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It’s never been easier to prototype 
impressive AI assistants & demos.



1. Neural Language Models: Using Transformers to model language and for autoregressive decoding.

2. Pre-Training: Giving the LMs broad knowledge of language, the world, and maybe some “reasoning”.

3. Post-Training: Teaching the LMs how to behave as assistants that are instruction-following, safe, etc.

4. Compound AI Systems: Composing LM skills into modular user-facing systems and optimizing them 

in various ways for downstream tasks.

How deep learning got us to this stage — an outline
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● In the previous lecture, we learned about Transformers.

● Recap: Autoregressive decoding.

● While we haven’t finished the sequence:

1. Tokenize the input text.

2. Forward pass: Process the current sequence through the Transformer model.

3. Sample next token: Predict and sample the next token based on model output.

4. Append to sequence and repeat until completion.

This could capture a lot of tasks. How do we train a Transformer to be able to do this well?

Neural Language Models: Using Transformers for autoregressive decoding.
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We’ll focus on decoders, but encoders are still the backbone of many 
applications, like information retrieval!
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Why does such pre-training on broad data help? Perhaps it helps the gradients flow better 
during fine-tuning. Or maybe SGD likes to stick close to initialization parameters, so finding 
a local minima during fine-tuning gives us parameters that would generalize well.

Pre-Training: Giving the LMs broad knowledge by training
● On broad Web data — massive Web crawls, but with aggressive filtering and cleaning

● Via the task of Language Modeling, or next word prediction
○ P(w_t | w_{1 : t-1}) with a standard classification cross-entropy loss

Illustration from CS224N Slides by Chris Manning et al.



What does pre-training teach a Transformer? It builds strong representations of 

language and gives us a broad foundation that we can adapt to downstream tasks!
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List of Cloze sentences from CS224N Slides by Chris Manning et al.



Scaling helps: 100s of billions of parameters, trained on trillions of tokens.

Scaling predictably follows empirical patterns, which can help us make informed 

choices — by tuning our hyperparameters at small scale.

Fundamental tradeoffs: Given a fixed budget for 
pre-training compute (# of GPU–days), should 
you increase parameters or tokens seen?

What if you want to minimize *total* compute, 
including inference, instead?
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Emergent Behavior: Scaling (appears) to also create “sudden” jumps 
like the capacity for In-Context Learning.

9Wei et al. (2020)



Emergent Behavior: Scaling (appears) to also create “sudden” jumps 
like the capacity for Chain-Of-Thought Reasoning.

Wei et al. (2022)



Post-Training: Teaching the LMs how to behave as assistants that are 
instruction-following, safe, etc. How should we do that?
One approach is Instruction Fine-Tuning: labeling examples of <prompt, response> 
pairs that spans many tasks and training on them.

Unfortunately, this is expensive and unscalable. It also doesnʼt 
quite teach the right thing for longer or open-ended generation: 
poor credit assignment, encourages hallucination, etc.

Chung et al. (2022)



As an alternative, what if we allow models to learn from trial and error?
Use our best models to sample responses and rely on human preferences as 

sources of rewards. This is called Reinforcement Learning from Human Feedback.

OpenAI (2022)



It’s never been easier to prototype 
impressive AI assistants & demos.



Turning monolithic LMs into  reliable  AI 
systems remains challenging.
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Every AI system will make mistakes.

But the monolithic nature of LMs
makes them hard to control, debug, 
and improve.
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To tackle this, AI researchers increasingly 
build Compound AI Systems,

i.e. modular programs that use LMs as 
specialized components
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Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Retrieval-Augmented Generation

What 
compounds 
protect the 

digestive 
system?

LM

The stomach is 
protected by 

gastric acid and 
proteases.

