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A new problem

• From a large collection of images of faces, can a 
network learn to generate new portraits
– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?
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A new problem

• From a large collection of landscapes, can a network 
learn to generate new landscape pictures
– Generate samples from the distribution of “landscape” 

images
• How do we even characterize this distribution?
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The distribution of data
• Hypothesis: The data are distributed 

about a curved or otherwise non-linear 
manifold in high dimensional space
– The principal components of all 

instances of the target class of data lie 
on this manifold

• To generate data for this class, we must 
select a point on this manifold

• Problems: 
– Characterizing the manifold
– Having a good strategy for selecting 

points from it
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Recall : The AE

• The autoencoder captures the underlying manifold of the 
data
– “Non linear” PCA
– Deeper networks can capture more complicated manifolds

• “Deep” autoencoders
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Recap : The Decoder:

• The decoder represents a source-specific generative 
dictionary

• Exciting it will produce data similar to those from the 
source! 
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The AE for generation 

• Train AE with the pictures…
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DECODER

The face dictionary

• The decoder can now be used to generate 
instances from the “faces” manifold  
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The problem with AEs

• Improper choice of input to the decoder can result in incorrect generation

• How do we know what inputs are reasonable for the decoder?

• Solution : only choose input ( ’s) that are typical of the class
– I.e. drawn from the distribution of ’s for faces
– But what is this distribution?
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Poll 1 (@1573, @1574)

• The decoder in an AE can only generate data on a low-
dimensional surface/manifold of the space
– True
– False

• What is true of the dimensionality of this manifold
– It cannot be predicted and can be anything
– It is no greater than the dimensionality of the latent 

representation that is input to the decoder
– It will be the same as the input to the encoder 
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Poll 1

• The decoder in an AE can only generate data on a low-
dimensional surface/manifold of the space
– True
– False

• What is true of the dimensionality of this manifold
– It cannot be predicted and can be anything
– It is no greater than the dimensionality of the latent 

representation that is input to the decoder
– It will be the same as the input to the encoder 
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Impose distribution on z

• When training the autoencoder, explicitly impose the constraint 
that the hidden representation must follow a specific distribution
– E.g is standard Gaussian  ( )

12

ENCODER

DECODER

Encoder
output must
be Gaussian



DECODER

Generation

• To generate novel values, sample z from the prescribed distribution 
( )

• If the network is properly trained, and z is properly sampled, the 
output should be a reasonable generation
– E.g. of a face
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How to train the model

• Problem: How does one train an AE to ensure 
that the hidden representation has a specific 
distribution, e.g. 14
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How to train the model

• Problem: How does one train an AE to ensure 
that the hidden representation has a specific 
distribution, e.g. 

• Encoder and decoder may have arbitrarily 
complex structure and their own parameters 

and 
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A property of isotropic Gaussians

•

• The distribution is perfectly symmetric in every direction
– The different variables (subvectors ଵ and ଶ of ) are independent!

– ଵ ଶ ଵ ଶ

– Each individually will also be isotropic: ଵ
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Log likelihood on an isotropic 
Gaussian

•

•

•
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Training with statistical constraints

• Minimize the error between and 

• Minimize the KL divergence between the distribution 
of and the standard Gaussian 
– Minimize the negative log likelihood of as computed 

from a standard Gaussian 
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Training with statistical constraints

• Minimize the error between and 

• Minimize the KL divergence between the distribution 
of and the standard Gaussian 
– Minimize the negative log likelihood of as computed 

from a standard Gaussian 
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Training with statistical constraints
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Poll 2 (@1575, @1576)

• A regular AE trained to also minimize the length of the 
hidden (latent) representation implicitly imposes an 
isotropic Gaussian distribution on the latent representation
– True
– False

• The output of an AE trained in this manner is no longer 
constrained to lie on a low dimensional manifold
– True
– False
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Poll 2

• A regular AE trained to also minimize the length of the 
hidden (latent) representation implicitly imposes an 
isotropic Gaussian distribution on the latent representation
– True
– False

• The output of an AE trained in this manner is no longer 
constrained to lie on a low dimensional manifold
– True
– False
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This model does not capture the 
entire distribution

• This simple formulation does not adequately 
capture the variation in the data 
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The problem

• The generative portion of the model is just the 
decoder
– Inputting Gaussian data into it still only produces 

what the decoder is capable of producing!
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The problem

• The decoder can only generate data on a low-dimensional manifold of the
space
– Of the same dimension as the input
– It transforms the planar input space to a curved manifold in the output space 

• and the Gaussian to a non-Gaussian distribution on this manifold
25
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The problem

