA sey

is a friend of

Jan 11984

Knowledge Graphs

12

Real-World Data is Often Non-Euclidean
< e A 3

Linear Linear
Trigonal Bent or
planar angular
Trigonal
Tetrahedral pyramidal Trigonal Octahedral
bipyramidal

eeeeeeee

Complex relationships

13

Challenges in handling Non-Euclidean Data

— Fixed Grid Assumptions (MLPs, CNNs, RNNs)

m Assume regular, structured data (e.g., grids or
seguences).

m Cannot directly handle irregular neighborhoods or
variable node connectivity in graphs or other
non-Euclidean structures.

Non-Euclidean data lacks the regular grid structure required for
traditional convolution or recurrent processing.

14

Challenges in handling Non-Euclidean Data

Irregular Neighborhoods:

. . (S
m Varying numbers of neighbors per node.
TEr
()2

m No uniform notion of proximity or direction.

Standard convolution filters (which operate on fixed local
neighborhoods) fail to adapt to these variable structures.

15

Challenges in handling Non-Euclidean Data
Lack of Spatial Regularity:

— The concept of "locality" is not fixed and varies across the
structure.

Order Sensitivity:

— Non-Euclidean data like point clouds, graphs (undirected)
is unordered.

Defining meaningful filters or operations without losing structural
information is non-trivial.

We need a permutation invariant / equivariant

16

Why it Matters ?

— Enabling Novel Applications

m Drug discovery: Predict molecule effectiveness or toxicity.
m Social network analysis: Detect influencers or communities.

m Recommender systems: Suggest products or content using knowledge
graphs.

— Capturing Complex Relationships

m Many problems require understanding relationships, not just data points.

— Improved Performance in Existing Tasks

m Models that consider the graph of road networks outperform grid-based
approaches by understanding connectivity.

Poll 1

True or False

1.

Euclidean data refers to data that lies in a space where the
distance between points is calculated using the Euclidean
distance formula, while non-Euclidean data involves spaces
where the concept of distance may follow different rules, such
as hyperbolic or graph-based distances.

CNNs and MLPs are specifically designed to handle
non-Euclidean data, such as graphs and hyperbolic spaces,
without any modifications.

Poll 1

True or False

1.

Euclidean data refers to data that lies in a space where the
distance between points is calculated using the Euclidean
distance formula, while non-Euclidean data involves spaces
where the concept of distance may follow different rules, such
as hyperbolic or graph-based distances. (True)

CNNs and MLPs are specifically designed to handle
non-Euclidean data, such as graphs and hyperbolic spaces,
without any modifications. (False)

How to solve challenges faced by other models
(MLPs, CNNS, Seqg-Seq) with Non-Euclidean data

Graph Neural Networks

What is a Graph ?

— In one restricted but very common sense of the term, a graph
is an ordered pair G = (V, E) comprising :

m V aset of vertices (also called nodes or points)

s EC {{x, y}|x,y € Vand x # y} a set of edges (also called
links or lines), which are unordered pairs of vertices (that
is, an edge is associated with two distinct vertices).

>

N

|
| ——
OO -—-=0
- OO0 =

o OO o
S

>
Il
e —

- O OO
- O - 00
-k - O (o
_—O = O -
O = =2a0
ee——

o

Graph Representation

A Graph is generally represented using these different forms:
- The adjacency Matrix A :

It is @ n x n matrix in which:
* n in the number of vertices
e A(i, j) =1 only if there is a link from i to j and

e A(i, j) = 0 if not.

Other common representation is based of Edge Features or Node Features.

22

Graph Node Embeddings

Motivation for Graph Node Embedding

= GloVe co-occurrence graph — word embedding — NLP

= Hyperlinked websites — page embedding — websites classification
= Citation graphs — article embedding — literature classification

= Co-author graphs — author embedding — community detection

= Molecular structure graph — atom embedding — Al for science

Unified view

» Nodes can be any objects (words, documents, authors, atoms, proteins, etc.)

= Links represent the interactions or dependencies among nodes.

 Embedding Vectors
o Capturing the latent features of nodes based on graph structures
o Supporting down-stream prediction tasks (node/graph classification, community detection,
dense retrieval, etc.)

