
1

Omar Khattab
Nov 06, 2024

Adapted from material by Bhiksha Raj, Rita Singh, Chris Manning, Anna Goldie, John Hewitt, Tatsu Hashimoto, Yann Dubois, Archit

Sharma, Jesse Mu, Michael Ryan, and Krista Opsahl-Ong.

Large Language Models
& the Compound AI Systems they enable us to build

Guest Lecture for CMU 11-785 Introduction to Deep Learning (Fall 2024)

It’s never been easier to prototype
impressive AI assistants & demos.

1. Neural Language Models: Using Transformers to model language and for autoregressive decoding.

2. Pre-Training: Giving the LMs broad knowledge of language, the world, and maybe some “reasoning”.

3. Post-Training: Teaching the LMs how to behave as assistants that are instruction-following, safe, etc.

4. Compound AI Systems: Composing LM skills into modular user-facing systems and optimizing them

in various ways for downstream tasks.

How deep learning got us to this stage — an outline

3

● In the previous lecture, we learned about Transformers.

● Recap: Autoregressive decoding.

● While we haven’t finished the sequence:

1. Tokenize the input text.

2. Forward pass: Process the current sequence through the Transformer model.

3. Sample next token: Predict and sample the next token based on model output.

4. Append to sequence and repeat until completion.

This could capture a lot of tasks. How do we train a Transformer to be able to do this well?

Neural Language Models: Using Transformers for autoregressive decoding.

4

We’ll focus on decoders, but encoders are still the backbone of many
applications, like information retrieval!

5

Why does such pre-training on broad data help? Perhaps it helps the gradients flow better
during fine-tuning. Or maybe SGD likes to stick close to initialization parameters, so finding
a local minima during fine-tuning gives us parameters that would generalize well.

Pre-Training: Giving the LMs broad knowledge by training
● On broad Web data — massive Web crawls, but with aggressive filtering and cleaning

● Via the task of Language Modeling, or next word prediction
○ P(w_t | w_{1 : t-1}) with a standard classification cross-entropy loss

Illustration from CS224N Slides by Chris Manning et al.

What does pre-training teach a Transformer? It builds strong representations of

language and gives us a broad foundation that we can adapt to downstream tasks!

7

List of Cloze sentences from CS224N Slides by Chris Manning et al.

Scaling helps: 100s of billions of parameters, trained on trillions of tokens.

Scaling predictably follows empirical patterns, which can help us make informed

choices — by tuning our hyperparameters at small scale.

Fundamental tradeoffs: Given a fixed budget for
pre-training compute (# of GPU–days), should
you increase parameters or tokens seen?

What if you want to minimize *total* compute,
including inference, instead?

8

Emergent Behavior: Scaling (appears) to also create “sudden” jumps
like the capacity for In-Context Learning.

9Wei et al. (2020)

Emergent Behavior: Scaling (appears) to also create “sudden” jumps
like the capacity for Chain-Of-Thought Reasoning.

Wei et al. (2022)

Post-Training: Teaching the LMs how to behave as assistants that are
instruction-following, safe, etc. How should we do that?
One approach is Instruction Fine-Tuning: labeling examples of <prompt, response>
pairs that spans many tasks and training on them.

Unfortunately, this is expensive and unscalable. It also doesnʼt
quite teach the right thing for longer or open-ended generation:
poor credit assignment, encourages hallucination, etc.

Chung et al. (2022)

As an alternative, what if we allow models to learn from trial and error?
Use our best models to sample responses and rely on human preferences as

sources of rewards. This is called Reinforcement Learning from Human Feedback.

OpenAI (2022)

It’s never been easier to prototype
impressive AI assistants & demos.

Turning monolithic LMs into reliable AI
systems remains challenging.

15

Every AI system will make mistakes.

But the monolithic nature of LMs
makes them hard to control, debug,
and improve.

16

16

To tackle this, AI researchers increasingly
build Compound AI Systems,

i.e. modular programs that use LMs as
specialized components

17

Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Retrieval-Augmented Generation

What
compounds
protect the

digestive
system?

LM

The stomach is
protected by

gastric acid and
proteases.