• The actual dimensionality of the data manifold may be (and generally will 
be) greater than the dimensionality of z

• Even if we capture the dimensionality of the principal manifold perfectly, 
there will almost always be some variation off it
– The actual distribution lies close to a curved manifold, but is nonetheless full-

dimensional

• Our simple model captures none of the variation off the manifold!
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Accounting for the noise

• Assume that the actual data is obtained by adding noise to the output of the 
decoder
– The noise accounts for the variation off the manifold

• The model itself must be trained to minimize this noise
– Ensuring that it has captured the principal manifold most effectively

• This is the smallest amount of noise to be added, such that the distribution at the output of the 
decoder fully explains the distribution the training data

– Typical Assumption: The noise is uncorrelated Gaussian 𝑁(0, 𝐶) (i.e. it has maximum
entropy) and is independent of 𝑧

• This is a natural assumption: All other predictable structure would ideally be captured by 𝐷(𝑧;  𝜙)

• This has a consequence:  is no longer a deterministic outcome of 
– Instead, it has a distribution :  𝑝(𝑥 | 𝑧)  =  𝑁(𝐷(𝑧;  𝜙), 𝐶)

27



Accounting for the noise

• Assume that the actual data is obtained by adding noise to the output of the 
decoder
– The noise accounts for the variation off the manifold

• The model itself must be trained to minimize this noise
– Ensuring that it has captured the principal manifold most effectively

• This is the smallest amount of noise to be added, such that the distribution at the output of the 
decoder fully explains the distribution the training data

– Typical Assumption: The noise is uncorrelated Gaussian 𝑁(0, 𝐶) (i.e. it has maximum 
entropy) and is independent of 𝑧

• This is a natural assumption: All other predictable structure would ideally be captured by 𝐷(𝑧;  𝜙)

• This has a consequence:  is no longer a deterministic outcome of 
– Instead, it has a distribution :  𝑝(𝑥 | 𝑧)  =  𝑁(𝐷(𝑧;  𝜙), 𝐶)
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The actual model

• The “decoder” is now actually a “generative” model for the data
– Has a “generative story” for how the data are produced

• A -dimensional vector is drawn from a standard -dimensional 
Gaussian and passed through the decoder
– This results in data lying on a -dimensional non-linear surface in the data 

space

• Then a full-rank, low-amplitude noise is added to it, to generate the final 
data 
– The actual data distribution is a fuzzy region around the surface. 29



The distribution of the data

• If the that went into the decoder to produce any training data 
instance is known along with ,  the decoder ( ) can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: The that could produce a given is not unique
– For any ,  we can explain assuming noise 

30

Since, by assumption, e is the smallest amount of noise needed
for the output of the model to match the training data



The distribution of the data

• If the that went into the decoder to produce any training data 
instance is known along with ,  the decoder ( ) can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: The that could produce a given is not unique
– For any ,  we can explain assuming noise 
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Since, by assumption, e is the smallest amount of noise needed
for the output of the model to match the training data

Unfortunately, we don’t have the z for each x. 
So, we will estimate it!!



The distribution of the data

• If the that went into the decoder to produce any training data 
instance is known along with ,  the decoder ( ) can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: The that could produce a given is not unique
– For any ,  we can explain assuming noise 
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The distribution of the data

• If the that went into the decoder to produce any data instance is known 
along with ,  the decoder ( ) can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: Several values exist that could be modified by noise to produce a 
given 
– The that could produce a given is not unique
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The distribution of the data

34

• There is an entire distribution of s that could produce a given 
– values that correspond to more probable values of noise are more probable
– The distribution of for a given are dependent on that 

• Instead of finding the unique for any , we will find the distribution 

• The variational autoencoder
– So named because the learning procedure utilizes a variational bound on the 

likelihood of the data



The distribution of the data

• There is an entire distribution of s that could produce a given 
– values that correspond to more probable values of noise are more probable
– The distribution of for a given are dependent on that 

• Instead of finding the unique for any , we will find the distribution 

• The variational autoencoder
– So named because the learning procedure utilizes a variational bound on the 

likelihood of the data
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert the expected output for s drawn from this 

distribution to 
– More practically, it tries to convert a typical sample 𝑧 from 𝑃(𝑧|𝑥) to 𝑥

• Training the encoder: 
– Estimate theta to make the 𝑧s that can be encoded to 𝑥 more probable

• Training the decoder:
– Estimate 𝝓 to make the noise between 𝑥ො = 𝐷(𝑧) and 𝑥 more probable

• Constraint on :   Make as close to the standard Gaussian as possible
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a typical sample from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible

37

Encoder Decoder 



The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a typical sample from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• I.e. make it as small as possible

• Constraint on :   Make as close to the standard Gaussian as 
possible 38
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a typical sample from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• I.e. make it as small as possible

• Constraint on : ?
39
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The variational autoencoder

• The conditional distribution of
given is
– Specifies the region of z from 

which the specific that 
produced this specific could 
have been drawn

40

Encoder Decoder 

• But the overall distribution of z 
is a standard Gaussian



The variational autoencoder

• The conditional distribution of 
given is 
– Specifies the region of z from 

which the specific that 
produced this specific could 
have been drawn

41
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• But the overall distribution of z 
is a standard Gaussian

What does this mean?



