Deep Learning Diffusion Hao Chen

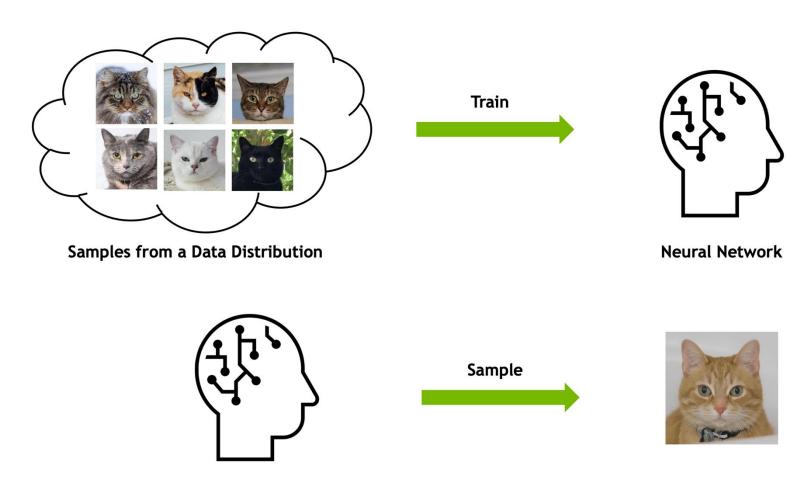
Fall 2024
Attendance: @

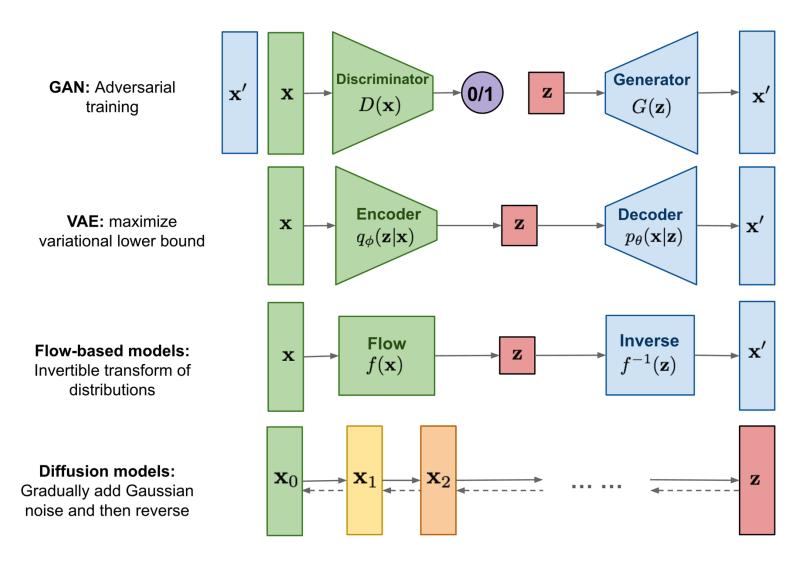
Generative vs. Discriminative

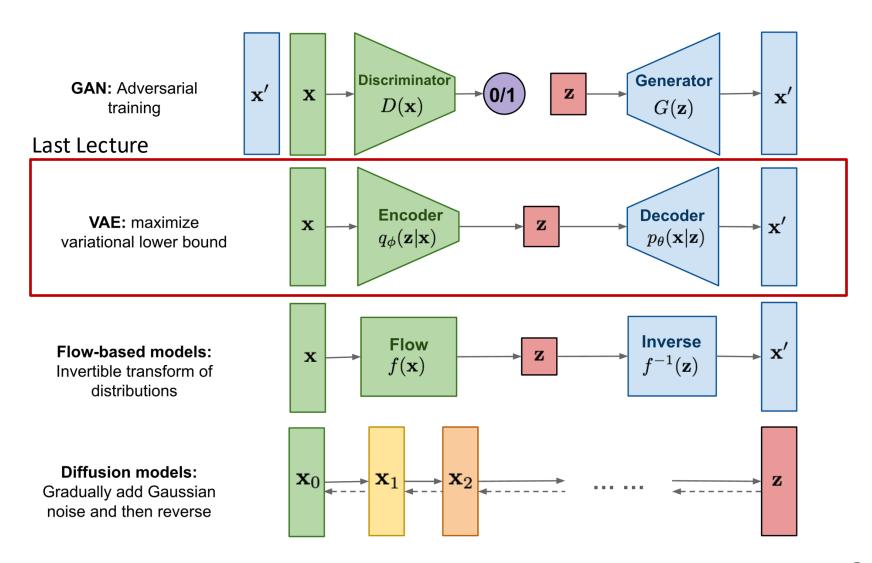
Generative models learn the data distribution