⚡ Transparency: can debug traces & offer user-facing attribution

⚡ Efficiency: can use smaller LMs, offloading knowledge & control flow

Monolithic LM

Literature: DrQA (Chen et al., 2017), ORQA (Lee et al., 2019), RAG (Lewis et al., 2020), ColBERT-QA (Khattab et al., 2020)
18

⚡ Control: can iteratively improve the system & ground it via tools

Literature: GoldEn (Qi et al., 2019), DecompRC (Min et al., 2019), MDR (Xiong et al., 2020), Baleen (Khattab et al., 2021)

Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Multi-Hop Retrieval-Augmented Generation

19

⚡ Quality: more reliable composition of better-scoped LM capabilities

STORM: Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models (Shao et al., 2024)

“The
ColBERT

retriever”

Compound AI Systems, i.e. modular programs that use LMs as specialized components
Example: Compositional Report Generation, i.e. brainstorming an outline, collecting references, etc.

20

Literature: AlphaCodium (Ridnik, 2024), DIN-SQL (Pourreza & Rafiei, 2023), RARR (Gao et al., 2023), and many others

+ Task-agnostic prompting strategies, e.g. Best-of-N,
Chain Of Thought, Program of Thought, ReAct,
Reflexion, Archon, …

Compound AI Systems, i.e. modular programs that use LMs as specialized components

⚡ Inference-time Scaling: systematically searching for better outputs
21

22

Unfortunately, LMs are highly sensitive to how theyʼre
instructed to solve tasks, so under the hood…

23

Each “prompt” couples five very different roles:

1. The core input → output behavior, a Signature.

2. The computation specializing an inference-time strategy to the signature, a Predictor.

3. The computation formatting the signatureʼs inputs and parsing its typed outputs, an Adapter.

4. The computations defining objectives and constraints on behavior, Metrics and Assertions.

5. The process of finding the strings & weights that teach LMs desired behavior, an Optimizer.

Existing Compound AI Systems are modular in principle, but are too “stringly-typed”:
they couple the fundamental system architecture with incidental choices

not portable to new LMs, objectives, or pipelines.

Unfortunately, LMs are highly sensitive to how theyʼre
instructed to solve tasks, so under the hood…

We know how to build controllable
systems & improve them modularly.

That is called… programming.

24

24

What if we could abstract Compound AI Systems
as programs with fuzzy natural-language-typed

modules that learn their behavior?

27

This is hard. We don't have gradients or intermediate labels
to optimize each module! How should we go about this?

As an example, let’s say we wanted to build this simple
pipeline for multi-hop retrieval-augmented generation

28

28

How can we translate these
into high-quality prompts?

29

29

First, modules are translated into basic prompts
using Adapters and Predictors.

class MultiHop(dspy.Module):

 def __init__(self):

 self.generate_query = dspy.ChainOfThought("context, question -> query")

 self.generate_answer = dspy.ChainOfThought("context, question -> answer")

 def forward(self, question):

 context = []

 for hop in range(2):

 query = self.generate_query(context, question).query

 context += dspy.Retrieve(k=3)(query).passages

 answer = self.generate_answer(context, question)

 return answer

dspy.Adapter(self.generate_query)

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Predefined Adapters are used to
translate modules into basic prompts

30

30

Then, Prompt Optimizers (or RL) can tune the modules

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Carefully read the provided `context` and `question`. Your task is to formulate a concise
and relevant `query` that could be used to retrieve information from a search engine to
answer the question most effectively. The `query` should encapsulate...

Follow the following format:
Context: <context>
Question: <question>
Reasoning: Let’s think step by step to <..>
Query: <query>

Here are some examples: <...>

optimizer = MIPROv2(metric=..., trainset=...)
optimized_program = optimizer.compile(program)

Program Score: 37%

Program Score: 55%

i.e., tune the prompts and/or weights for all modules in your program

⭐

Instead of tweaking brittle prompts…

31

31

Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and
Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar
entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.
Here are some examples.

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the
elevation range of the area.
Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to look up eastern sector.
Action 2: Lookup[eastern sector]
Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.

[... truncated …]

Scores

33%
with GPT-3.5

on a multi-hop
QA task

Multi-Hop Retrieval-Augmented Generation (HotPotQA)

32

Program Optimized GPT 3.5 Llama2-13b-Chat

dspy.Predict("question -> answer") ❌ 34.3 27.5

dspy.RAG (with CoT)
❌ 36.4 34.5

✅ 42.3 38.3

MultiHop
❌ 36.9 34.7

✅ 54.7 50.0

Multi-Hop Retrieval-Augmented Generation (HotPotQA)

33

Compiling MultiHop into a small LM (T5-770M) with
dspy.BootstrapFinetune, starting from 200 answers, scores 39%

Program Optimized GPT 3.5 Llama2-13b-Chat

dspy.Predict("question -> answer") ❌ 34.3 27.5

dspy.RAG (with CoT)
❌ 36.4 34.5

✅ 42.3 38.3

MultiHop
❌ 36.9 34.7

✅ 54.7 50.0

Slides adapted from
Krista Opsahl-Ong & Michael Ryan

Training/ Validation
Input

LM Program P:
Metric

Inputs:

Outputs:

Given the question and context passages, generate the correct answer.