@Yiming Yang, 11-741 Lecture on Graph-based Node Embedding

23

Graph Node Embedding

Intuition: Map nodes to d-dimensional embeddings
such that similar nodes in the graph are embedded close
together

Input graph 2D node embeddings

How to learn the mapping function f

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Poll 2

True or False

Node embeddings aim to map nodes in a graph to a continuous

vector space while preserving their structural and semantic
properties.

Poll 2

True or False

Node embeddings aim to map nodes in a graph to a continuous

vector space while preserving their structural and semantic
properties. (True)

Graph Learning Task

Node Level }‘

Graph Learning Task

Khemani et al. Journal of Big Data (2024) 11:18

Edge Level J—»

Graph Level

2b®

Node Prediction

o 5

oy

Link Prediction

eg. Does particular
person Smokes?

Applications:
Node classification
Node regression
Node clustering

eg. NetFllix
Video

Applications:
Edge
classification
Link prediction

eg. Is this

molecule a
suitable drug?
Applications:

Graph classification,

A g
Graph Prediction

“ Graph regression,

Graph matching

27

Graph Learning Task

SR

Node Prediction Link Prodiction

Graph Predlction

Khemani et al. Journal of Big Data (2024) 11:18

Overview

®
/ |\
® @
& s o0
. 1 ",/-'J node
e \r @ \u, ;' classification
vailbu link
I\ [TRY prediction
X “}‘\:,' ¢ o o
)"\ Wy GNNs training
O ® € e/ \ ®
e L\® o graph
 ® ® ‘ 8 . .
. > classification
GNNss evaluation

complete graph G partial observed graph G,

Node Classification

Using an MLP Node Level Classification

V = Nodes, E = Edges, G = Graph

% f, %
E f_ E
G fg G’

f = MLP(V), f. = MLP(E), f. = MLP(G)
\Y E G

G\V.E) —olf(G(V.E))]

G(V',E)

Apply a linear classifier to the embeddings (node, edge,graph)

Train the classifier using variation of SGD, with gradients calculated using backpropagation

Using an MLP Node Level Classification

Information Stored in Nodes, we want to classify V,, V,, V3

C, vV
C — f V
C V

F = MLP (Linear Classifier)

Apply a linear classifier to the embeddings (node)

Train the classifier using variation of SGD
Gradients calculated with backpropagation

Using an MLP Node Level Classification

Information Stored in Edges, we still want to classify V., V,, V,

1. Pool and aggregate information
from edges to form node
embeddings

V,n =t pEn—»Vn
PEn‘,Vn= AGG (V E € E(Vv))

E (v) = Edges connected to node, v

Example, E (v,) = (E,,E,)
AGG = Sum, Mean, Max, Min, etc)

2. Now apply linear classifier to V ' to determine classes

SN

Train the classifier using variation of SGD
Gradients calculated with backpropagation

Edge Level Prediction

If Information stored in Edges
- Use MLP on edge embeddings
If Information is stored in Nodes

- Pool neighboring node embeddings
- Aggregate them to form new edge embeddings
- Use MLP on new edge embeddings

Can we generalize this ?

Graph Covulutional Network

nonlinear activation

graph convolution

C
O
: % N XY G | e & ®)
| O J—. ~@ ¥ ~@ ¥ 9
L—y—, gr - :
Input graph signal : PS
\) [T J
//'
-0/ Graph Fully
~" convolution connected
. G (x.). max(0,z(i)). layers layer
T

Graph convolution layer

Jian, Du & Shi, John & Kar, Soummya & Moura, Jose. (2018). ON GRAPH CONVOLUTION FOR GRAPH CNNS. 1-5. 10.1109/DSW.2018.8439904

35

Graph Convolution Vs CNN

Convolution operation over Convolution operation over
grid-based structure graph-based structure

-~

-~
e

Graph-based GNN-based propagation

dataset learning process
Convolutional Neural Graph Neural Network
Network (CNN) (GNN)

Jian, Du & Shi, John & Kar, Soummya & Moura, Jose. (2018). ON GRAPH CONVOLUTION FOR GRAPH CNNS. 1-5. 10.1109/DSW.2018.8439904.