⚡ Transparency: can debug traces & offer user-facing attribution

⚡ Efficiency: can use smaller LMs, offloading knowledge & control flow

Monolithic LM

Literature: DrQA (Chen et al., 2017), ORQA (Lee et al., 2019), RAG (Lewis et al., 2020), ColBERT-QA (Khattab et al., 2020)
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⚡ Control: can iteratively improve the system & ground it via tools

Literature: GoldEn (Qi et al., 2019), DecompRC (Min et al., 2019), MDR (Xiong et al., 2020), Baleen (Khattab et al., 2021)

Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Multi-Hop Retrieval-Augmented Generation
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⚡ Quality: more reliable composition of better-scoped LM capabilities

STORM: Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models (Shao et al., 2024)

“The 
ColBERT 

retriever”

Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Compositional Report Generation, i.e. brainstorming an outline, collecting references, etc.
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Literature: AlphaCodium (Ridnik, 2024), DIN-SQL (Pourreza & Rafiei, 2023), RARR (Gao et al., 2023), and many others

+ Task-agnostic prompting strategies, e.g. Best-of-N, 
Chain Of Thought, Program of Thought, ReAct, 
Reflexion, Archon, …

Compound AI Systems, i.e. modular programs that use LMs as specialized components

⚡ Inference-time Scaling: systematically searching for better outputs
21
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Unfortunately, LMs are highly sensitive to how theyʼre 
instructed to solve tasks, so under the hood…
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Each “prompt” couples five very different roles:

1. The core input → output behavior, a Signature.

2. The computation specializing an inference-time strategy to the signature, a Predictor.

3. The computation formatting the signatureʼs inputs and parsing its typed outputs, an Adapter.

4. The computations defining objectives and constraints on behavior, Metrics and Assertions.

5. The process of finding the strings & weights that teach LMs desired behavior, an Optimizer.

Existing Compound AI Systems are modular in principle, but are too “stringly-typed”: 
they couple the fundamental system architecture with incidental choices

not portable to new LMs, objectives, or pipelines.

Unfortunately, LMs are highly sensitive to how theyʼre 
instructed to solve tasks, so under the hood…



We know how to build controllable 
systems & improve them modularly.

That is called… programming.
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What if we could abstract Compound AI Systems 
as programs with fuzzy natural-language-typed 

modules that learn their behavior?
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This is hard. We don't have gradients or intermediate labels 
to optimize each module! How should we go about this?



As an example, let’s say we wanted to build this simple 
pipeline for multi-hop retrieval-augmented generation
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How can we translate these 
into high-quality prompts? 
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First, modules are translated into basic prompts 
using Adapters and Predictors.

class MultiHop(dspy.Module):

  def __init__(self):

    self.generate_query  = dspy.ChainOfThought("context, question -> query")

    self.generate_answer = dspy.ChainOfThought("context, question -> answer")

  def forward(self, question):  

    context = []

    for hop in range(2):

      query = self.generate_query(context, question).query

      context += dspy.Retrieve(k=3)(query).passages

    answer = self.generate_answer(context, question)

    return answer

dspy.Adapter(self.generate_query)

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Predefined Adapters are used to 
translate modules into basic prompts
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Then, Prompt Optimizers (or RL) can tune the modules

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Carefully read the provided `context` and `question`. Your task is to formulate a concise 
and relevant `query` that could be used to retrieve information from a search engine to 
answer the question most effectively. The `query` should encapsulate...

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Here are some examples: <...>

optimizer = MIPROv2(metric=..., trainset=...)
optimized_program = optimizer.compile(program)

Program Score: 37%

Program Score: 55%

i.e., tune the prompts and/or weights for all modules in your program

⭐



Instead of tweaking brittle prompts…
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Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and 
Action can be three types: 
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar 
entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.
Here are some examples.

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the 
elevation range of the area.
Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to look up eastern sector.
Action 2: Lookup[eastern sector]
Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.

[... truncated …]

Scores

33%
with GPT-3.5

on a multi-hop 
QA task



Multi-Hop Retrieval-Augmented Generation (HotPotQA)
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Program Optimized GPT 3.5 Llama2-13b-Chat

dspy.Predict("question -> answer") ❌ 34.3 27.5

dspy.RAG (with CoT)
❌ 36.4 34.5

✅ 42.3 38.3

MultiHop
❌ 36.9 34.7

✅ 54.7 50.0



Multi-Hop Retrieval-Augmented Generation (HotPotQA)
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Compiling MultiHop into a small LM (T5-770M) with 
dspy.BootstrapFinetune, starting from 200 answers, scores 39%

Program Optimized GPT 3.5 Llama2-13b-Chat

dspy.Predict("question -> answer") ❌ 34.3 27.5

dspy.RAG (with CoT)
❌ 36.4 34.5

✅ 42.3 38.3

MultiHop
❌ 36.9 34.7

✅ 54.7 50.0



Slides adapted from
Krista Opsahl-Ong & Michael Ryan



Training/ Validation 
Input

LM Program P:
Metric

Inputs:

Outputs:

Given the question and context passages, generate the correct answer.