What it means…

• According to the model:

• I.e. we must train the model such that the combined posterior over 
all s is a standard normal

42

• The combined posterior 
distribution over 
all possible values of is 
a standard normal 
distribution



Learning the Encoder

• The encoder actually computes an estimate of the actual 
posterior (in whichever way we do it) for each 

• We must minimize the divergence between the estimate 
and the true posterior (over all )

• This is intractable in general because is unknown 43
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Bayes and the Decoder to the rescue

௭~ொ

௭~ொ ௭~ொ

௭~ொ ௭~ொ

௭~ொ ௭~ொ ௭~ொ ௭~ொ

௭~ொ ௭~ொ

• is a function of .  Minimizing the loss w.r.t. we get
∗

ఝ

ఝ
௭~ொ
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The variational autoencoder

• The modification gives us the simpler optimization

• We must minimize the expected divergence between the 
distribution modelled by the encoder and the standard 
normal to get a good approximation of 
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The variational Encoder

• We must train the encoder to minimize the expected KL divergence 
between and the standard normal 

• Empirically (since we perform Empirical Risk Minimization)

𝑿

𝑿

• We must train the encoder to minimize the average KL divergence 
between the posterior and the standard normal over the training 
data

• For this, the encoder must model the distribution, 
– It is now computing an entire distribution rather than a single value of 46
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The variational Encoder

• We must train the encoder to minimize the expected KL divergence 
between and the standard normal 

• Empirically (since we perform Empirical Risk Minimization)

𝑿

𝑿

• We must train the encoder to minimize the average KL divergence 
between the posterior and the standard normal over the training 
data

• For this, the encoder must model the distribution, 
– It is now computing an entire distribution rather than a single value of 47

Encoder 

Reverting to the notation for uniformity



The problem for the encoder lies in 
the decoder…

• The decoder that converts to is highly nonlinear
– Difficult to characterize the distribution of the values 

that could produce a given 

• Though is Gaussian (since is Gaussian), going 
back through the decoder, is generally not 
characterizable!
– We need to make some simplifying assumptions

48

Encoder Decoder 



The problem for the encoder lies in 
the decoder…

• An output could have come from an entire set/distribution of values 
(since we don’t know the exact that was added to )
– In fact is Gaussian because is Gaussian

• But because the surface is uneven and wickedly curved, we cannot 
determine the corresponding set of values
– I.e. cannot characterize the set of values that resulted in the set of values 

that could have produced 
49

?

Decoder 



The problem for the encoder lies in 
the decoder…

• The decoder that converts to is highly nonlinear
– Difficult to characterize the distribution of the values 

that could produce a given 

• Though is Gaussian (since is Gaussian), going 
back through the decoder, is generally not 
characterizable!
– We need to make some simplifying assumptions
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Z is an isotropic Gaussian

•
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A property of isotropic Gaussians

• Independence 

•

• The conditional distribution of given is also an 
isotropic Gaussian regardless of the value of 
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A property of isotropic Gaussians

• This property will hold regardless of the line/hyperplane along which you consider 
the conditional
– 𝑃 𝑍|𝐴𝑍 = 𝑏 =  𝑁 0, 𝐼

• More generally, for “nearly linear” functions
– 𝑃 𝑍|𝑍 = 𝑓(𝑋, 𝑌) =  𝑁 0, 𝐼

– “Nearly linear” : The curve 𝑓 𝑋, 𝑌 =  𝑐𝑜𝑛𝑠𝑡 does not deviate much from a hyperplane in 
high-probability regions of (𝑋, 𝑌)

• 𝐸 𝑓 𝑋, 𝑌 –  𝑙𝑖𝑛𝑒𝑎𝑟 𝑋, 𝑌 ଶ <  𝜖
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A property of isotropic Gaussians

• This property will hold regardless of the line/hyperplane along which you consider 
the conditional
– 𝑃 𝑍|𝐴𝑍 = 𝑏 =  𝑁 0, 𝐼