36

<

A step back at CNNs

B
e
8

®
L J
L J
PO
PO
PO
'O

Convolutions process data by aggregating information from a fixed local neighborhood of
pixels using filters (kernels).

Assumption: Data lies on a regular Euclidean grid, where neighboring pixels are
equidistant and uniformly connected.

37

Graph Convolution

Three stage process.

1. Message Passing: Each node sends its features to its neighboring nodes, as defined
by the graph's edges.

2. Aggregation: Each node collects and combines the features received from its
neighbors (e.g., via sum, mean, or max).

3. Update: Each node updates its feature representation by applying a transformation
(e.g., using a neural network layer) to the aggregated features.

1: Message Passing

The Neighbourhood N; of a node iis defined as the set of nodes j connected to
i by an edge. Formally,

N, ={j:e; € E}.

Node Neig\nbouchoods

39

1: Message Passing (Message Creation)

Zooming to Node 6 with neighbors {1,3,4}, we transform each of the
node features using a function F', which could just be an MLP or an affine
transform:

F(az;) =W;-2; +b.

40

2: Aggregation Step
o Generate node embeddings based on local network
neighborhoods.

TARGETl NODE . .4‘:: """""""""" ‘

INPUTGRAPH . .- e ‘

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

41

2: Aggregation Step
Intuition: Nodes aggregate information from their
neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

42

2: Aggregation Step

Network neighborhood defines a computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

® @ ® ® @
%r«/ S l& %.v;,m& % l«/‘ r; o
®e0 o o ®oo0® ® ® o ® o
. s ;. LR * B 4 e 8 e
ciz s® %e see® Sesg e oo Ces o° %6iz o

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

43

Deep Model: Many Layers

Model can be of arbitrary depth:

* Nodes have embeddings at each layer

= Layer-0 embedding of node v is its input feature, I,

= Layer-k embedding gets information from nodes that are k hops away

Layer-0
Layer-1 @& X4

TARGET NODE ‘ .4‘ © XC
4 Layer-2 - ® XA
® ® _ s ® Xp
F v. ® XE

® X
® F

INPUT GRAPH (A

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

>
A
s
a

44

2: Aggregation Step
Neighborhood aggregation: Key distinctions are in how different
approaches aggregate

TARGET NODE

E
l Whatis in the box?.-

o*
B
B
+

INPUT GRAPH

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

45

2: Aggregation Step

Basic approach: Average information from neighbors
and apply a neural network

(1) average messages @
TARGET NODE frO m nei g h b ors

INPUT GRAPH

(2) apply neural network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

3: Update Step

Basic approach: Average information from neighbors
and apply a neural network

Initial O-th layer embeddings are

| ho — / equal to node features embedding of
v 4 / v at layer k
(k+1) [i |
hHD —fg(w, 2 NGy B vk € (0 S B-1
ueN(v) & \
(K) - . ’ Total number
. — hv Average of neighbor’s of layers

' | beddi
\ Embedding after K PIEVIOUS yElr SMUCHeIngs

layers of neighborhood Non-linearity
aggregation (e.g., ReLU)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Notice summation is a permutation
invariant pooling/aggregation.

47

Model Training

How do we train the GCN to

generate embeddings? a
) ‘ A“ ‘
A e
< I — ® Ca
z, ® . ". R E
@®

Need to define a loss function on the embeddings.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

48

Model Training

Trainable weight matrices
O .
h1(2) _ X, (i.e., what we learn)

hYY, vk € {0..K — 1

Final node embedding
We can feed these embeddings into any loss function and run SGD to train the

weight parameters
hvk : the hidden representation of node v at layer k 49
W, : weight matrix for neighborhood aggregation

B,: weight matrix for transforming hidden vector of self
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Training

Node embedding z_is a function of input graph
Supervised setting: We want to minimize the loss

min L(y, f (z,))

= y: node label
= £ could be L2 if y is real number, or cross entropy if y is
categorical

Model Training

Directly train the model for a supervised task
(e.g., node classification)

Safe or toxic

Safe or toxic drug?