Question: The Victorians is a documentary series written by an author born in what year?
Context: [1] The Victorians - Their Story In Pictures is ...
         [2] Jeremy Dickson Paxman(born 11 May 1950) is an English...
Rationale: The Victorians was written by Jeremy Paxman.  Jeremy Paxman was born in 1950.
Answer: 1950

Question: Which actor played in both…

Instructions

Few-Shot 
Examples

Problem Setting

⭐

⭐

Optimized LM Program P’:



Constraints / Assumptions

1. No access to log-probs or model weights: Developers may want to 
optimize LM programs for use on API only models.

2. No intermediate metrics / labels: We assume no access to manual 
ground-truth labels for intermediate stages.

3. Budget-Conscious: We want to limit the number of input examples 
we require and the number of program calls we make.



Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO



Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Bootstrap Few-shot examples with simple rejection 
sampling



Bootstrap Few-Shot Examples

O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam, S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller, M. 
Zaharia, C. Potts  “DSPY: COMPILING DECLARATIVE LANGUAGE MODEL CALLS INTO SELF-IMPROVING PIPELINES”



LM Program:

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task 
Demonstration 

Candidate

Bootstrap Few ShotBootstrap Few-Shot Examples



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task 
Demonstration 

Candidate

Bootstrap Few ShotBootstrap Few-Shot (w/ Random Search)

Search for the best set 
using random search! 



LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task 
Demonstration 

Candidate

Given the context passages and a question, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is ...
         [2] Jeremy Dickson Paxman(born 11 May 1950) is an English...
Question: The Victorians is a documentary series written by an author born in what year?
Rationale: The Victorians was written by Jeremy Paxman.  Jeremy Paxman was born in 1950.
Answer: 1950

...

Bootstrap Few ShotBootstrap Few-Shot (w/ Random Search)



Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Extend existing instruction opt. method (OPRO) to multi-stage



What is OPRO? Optimization through Prompting

“Think step by step”

“Take a deep breath 
and think step by step”

“Carefully solve the 
problem”

“Let’s do the math”

Prompt Proposals

Evaluate

Propose More Prompts

Given prompts/scores 
propose more prompts.

“Think step by step”
Score: 31

“Take a deep breath and 
think step by step”
Score: 42

LLM

“Proposer LM”

C. Yang*, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, X. Chen* “Large Language Models as Optimizers”



Initial extension to multi-stage: CA-OPRO
Coordinate-Ascent OPRO

This is expensive to run… 
O(NxD²xM)



Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit 
credit assignment? Let’s just change both prompts at a time in parallel!



Updated LM Program

Score: 30

Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit 
credit assignment? Let’s just change both prompts at a time in parallel!

LM Program

Given a question generate a search query

Given the context answer the question

LLM

LLM

Given a question generate a 
comprehensive search query that will 

retrieve pertinent information.

Given the context answer the question by 
identifying the relevant information and 

providing a concise response.

Score: 30

Score: 30



Finally, Grounding!

Hypothesis: Providing our proposer LM with more information relevant to 
the task can help us propose better instructions.

History of Instructions and 
Scores (and static task 

demos) New Instruction

Proposer LM

LLM

Training set examples 
(input/output pairs from 

training set)



Finally, Grounding!

Key idea: What if we built a multi-stage LM program to bootstrap and 
synthesize information about the task for use in instruction proposal?

History of Instructions and 
Scores (and static task 

demos) New Instruction

Proposer LM

LLM

Training set examples 
(input/output pairs from 

training set)



Finally, Grounding!

History of Instructions and 
Scores (and static task 

demos) New Instruction
LLM

Bootstrapped demos 
demos for a particular 

module in program

Bootstrapped demo example:

Question: The Victorians - Their Story In 
Pictures is a documentary series written 
by an author born in what year?

Reasoning: Let's think step by step in 
order to find the search query. We need 
to find the author's birth year. We can 
search for the author's name along with 
the phrase "birth year" or "birthday" to 
get the desired information.