Question: The Victorians is a documentary series written by an author born in what year?
Context: [1] The Victorians - Their Story In Pictures is ...
 [2] Jeremy Dickson Paxman(born 11 May 1950) is an English...
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born in 1950.
Answer: 1950

Question: Which actor played in both…

Instructions

Few-Shot
Examples

Problem Setting

⭐

⭐

Optimized LM Program P’:

Constraints / Assumptions

1. No access to log-probs or model weights: Developers may want to
optimize LM programs for use on API only models.

2. No intermediate metrics / labels: We assume no access to manual
ground-truth labels for intermediate stages.

3. Budget-Conscious: We want to limit the number of input examples
we require and the number of program calls we make.

Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Bootstrap Few-shot examples with simple rejection
sampling

Bootstrap Few-Shot Examples

O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam, S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller, M.
Zaharia, C. Potts “DSPY: COMPILING DECLARATIVE LANGUAGE MODEL CALLS INTO SELF-IMPROVING PIPELINES”

LM Program:

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task
Demonstration

Candidate

Bootstrap Few ShotBootstrap Few-Shot Examples

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task
Demonstration

Candidate

Bootstrap Few ShotBootstrap Few-Shot (w/ Random Search)

Search for the best set
using random search!

LM Program:Training Input Metric

Search Query Output 1

Search Query Output 2

Answer Output

Task
Demonstration

Candidate

Given the context passages and a question, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is ...
 [2] Jeremy Dickson Paxman(born 11 May 1950) is an English...
Question: The Victorians is a documentary series written by an author born in what year?
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born in 1950.
Answer: 1950

...

Bootstrap Few ShotBootstrap Few-Shot (w/ Random Search)

Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Extend existing instruction opt. method (OPRO) to multi-stage

What is OPRO? Optimization through Prompting

“Think step by step”

“Take a deep breath
and think step by step”

“Carefully solve the
problem”

“Let’s do the math”

Prompt Proposals

Evaluate

Propose More Prompts

Given prompts/scores
propose more prompts.

“Think step by step”
Score: 31

“Take a deep breath and
think step by step”
Score: 42

LLM

“Proposer LM”

C. Yang*, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, X. Chen* “Large Language Models as Optimizers”

Initial extension to multi-stage: CA-OPRO
Coordinate-Ascent OPRO

This is expensive to run…
O(NxD²xM)

Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit
credit assignment? Let’s just change both prompts at a time in parallel!

Updated LM Program

Score: 30

Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit
credit assignment? Let’s just change both prompts at a time in parallel!

LM Program

Given a question generate a search query

Given the context answer the question

LLM

LLM

Given a question generate a
comprehensive search query that will

retrieve pertinent information.

Given the context answer the question by
identifying the relevant information and

providing a concise response.

Score: 30

Score: 30

Finally, Grounding!

Hypothesis: Providing our proposer LM with more information relevant to
the task can help us propose better instructions.

History of Instructions and
Scores (and static task

demos) New Instruction

Proposer LM

LLM

Training set examples
(input/output pairs from

training set)

Finally, Grounding!

Key idea: What if we built a multi-stage LM program to bootstrap and
synthesize information about the task for use in instruction proposal?

History of Instructions and
Scores (and static task

demos) New Instruction

Proposer LM

LLM

Training set examples
(input/output pairs from

training set)

Finally, Grounding!

History of Instructions and
Scores (and static task

demos) New Instruction
LLM

Bootstrapped demos
demos for a particular

module in program

Bootstrapped demo example:

Question: The Victorians - Their Story In
Pictures is a documentary series written
by an author born in what year?

Reasoning: Let's think step by step in
order to find the search query. We need
to find the author's birth year. We can
search for the author's name along with
the phrase "birth year" or "birthday" to
get the desired information.

Search Query: "author of The Victorians
- Their Story In Pictures birth year" or
"author of The Victorians - Their Story In
Pictures birthday"

Finally, Grounding!