• More generally, for “nearly linear” functions, the conditional distribution is still 
well approximated by a Gaussian (but the mean and variance may not be 
standard)
– 𝑃 𝑍|𝑓 𝑍 = 𝑐 ≈  𝑁 𝜇, Σ

– “Nearly linear” : The curve 𝑓 𝑍 =  𝑐𝑜𝑛𝑠𝑡 does not deviate much from a hyperplane in high-
probability regions of (𝑍)

• 𝐸 𝑓 𝑍 –  𝑙𝑖𝑛𝑒𝑎𝑟 𝑍 ଶ <  𝜖
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A property of isotropic Gaussians

• More generally, for “nearly linear” functions
–

• But and will depend on (and )

55



Poll 3 (@1577, @1578)

• The Z is a random vector with an isotropic Gaussian distribution, 
the conditional distribution of the projection of Z on any affine 
plane is also isotropic
– True
– False

• If Z is a random vector with an isotropic Gaussian distribution, the 
conditional distribution of Z on any curved surface is also 
approximately Gaussian for surfaces of low curvature
– True
– False
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Poll 3

• The Z is a random vector with an isotropic Gaussian distribution, 
the conditional distribution of the projection of Z on any affine 
plane is also isotropic
– True
– False

• If Z is a random vector with an isotropic Gaussian distribution, the 
conditional distribution of Z on any curved surface is also 
approximately Gaussian for surfaces of low curvature
– True
– False
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on : Make the average as close to the standard 
Gaussian as possible

58
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on : Make the average as close to the standard 
Gaussian as possible
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Approximating 

• We approximate as 

– where and are estimated such that approximates 
as closely as possible

– For convenience, we will assume is a diagonal matrix, represented 
entirely by its diagonal elements

• We will use as our proxy for 
60

and are parametric functions of ,
with parameters that we jointly represent as 



The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make the average as close to the standard 
Gaussian as possible

61
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
1

2
log 𝐶 −0.5 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ log 𝐶 + 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

 

• It is common to assume that all the (diagonal) entries of 𝐶 are identical, with value 𝜎ଶ

𝐿 𝜃, 𝜙, 𝜎ଶ = 𝑑 log 𝜎ଶ + ෍
1

 𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
1

2
log 𝐶 −0.5 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ log 𝐶 + 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

 

• It is common to assume that all the (diagonal) entries of 𝐶 are identical, with value 𝜎ଶ

𝐿 𝜃, 𝜙, 𝜎ଶ = 𝑑 log 𝜎ଶ + ෍
1

 𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௑,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ

65

ଶ



Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௑,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝜎ଶ = ෍ 𝑑log(𝜎ଶ) +
1

𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௑,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௑,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝜎ଶ = ෍ 𝑑log(𝜎ଶ) +
1

𝜎ଶ
𝑋 − 𝐷(𝑧; 𝜙) ଶ

(௑,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Remember this one

Sampling 

• For each training input , is obtained as a sample from 

• We use a standard “reparametrization” step to sample 
– Draw -dimensional vector from 
– Compute 

68
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This will be specific to and to the specific sample of for that (via )



Training the encoder

ଶ ଶ
ଶ

ଶ

(௫,௭)

– ଴.ହ

– is sampled from 
∗

ఏ

ଶ

• The derivative of ଶ with respect to can be computed using the 
chain rule ఏ

ଶ
௭

ଶ  ఏ(௑,௭)

– For use in backpropagation 69
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make the average as close to the standard 
Gaussian as possible

70
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Training the decoder

మ

• The derivative of this w.r.t and is trivially computed for backprop

71
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate theta to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make the average as close to the standard 
Gaussian as possible

72
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The constraint on P(z)

• The KL between 𝑄 𝑧|𝑋 = 𝑁(𝑧; 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃 ) and the standard Gaussian 𝑁(𝑧; 0, 𝐼) works out to

𝐾𝐿 𝑄 𝑧, 𝑥; 𝜃 , 𝑁(𝑧; 0, 𝐼) =
1

2
𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ்𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

– This is a function of encoder parameters 𝜃

• The overall loss thus becomes:
𝐿 𝜃, 𝜑, 𝜎ଶ

= ෍ 𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ் 𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

௫∈௑

+
1

 𝜎ଶ ෍ (𝑥 − 𝐷(𝑧; 𝜙)) ଶ

௫,௭ ∈[௑,௓]

+ 𝑑 log 𝜎ଶ

• This must be minimized to train the VAE
– The derivatives of all terms w.r.t. are easily computed using backprop
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The constraint on P(z)

• The KL between 𝑄 𝑧|𝑋 = 𝑁(𝑧; 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃 ) and the standard Gaussian 𝑁(𝑧; 0, 𝐼) works out to