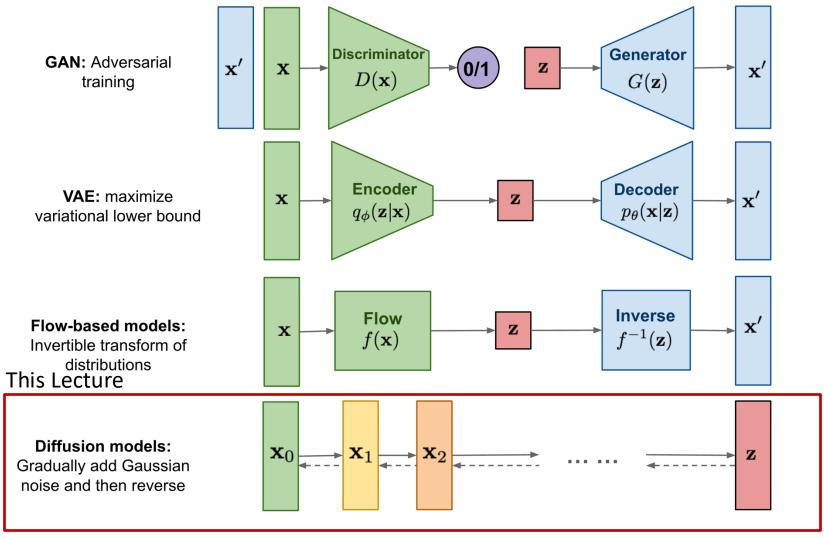
	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(\boldsymbol{x} \boldsymbol{y})$ to then deduce $P(\boldsymbol{y} \boldsymbol{x})$
What's learned	Decision boundary	Probability distributions of the data
Illustration		

Learning to generate data









A Fast Evolving Field

VAEs, 2013 GANs, 2014 PixelCNN, 2016 BigGAN, 2019 Imagen, 2022 SORA 2024

Content

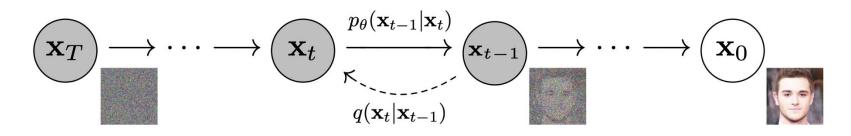
- Denoising Diffusion Model Basics
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Denoising Diffusion Implicit Model (DDIM)
- Conditional Diffusion Models
- Applications of Diffusion Models

Content

- Diffusion Model Basics
 - Diffusion Models as Stacking VAEs
 - Diffusion Models: Forward, Reverse, Training, Sampling
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Denoising Diffusion Implicit Model (DDIM)
- Conditional Diffusion Models
- Applications of Diffusion Models

Denoising Diffusion Models

what we often see about diffusion models



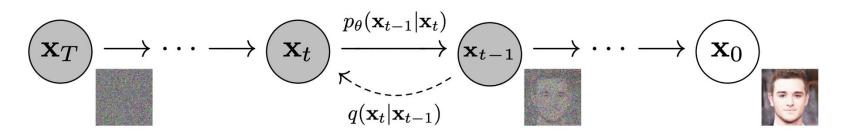
$$egin{aligned} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}
ight) &= \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{ar{lpha}_{t}}\mathbf{x}_{0}, (1-ar{lpha}_{t})\mathbf{I}
ight) \end{aligned} \qquad p\left(\mathbf{x}_{T}
ight) &= \mathcal{N}\left(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}
ight) \\ \mathbf{x}_{t} &= \sqrt{ar{lpha}_{t}}\mathbf{x}_{0} + \sqrt{(1-ar{lpha}_{t})}\epsilon \end{aligned} \qquad p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) &= \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{ heta}\left(\mathbf{x}_{t}, t
ight), \sigma_{t}^{2}\mathbf{I}
ight) \end{aligned}$$

Forward diffusion process

Reverse denoising process

Denoising Diffusion Models

what we often see about diffusion models



$$egin{aligned} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}
ight) &= \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{ar{lpha}_{t}}\mathbf{x}_{0}, (1-ar{lpha}_{t})\mathbf{I}
ight) \end{aligned} \qquad p\left(\mathbf{x}_{T}
ight) &= \mathcal{N}\left(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}
ight) \\ \mathbf{x}_{t} &= \sqrt{ar{lpha}_{t}}\mathbf{x}_{0} + \sqrt{(1-ar{lpha}_{t})}\epsilon \end{aligned} \qquad p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) &= \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{ heta}\left(\mathbf{x}_{t}, t
ight), \sigma_{t}^{2}\mathbf{I}
ight) \end{aligned}$$