drug?
o
]
N

0°%

§ St Q&. E.g., a drug-drug
interaction network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

51

Model Training

Directly train the model for a graph learning task
(e.g., node classification)
Use cross entropy loss

£ == Wlog(o@ih) + (1 -

)log(1 — o (ZA)

vev
Encoder output: Classification
node embedding " weights
i
Node class
%;(/. label

®
Safe or toxicdrug? & o

@} ~‘~<) .
YY) o

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Classical GNN Layers: GraphSAGE

h.l(]l) — 0 (w(l) . CONCAT (hl(}_l),AGG ({hg_l)’ Y. € N(U)})))

How to write this as Message + Aggregation?
= Message is computed within the AGG(+)
= Two-stage aggregation
= Stage 1: Aggregate from node neighbors
hgzv) « AGG ({hg_l), Yu € N(v)})

= Stage 2: Further aggregate over the node itself

h? « o (WO - CONCAT(I ™, h{),)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

h(l—l)
AGG = =
Aggregation IN(v)|| Message computation

Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(-)

AGG =[MgaR ((MLP(h{ "), vu € N(v)})
Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors
AGG =|[ESTM([h" ™, vu € n(N())])

Aggregation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GraphSAGE: L2 Normalization
£, Normalization:

Optional: Apply £, normalization to hff) at every layer
h®
T,

Without £, normalization, the embedding vectors have
different scales (£,-norm) for vectors

hY « Vv € V where ||ull, = |X;u? (£,-norm)

In some cases (not always), normalization of embedding
results in performance improvement

After £, normalization, all vectors will have the same
£,-norm

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Poll 3

True or False

A Graph Neural Network (GNN) using graph convolution

can still be trained for edge-level prediction even if there is
no information in the nodes

Poll 3

True or False

A Graph Neural Network (GNN) using graph convolution
can still be trained for edge-level prediction even if there is
no information in the nodes (True)

GAT: Graph Attention Networks
= (3) Graph Attention Networks

l -1
h1(2) = O-(ZuEN(v) avuw(l)hgt))

Attention weights

= I[n GCN / GraphSAGE
i 1

Dru = v

of node u’s message to node v

is the weighting factor (importance)

" = a,,, is defined explicitly based on the
structural properties of the graph (node degree)

= = All neighbors u € N(v) are equally important
to node v

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Classical GNN Layers : GAT
Graph Attention Networks

l i—1
h1()) — J(ZuEN(v) avuw(l)hl(t))

Not all node’s neighbors are equally important
Attention is inspired by cognitive attention.

The attention a,,,, focuses on the important parts of
the input data and fades out the rest.

= Idea: the NN should devote more computing power on that
small but important part of the data.

= Which part of the data is more important depends on the

context and is learned through training.
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph Attention Network

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors «a,,,, to be
learned?

Goal: Specify arbitrary importance to different
neighbors of each node in the&raph

Idea: Compute embedding h,(, of each node in the
graph following an attention strategy:
“ Nodes attend over their neighborhoods” message

= Implicitly specifying different weights to different nodes
in a neighborhood

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Attention Mechanism
Let a,,,, be computed as a byproduct of an
attention mechanism a:

(1) Let a compute attention coefficients e,,,, across
pairs of nodes u, v based on their messages:

e, = a(WORL ™D wORI=Dy

= e, indicates the importance of u's message to node v

erp = a(w(l)h(l 1) w(l)h(l 1))

Jure Leskovec, Stanford CS224W: Machine Learnlng Wlth Graphs, http: //c5224w stanford.edu

Attention Mechanism
Normalize ¢, into the final attention weight «,,,,

“ Use the softmax function, so that . ey, @y = 1:

o exp(ew)
o ZkeN(v) exXp (evk)
Weighted sum based on the final attention weight

avu

Weighted sum using a5, @4, Oup:
hgl) = a(aABW(l)hg—l)+aACW(”h(Cl_1)+

a,pWOhy ™) aAD";/J

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu--

Attention Mechanism
What is the form of attention mechanism a?
The approach is agnostic to the choice of a

= E.g., use a simple single-layer neural network
* a have trainable parameters (weights in the Linear layer)