Search Query: "author of The Victorians 
- Their Story In Pictures birth year" or 
"author of The Victorians - Their Story In 
Pictures birthday"



Finally, Grounding!

History of Instructions and 
Scores (and static task 

demos) New Instruction
LLM

Bootstrapped demos 
demos for a particular 

module in program

Dataset summary example:

"The dataset consists of 
factual, trivia-style 
questions across a wide 
range of topics, presented in a 
clear and concise manner. 
These questions are likely 
designed for use in trivia 
games..”

Dataset Summary (Loop 
over the data and use an 
LLM to write a summary)



Finally, Grounding!

History of Instructions and 
Scores (and static task 

demos) New Instruction
LLM

Bootstrapped demos 
demos for a particular 

module in program

Program Summary example:

“The program code appears to 
be designed to answer 
complex questions by 
retrieving and processing 
information from multiple 
sources or passages. In this 
case, the program is set up for 
two hops, … The module 
`self.generate_query` in this 
program is responsible for 
generating a search query 
based on the context and 
question provided.”

Dataset Summary (Loop 
over the data and use an 
LLM to write a summary)

Summary of a Reflexive 
View of the LM Program 

Code itself



Finally, Grounding!

History of Instructions and 
Scores (and static task 

demos) New Instruction
LLM

Bootstrapped demos 
demos for a particular 

module in program

Tip example:

“Don’t be afraid to be creative 
when generating the new 
instruction”

“Keep the instruction clear and 
concise."

“Make sure your instruction is 
very informative and 
descriptive."

Dataset Summary (Loop 
over the data and use an 
LLM to write a summary)

Tip for instruction generation 
(be creative, be succinct, etc.)

Summary of a Reflexive 
View of the LM Program 

Code itself



Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Co-optimize instructions & few-shot examples efficiently



MIPRO works in 3 steps:

2. Propose Instruction Candidates 
using an LM Program

3. Jointly tune with a Bayesian 
hyperparameter optimizer

1. Bootstrap Task Demonstrations
Prompt 
Proposal 

Credit 
Assignment

67

Multi-prompt Instruction PRoposal Optimizer



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Basic Instruction

N/A

Basic Instruction

N/A

Bayesian 
Opt.

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Set of instructions / fewshot 
candidates for each module:

LM Program



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

LM Program

Instruction 1.A

Demo Set 1.B

Instruction 2.C

Demo Set 2.A

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 1

Bayesian 
Opt.

Score: 75%

Evaluate on 
minibatches of data to 

learn efficiently!



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.C

Demo Set 1.A

Instruction 2.B

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 2

Bayesian 
Opt.

Score: 50%

LM Program

U
pd

at
e



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 3

Bayesian 
Opt.

Score: 80%

LM Program

U
pd

at
e



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…

Bayesian 
Opt.

LM Program



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…

Bayesian 
Opt. Every N trials, evaluate 

on our full val set!

LM Program



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.A

Demo Set 1.B

Instruction 2.C

Demo Set 2.A

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial=N

Bayesian 
Opt.

Score: 45%

Trial

Sc
or

e

LM Program



Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1..

Demo Set 1..

Instruction 2..

Demo Set 2..

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…
Bayesian 

Opt.

Trial

Sc
or

e

Return LM Program 
with best score!

LM Program



That works well in practice…
● Mayʼ24: U of Toronto researchers won the MEDIQA competition via DSPy.
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● Junʼ24: U of Maryland researchers ran a direct case study.



… and has enabled many SoTA systems
like PATH (Jasper Xia, UWaterloo); IReRa (Karel DʼOosterlink, UGhent), STORM (Yijia Shao, Stanford), EDEN & PAPILLON (Siyan 
Li, Columbia), Efficient Agents (Sayash Kapoor, Princeton), ECG-Chat (Yubao Zhao, Beijing Normal U), …
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DSPy makes it possible to program LMs
Hand-written prompts 

78

Prompting techniques and prompt chains

Manual prompt engineering

⇒ Signatures

⇒ Modules

⇒ Optimizing program 
prompts/weights

qa = dspy.Predict("question -> answer")
mt = dspy.ChainOfThought("english_document -> french_translation")
rc = dspy.ProgramOfThought("contexts, question -> answer_found: bool")

Optimizer(metric).compile(program, dataset)