Forward diffusion process

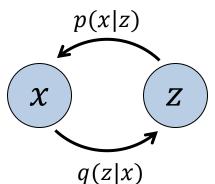
Reverse denoising process

this lecture: denoising diffusion is a stack of VAEs

Recap: Variational Autoencoders

VAEs: a likelihood-based generative model

• Encoder: an inference model that approximates the posterior q(z|x)

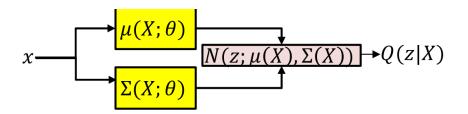


 Decoder: a generative model that transforms a Gaussian variable z to real data

Training: maximize the ELBO

Recap: Variational Autoencoders

Decoder: transforms a Gaussian variable to real data $\begin{array}{c} x = D(z) + e \\ \hline \\ z \sim N(0,I) \\ \hline \\ e \sim N(0,C) \end{array}$ VAE $\begin{array}{c} p(x|z) \\ \hline \\ q(z|x) \end{array}$



Encoder: an inference model approximates the posterior, i.e. Gaussian

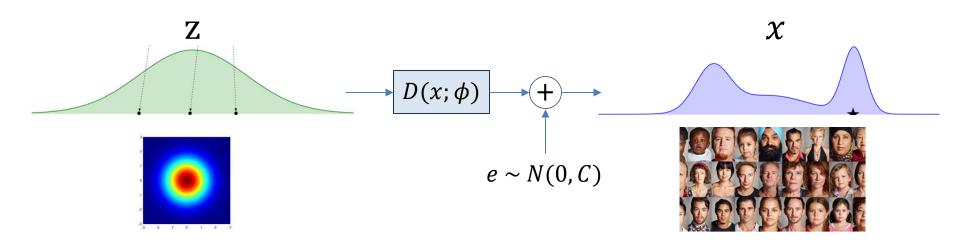
VAEs are good, but...

Blurry results


```
66666666666666666
```

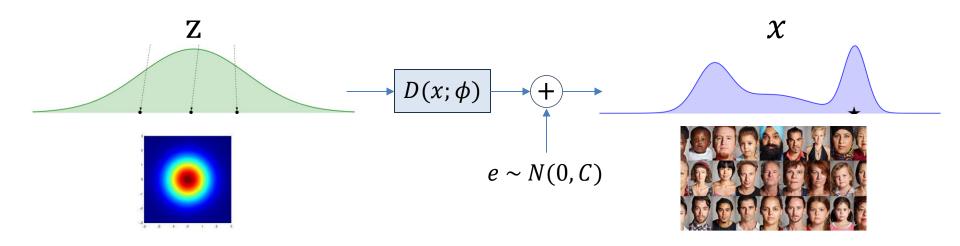
Limitations of VAEs

- Decoder must transform a standard Gaussian all the way to the target distribution in one-step
 - Often too large a gap
 - Blurry results are generated



Limitations of VAEs

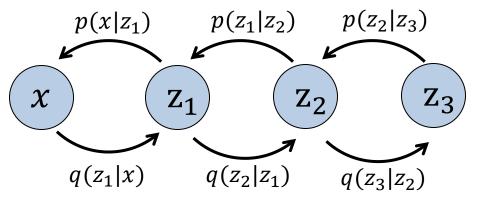
- Decoder must transform a standard Gaussian all the way to the target distribution in one-step
 - Often too large a gap
 - Blurry results are generated