I I:I Concatenateﬂ Linear ein=a (W(Z)hg_l),w(”hg_l))

; I— s
h(~D pU-D = Linear (Concat (W(l)hf1 D wOn{ 1)))

Parameters of a are trained jointly:

* Learn the parameters together with weight matrices (i.e.,
other parameter of the neural net W) in an end-to-end
fashion

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Attention Mechanism
Multi-head attention: Stabilizes the learning

process of attention mechanism

= Create multiple attention scores (each replica
with a different set of parameters):

KO
h®
h®

v [1]
2] =
3] =

— O(ZuEN(v) avuw(l)h(l 1))
— U(ZuEN(v) az w(l)h(l 1))
_ G(ZuEN(v) avuw(l)h(l 1))

= Qutputs are aggregated:

- By concatenation or summation

® hg)

= AGG(h$[1], h$’[2], h$[3])

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Benefit of attention Mechanism

® Key benefit: Allows for (implicitly) specifying different importance values (a,,,,)
to different neighbors

e Computationally efficient:
o Computation of attentional coefficients can be parallelized across all edges of the

graph
o Aggregation may be parallelized across all nodes

e Storage efficient:
O Sparse matrix operations do not require more than OV + E) entries to be stored
© Fixed number of parameters, irrespective of graph size

e Localized:
© Only attends over local network neighborhoods

e Inductive capability:
o Itis a shared edge-wise mechanism

o It does not depend on the global graph structure
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GAT Exemple: Core Citation Net

Method Cora
& MLP 55.1%
5 ..i';-?;", ManiReg (Belkin et al., 2006) 59.5%
o w,&:.:.&" .:.:‘-‘;..;. SemiEmb (Weston et al., 2012) 59.0%
- e A Sar P, LP (Zhu et al., 2003) 68.0%
B {3 DeepWalk (Perozzi et al., 2014) 67.2%

@ 9 o& { 4
- d"" Cee 4..-"3} ICA (Lu & Getoor, 2003) 75.1%
...?3‘ o e :‘.;.‘,9.3 . it Planetoid (Yang et al., 2016) 75.7%
> sl ates T I S Chebyshev (Defferrard et al., 2016) 81.2%
5 S U Wbreme " ¢ o, GCN (Kipf & Welling, 2017) 81.5%
‘Q.‘.‘é’ﬁ!‘ X & 78" wieg e soT & improvement w.r.t GCN 1.8%

Lo -3 W . o"s
e ® % ° ~ e .

S " Attention mechanism can be used
P .,..gf *" %‘ %‘g:'; < -°.‘-" ,,,.v” with many different graph neural

@
P @ W oo 82
tahdonttems o8 Bl e a. o ’g‘ LAY . network models
%,%‘ﬁ ‘f‘;:e.&;??g;:e%u%.Tee\:.gm };‘ o ” .:‘ @0‘
¥ & 805 s ° 3 (9] .
g e Lt In many cases, attention leads to

performance gains

t-SNE plot of GAT-based node embeddings:

A Node color: 7 publication classes
A Edge thickness: Normallzed attentlon coefficients between nodes 7 and j, across

eight attention heads, X (a5 + aff)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http.//c5224w.stanford.edu

Stacking GNN Layers

B How to connect GNN layers into a GNN?
| » Stack layers sequentially
* Ways of adding skip connections

T Lo

GNN Layer 1
(3) Layer B S A R ta e
connectlwty

GNN Layer 2 s

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stacking GNN Layers

How to construct a Graph Neural Network?
The standard way: Stack GNN layers sequentially

Input: Initial raw node feature

Output: Node embeddings h " after L GNN layers

v

GNN Layer

[

GNN Layer

{ b

GNN Layer

v

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

In summary

e Traditional Neural Networks types can be used in various learning
tasks,
e However it does not work well for all types of data,
e Graph Neural Networks can help in such a situation where we rely on
relationships between entities (eg: Social Network, Drug Discovery),
e GNN, GCN, GraphSAGE, GAT etc
® General techniques for model training are for GNN
o Dropout, Feature Augmentation or Structure Augmentation (Virtual

Nodes or edges, Sample neighbors when, doing message
passing etc)