𝐾𝐿 𝑄 𝑧|𝑋; 𝜃 , 𝑁(𝑧; 0, 𝐼) =
1

2
𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑋; 𝜃 ்𝜇 𝑋; 𝜃 − 𝑑 − log Σ 𝑋; 𝜃

– This is a function of encoder parameters 𝜃

• The overall loss thus becomes:
𝐿௏஺ா 𝜃, 𝜑, 𝜎ଶ

= ෍ 𝑡𝑟 Σ 𝑋; 𝜃 + 𝜇 𝑋; 𝜃 ்𝜇 𝑋; 𝜃 − 𝑑 − log Σ 𝑋; 𝜃

௑

+
1

 𝜎ଶ ෍ (𝑋 − 𝐷(𝑧; 𝜙)) ଶ

௫,௭ ∈[௑,௭]

+ 𝑑 log 𝜎ଶ

• This must be minimized to train the VAE
– The derivatives of all terms w.r.t. are easily computed using backprop
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The complete training pipeline

• Initialize and 

• Iterate:
– Sample ௫,ఌ from for each 

training instance

– Reestimate ଶ from 

௏஺ா
ଶ

்

௫∈௑

ଶ
ଶ

௫,௭ ∈[௑,௓]
ଶ
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But where are the neural nets?
• is a neural network

• and are generally modelled 
by a common network with two outputs
– The combined parameters of the network 

are 
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The VAE for generation

• Once trained the encoder can 
be discarded

• The rest of the network gives us 
a generative model for 

• Generating data using this part 
of the model should (ideally) 
give us data similar to the 
training data
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Recap: The VAE

• An autoencoder with statistical 
constraints on the hidden 
representation
– The encoder is a statistical model that 

computes the parameters of a Gaussian
– The decoder converts samples from the 

Gaussian back to the input

• The decoder is a generative model 
that, when excited by standard 
Gaussian inputs, generates samples 
similar to the training data
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The Variational AutoEncoder
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Sample z

Neural Net

Net Net

ଶ

Encoder

Decoder

The decoder is the actual
generative model.

The encoder is primarily needed
for training.
It can also be used to generate the 
(approximate) distribution of latent
space representations conditioned 
on specific inputs (much like a 
regular autoencoder).

is a latent-space representation 
of the data.

can also be used as an
expected latent representation of .



Poll 4 (@1579, @1580)
• A variational autoencoder is a generative extension of autoencoders that 

models probability distributions
– True
– False

• Select the true statements
– The standard VAE assumes a latent representation that has an isotropic 

Gaussian PDF
– The VAE model requires addition of Gaussian noise to the output of a 

regularized AE in order to permit the output to fill space beyond a lower-
dimensional manifold

– The decoder of the VAE can be used to generate samples from the distribution 
of the data it is trained on, if the input to the decoder is drawn from a 
standard Gaussian
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Poll 4
• A variational autoencoder is a generative extension of autoencoders that 

models probability distributions
– True
– False

• Select the true statements
– The standard VAE assumes a latent representation that has an isotropic 

Gaussian PDF
– The VAE model requires addition of Gaussian noise to the output of a 

regularized AE in order to permit the output to fill space beyond a lower-
dimensional manifold

– The decoder of the VAE can be used to generate samples from the 
distribution of the data it is trained on, if the input to the decoder is drawn 
from a standard Gaussian
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VAE examples

• Top: VAE trained on 
MNIST and used to 
generate new data

• Below: VAE trained 
on faces, and used 
to generate new 
data
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VAE and latent spaces

• The latent space often captures 
underlying structure in the data 
in a smooth manner
– Varying continuously in different 

directions can result in plausible 
variations in the drawn output

• Reproductions of an input can 
be manipulated by wiggling 
around its expected value 
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VAE conclusions
• Simple statistical extension of the autoencoder

• Excellent generative models for the distribution 
of data 
– Various extensions such as Conditional VAEs, which 

model conditional distributions, such as 
• Straight-forward extension where the conditioning variable 

is an additional input to the encoder and decoder

• Read the literature on the topic, it is vast
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VAE limitations

• The decoder is not generally invertible
– Cannot get a closed form for 

• This requires an Encoder that approximates 

• Solution: “Normalizing flow models” – Invertible 
decoders that give you closed forms for 
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VAE limitations

• The decoder must transform a standard Gaussian all the way to the target distribution in one step
– This is often too large a gap
– Results in blurry, unsatisfactory generation

• Solution: Make the seed model closer to the final distribution
– Make it itself a VAE

• Whose seed model is a VAE
– Whose seed model is a VAE

» …

– AKA Diffusion models
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