 Solution: have some intermediate latent variables to reduce the gap of each step

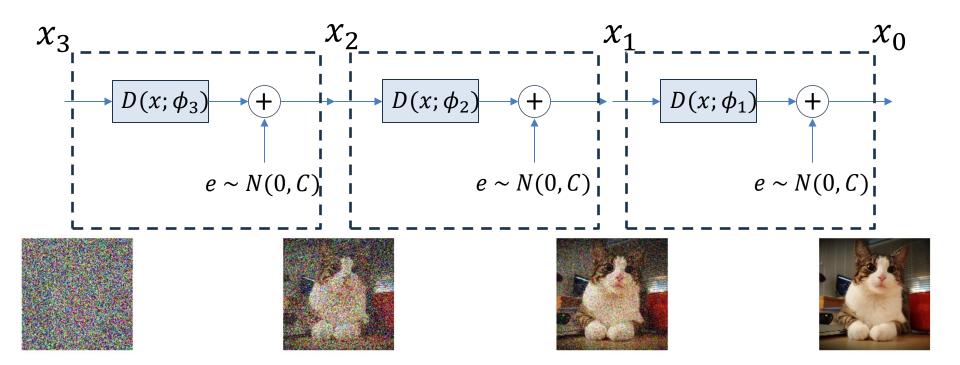
Hierarchical VAEs

- Hierarchical VAEs Stacking VAEs on top of each other
 - Multiple (T) intermediate latent
 - Joint distribution $p\left(\boldsymbol{x}, \boldsymbol{z}_{1:T}\right) = p\left(\boldsymbol{z}_{T}\right)p_{\boldsymbol{\theta}}\left(\boldsymbol{x} \mid \boldsymbol{z}_{1}\right) \prod_{t=2}^{T} p_{\boldsymbol{\theta}}\left(\boldsymbol{z}_{t-1} \mid \boldsymbol{z}_{t}\right)$
 - $\ \mathsf{Posterior} \ \ q_{\phi}\left(\boldsymbol{z}_{1:T} \mid \boldsymbol{x}\right) = q_{\phi}\left(\boldsymbol{z}_{1} \mid \boldsymbol{x}\right) \prod_{t=2}^{T} q_{\phi}\left(\boldsymbol{z}_{t} \mid \boldsymbol{z}_{t-1}\right)$
- Better likelihood achieved!



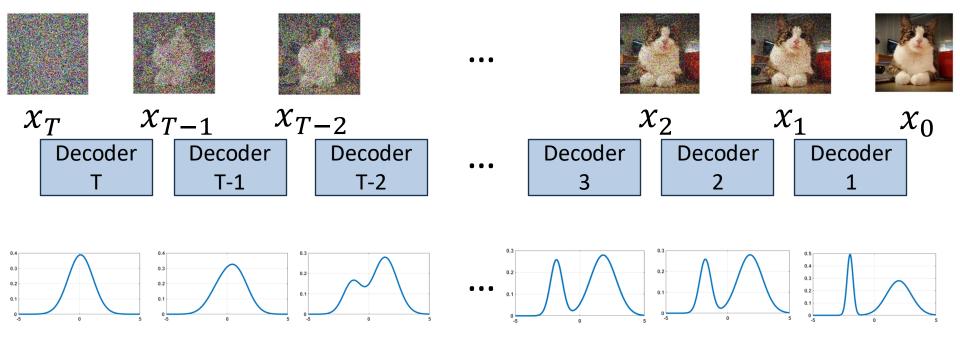
Stacking VAEs

- Each step, the decoder removes part of the noise
- Provides a seed model closer to final distribution



Stacking VAEs

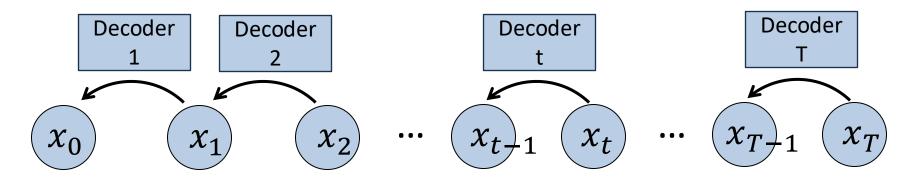
- We can have many many steps (in total T)...
- Each step incrementally recovers the final distribution



Looks familiar?

Diffusion Models are Stacking VAEs

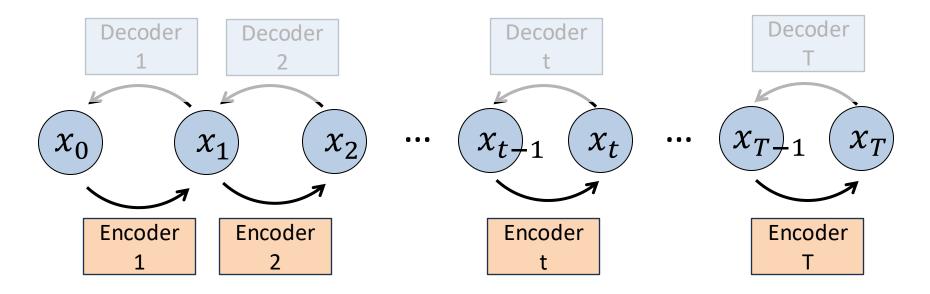
Diffusion models are special cases of Stacking VAEs



- The reverse denoising process is the stack of decoders
- What about encoders?