History of Instructions and
Scores (and static task

demos) New Instruction
LLM

Bootstrapped demos
demos for a particular

module in program

Dataset summary example:

"The dataset consists of
factual, trivia-style
questions across a wide
range of topics, presented in a
clear and concise manner.
These questions are likely
designed for use in trivia
games..”

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

Finally, Grounding!

History of Instructions and
Scores (and static task

demos) New Instruction
LLM

Bootstrapped demos
demos for a particular

module in program

Program Summary example:

“The program code appears to
be designed to answer
complex questions by
retrieving and processing
information from multiple
sources or passages. In this
case, the program is set up for
two hops, … The module
`self.generate_query` in this
program is responsible for
generating a search query
based on the context and
question provided.”

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

Summary of a Reflexive
View of the LM Program

Code itself

Finally, Grounding!

History of Instructions and
Scores (and static task

demos) New Instruction
LLM

Bootstrapped demos
demos for a particular

module in program

Tip example:

“Don’t be afraid to be creative
when generating the new
instruction”

“Keep the instruction clear and
concise."

“Make sure your instruction is
very informative and
descriptive."

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

Tip for instruction generation
(be creative, be succinct, etc.)

Summary of a Reflexive
View of the LM Program

Code itself

Methods
1. Bootstrap Few-shot

2. Extending OPRO

3. MIPRO

💡Co-optimize instructions & few-shot examples efficiently

MIPRO works in 3 steps:

2. Propose Instruction Candidates
using an LM Program

3. Jointly tune with a Bayesian
hyperparameter optimizer

1. Bootstrap Task Demonstrations
Prompt
Proposal

Credit
Assignment

67

Multi-prompt Instruction PRoposal Optimizer

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Basic Instruction

N/A

Basic Instruction

N/A

Bayesian
Opt.

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Set of instructions / fewshot
candidates for each module:

LM Program

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

LM Program

Instruction 1.A

Demo Set 1.B

Instruction 2.C

Demo Set 2.A

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 1

Bayesian
Opt.

Score: 75%

Evaluate on
minibatches of data to

learn efficiently!

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.C

Demo Set 1.A

Instruction 2.B

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 2

Bayesian
Opt.

Score: 50%

LM Program

U
pd

at
e

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial 3

Bayesian
Opt.

Score: 80%

LM Program

U
pd

at
e

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…

Bayesian
Opt.

LM Program

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.B

Demo Set 1.A

Instruction 2.A

Demo Set 2.B

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…

Bayesian
Opt. Every N trials, evaluate

on our full val set!

LM Program

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1.A

Demo Set 1.B

Instruction 2.C

Demo Set 2.A

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

Trial=N

Bayesian
Opt.

Score: 45%

Trial

Sc
or

e

LM Program

Step 3: Optimize with Bayesian Learning

Key Idea: MIPRO uses a Bayesian Surrogate Model for Credit Assignment

Instruction 1..

Demo Set 1..

Instruction 2..

Demo Set 2..

Instruction 1.AInstruction 1.AInstruction 1.C

Instruction 1.AInstruction 1.AInstruction 2.C

Demo Set 2.ADemo Set 2.ADemo Set 2.C

Demo Set 2.ADemo Set 2.ADemo Set 1.C

…
Bayesian

Opt.

Trial

Sc
or

e

Return LM Program
with best score!

LM Program

That works well in practice…
● Mayʼ24: U of Toronto researchers won the MEDIQA competition via DSPy.

76

76

● Junʼ24: U of Maryland researchers ran a direct case study.

… and has enabled many SoTA systems
like PATH (Jasper Xia, UWaterloo); IReRa (Karel DʼOosterlink, UGhent), STORM (Yijia Shao, Stanford), EDEN & PAPILLON (Siyan
Li, Columbia), Efficient Agents (Sayash Kapoor, Princeton), ECG-Chat (Yubao Zhao, Beijing Normal U), …

77

77

DSPy makes it possible to program LMs
Hand-written prompts

78

Prompting techniques and prompt chains

Manual prompt engineering

⇒ Signatures

⇒ Modules

⇒ Optimizing program
prompts/weights

qa = dspy.Predict("question -> answer")
mt = dspy.ChainOfThought("english_document -> french_translation")
rc = dspy.ProgramOfThought("contexts, question -> answer_found: bool")

Optimizer(metric).compile(program, dataset)