Diffusion Models are Stacking VAEs

Diffusion models are special case of Stacking VAEs



- In VAEs, encoders are learned with KL-divergence between the posterior and the prior
- Suffers from the 'posterior-collapse' issue
- Diffusion models use fixed inference encoders

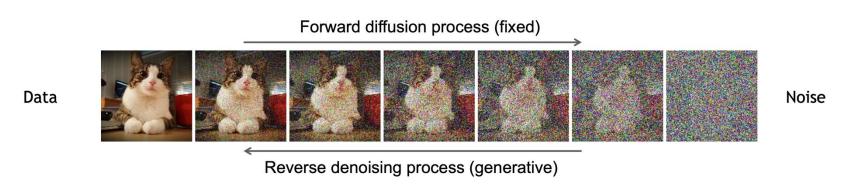
Poll

Denoising Diffusion Models

Diffusion models have two processes

Forward diffusion process gradually adds noise to input

 Reverse denoising process learns to generate data by denoising



Forward Diffusion Process

- Forward diffusion process is stacking fixed VAE encoders
 - gradually adding Gaussian noise according to schedule β_t

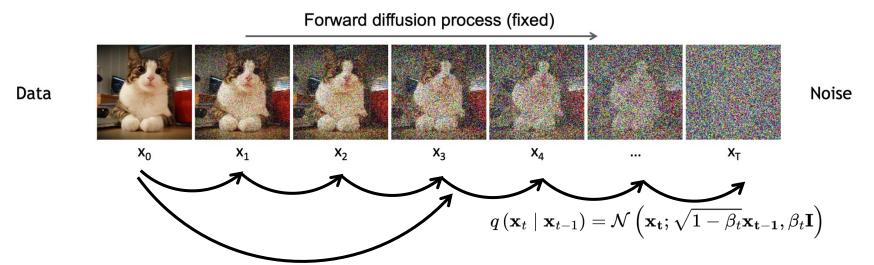
$$egin{aligned} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) &= \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight) \ q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}
ight) &= \prod_{t=1}^{T} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) \end{aligned}$$

Data

Forward diffusion process (fixed)

Noise

Forward Diffusion Process



• The forward process allows sampling of x_t at arbitrary timestep t in closed form:

$$egin{aligned} q\left(\mathbf{x}_t \mid \mathbf{x}_0
ight) &= \mathcal{N}\left(\mathbf{x}_t; \sqrt{ar{lpha}_t}\mathbf{x}_0, (1-ar{lpha}_t)\mathbf{I}
ight)
ight) & ar{lpha}_t &= \prod_{s=1}^t (1-eta_s) \ \mathbf{x}_t &= \sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{(1-ar{lpha}_t)}\epsilon & \epsilon &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{aligned}$$

• The noise schedule (eta_t values) is designed such that

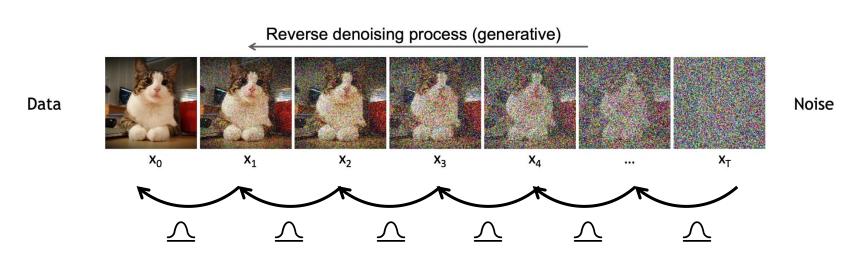
$$q\left(\mathbf{x}_{T}\mid\mathbf{x}_{0}
ight)pprox\mathcal{N}\left(\mathbf{x}_{T};\mathbf{0},\mathbf{I}
ight)$$

- Generation process
 - Sample $\mathbf{x}_T \sim \mathcal{N}\left(\mathbf{x}_T; \mathbf{0}, \mathbf{I}\right)$
 - Iteratively sample $\mathbf{x}_{t-1} \sim q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)$

- $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ not directly tractable
- But can be estimated with a Gaussian distribution if β_t is small at each step
 - The purpose of our stack of VAE decoders!

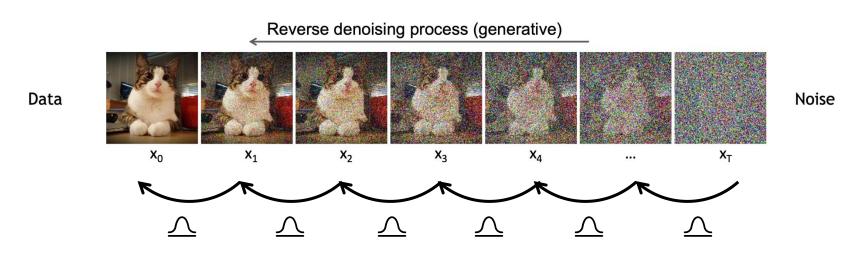
- Reverse diffusion process is stacking learnable VAE decoders
 - Predicting the mean and std of added Gaussian Noise

$$egin{aligned} p\left(\mathbf{x}_{T}
ight) &= \mathcal{N}\left(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}
ight) & p_{ heta}\left(\mathbf{x}_{0:T}
ight) = p\left(\mathbf{x}_{T}
ight) \prod_{t=1}^{T} p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) \ p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) &= \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{ heta}\left(\mathbf{x}_{t}, t
ight), \sigma_{t}^{2} \mathbf{I}
ight) \end{aligned}$$



- Reverse diffusion process is stacking learnable VAE decoders
 - Predicting the mean and std of added Gaussian Noise

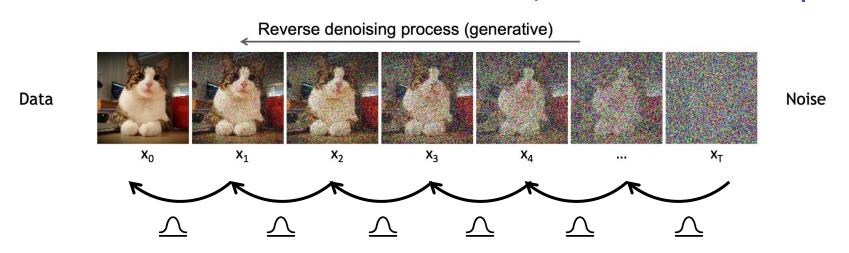
$$p\left(\mathbf{x}_{T}
ight) = \mathcal{N}\left(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}
ight) \qquad p_{ heta}\left(\mathbf{x}_{0:T}
ight) = p\left(\mathbf{x}_{T}
ight) \prod_{t=1}^{T} p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) \ p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) = \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{ heta}\left(\mathbf{x}_{t}, t
ight), \sigma_{t}^{2}\mathbf{I}
ight)$$



- Reverse diffusion process is stacking learnable VAE decoders
 - Predicting the mean and std of added Gaussian Noise

$$egin{aligned} p\left(\mathbf{x}_{T}
ight) &= \mathcal{N}\left(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}
ight) & p_{ heta}\left(\mathbf{x}_{0:T}
ight) = p\left(\mathbf{x}_{T}
ight) \prod_{t=1}^{T} p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) \ p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight) &= \mathcal{N}\left(\mathbf{x}_{t-1}; \mu_{ heta}\left(\mathbf{x}_{t}, t
ight), \sigma_{t}^{2} \mathbf{I}
ight) \end{aligned}$$

Trainable Network, Shared Across All Timesteps



Learning the Denoising Model

 Denoising models are trained with variational upper bound (negative ELBO), as VAEs

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{ heta}\left(\mathbf{x}_0
ight)
ight] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log rac{p_{ heta}\left(\mathbf{x}_{0:T}
ight)}{q\left(\mathbf{x}_{1:T}\mid\mathbf{x}_0
ight)}
ight] =: L$$

which derives to:

$$L = \mathbb{E}_q[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_T \mid \mathbf{x}_0\right) \| p\left(\mathbf{x}_T\right)\right)}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)\right) - \log p_{\theta}\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)\right)}_{L_0}$$

tractable posterior distribution (closed-form)

Learning the Denoising Model

 Denoising models are trained with variational upper bound (negative ELBO), as VAEs

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{ heta}\left(\mathbf{x}_0
ight)
ight] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log rac{p_{ heta}\left(\mathbf{x}_{0:T}
ight)}{q\left(\mathbf{x}_{1:T}\mid\mathbf{x}_0
ight)}
ight] =: L$$

which derives to:

$$L = \mathbb{E}_q[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_T \mid \mathbf{x}_0\right) \| p\left(\mathbf{x}_T\right)\right)}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)\right) - \log p_{\theta}\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)\right)}_{L_0}$$
 constant Scaling

tractable posterior distribution (closed-form)

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}
ight) = \mathcal{N}\left(\mathbf{x}_{t-1}; ilde{\mu}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}
ight), ilde{eta}_{t}\mathbf{I}
ight)$$
 where $ilde{\mu}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}
ight) := rac{\sqrt{ar{lpha}_{t-1}}eta_{t}}{1-ar{lpha}_{t}}\mathbf{x}_{0} + rac{\sqrt{1-eta_{t}}\left(1-ar{lpha}_{t-1}
ight)}{1-ar{lpha}_{t}}\mathbf{x}_{t} ext{ and } ilde{eta}_{t} := rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_{t}}eta_{t}$

Learning the Denoising Model

 Denoising models are trained with variational upper bound (negative ELBO), as VAEs

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{ heta}\left(\mathbf{x}_0
ight)
ight] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log rac{p_{ heta}\left(\mathbf{x}_{0:T}
ight)}{q\left(\mathbf{x}_{1:T}\mid\mathbf{x}_0
ight)}
ight] =: L$$

which derives to:

$$L = \mathbb{E}_q[\underbrace{D_{ ext{KL}}\left(q\left(\mathbf{x}_T \mid \mathbf{x}_0
ight) \| p\left(\mathbf{x}_T
ight)
ight)}_{L_T} + \sum_{t>1} \underbrace{D_{ ext{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0
ight) \| p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t
ight)
ight)}_{L_{t-1}} - \underbrace{\log p_{ heta}\left(\mathbf{x}_0 \mid \mathbf{x}_1
ight)}_{L_0}]$$

tractable posterior distribution (closed-form)

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}
ight) = \mathcal{N}\left(\mathbf{x}_{t-1}; \tilde{\mu}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}
ight), \tilde{eta}_{t}\mathbf{I}
ight)$$
 where $\tilde{\mu}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}
ight) := rac{\sqrt{ar{lpha}_{t-1}}eta_{t}}{1 - ar{lpha}_{t}}\mathbf{x}_{0} + rac{\sqrt{1 - eta_{t}}\left(1 - ar{lpha}_{t-1}
ight)}{1 - ar{lpha}_{t}}\mathbf{x}_{t} ext{ and } ilde{eta}_{t} := rac{1 - ar{lpha}_{t-1}}{1 - ar{lpha}_{t}}eta_{t}$

Parameterizing the Denoising Model

KL divergence has a simple form between Gaussians

$$L_{t-1} = D_{ ext{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}
ight) \left\|p_{ heta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}
ight)
ight) = \mathbb{E}_{q}\left[rac{1}{2\sigma_{t}^{2}} \left\| ilde{\mu}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}
ight) - \mu_{ heta}\left(\mathbf{x}_{t}, t
ight)
ight\|^{2}
ight] + C$$

• Recall that: $\mathbf{x}_t = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{(1-\bar{\alpha}_t)}\epsilon$

$$ilde{\mu}_t\left(\mathbf{x}_t,\mathbf{x}_0
ight) = rac{1}{\sqrt{1-eta_t}}igg(\mathbf{x}_t - rac{eta_t}{\sqrt{1-ar{lpha}_t}}\epsilonigg)$$

Trainable network predicts the noise mean

$$\mu_{ heta}\left(\mathbf{x}_{t},t
ight)=rac{1}{\sqrt{1-eta_{t}}}igg(\mathbf{x}_{t}-rac{eta_{t}}{\sqrt{1-ar{lpha}_{t}}}igsime_{ heta}\left(\mathbf{x}_{t},t
ight)igg)$$

Final Objective

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\frac{eta_t^2}{2\sigma_t^2 \left(1 - eta_t
ight) \left(1 - ar{lpha}_t
ight)} \|\epsilon - \epsilon_{ heta} (\underbrace{\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}}_{\mathbf{x}_t} \epsilon, t) \|^2] + C_{_{eta 33}}$$

Simplified Training Objective

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[rac{eta_t^2}{2\sigma_t^2 \left(1 - eta_t
ight) \left(1 - ar{lpha}_t
ight)} \left\| \epsilon - \epsilon_ heta \left(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}\epsilon, t
ight)
ight\|^2
ight] }{\lambda_t}$$

• λ_t ensures the weighting for correct maximum likelihood estimation

• In DDPM, this is further simplified to:

$$L_{ ext{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)}[\|\epsilon - \epsilon_{ heta}(\underbrace{\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}}_{\mathbf{x}_t}\epsilon, t)\|^2]$$

Summary: Training and Sampling

Algorithm 1 Training

```
1: repeat
2: \mathbf{x}_0 \sim q(\mathbf{x}_0)
3: t \sim \mathrm{Uniform}(\{1, \dots, T\})
4: \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
5: Take gradient descent step on \nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \|^2
6: until converged
```

Algorithm 2 Sampling

```
1: \mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})

2: for t = T, \dots, 1 do

3: \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) if t > 1, else \mathbf{z} = \mathbf{0}

4: \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}

5: end for

6: return \mathbf{x}_0
```

Summary: Noise Schedule

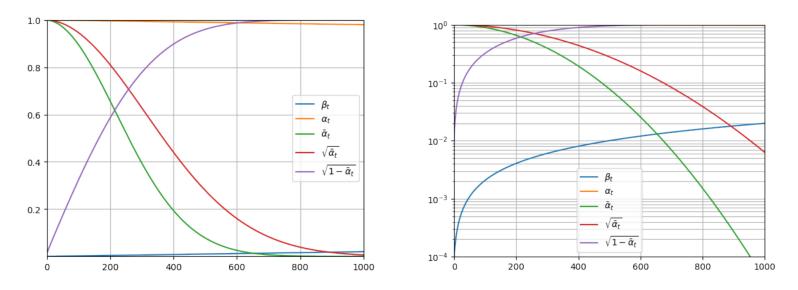
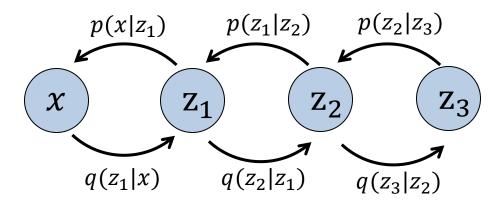


Figure 2: Parameter values for $\beta = [10^{-4}, 0.02]$ over 1000 time steps t using a linear schedule. The information in the two figures are the same, but the right-hand side uses log-scale on the y-axis to show the speed of which $\bar{\alpha}_t$ goes towards zero.

Connection with Hierarchical VAEs

- Diffusion models are special case of Hierarchical VAEs
 - Fixed inference models in forward process
 - Latent variables have same dimension as data
 - ELBO is decomposed to each timestep: faster to train
 - Model is trained with some weighting of ELBO



Poll

Content

- Diffusion Model Basics
 - Diffusion Models as Stacking VAEs
 - Diffusion Models: Forward, Reverse, Training, Sampling
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Classifier-Free Guidance for Conditional Models
- Applications of Diffusion Models

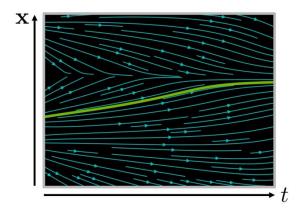
Why SDEs?

- A unified framework for interpreting diffusion models and score-based generation models
 - Variants of diffusion-based and flow-based models

Stochastic Differential Equations

Ordinary Differential Equation (ODE):

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) \text{ or } \mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t)\mathrm{d}t$$



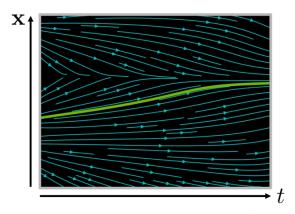
Analytical Solution:
$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) \mathrm{d}\tau$$

Iterative Numerical
$$\mathbf{x}(t+\Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t)\Delta t$$

Stochastic Differential Equations

Ordinary Differential Equation (ODE):

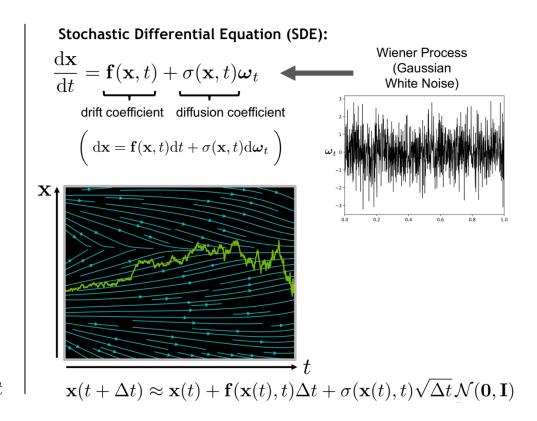
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) \text{ or } \mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t) \mathrm{d}t$$



Analytical Solution:
$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) \mathrm{d}\tau$$

Iterative

Numerical
$$\mathbf{x}(t+\Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t)\Delta t$$



Score Matching

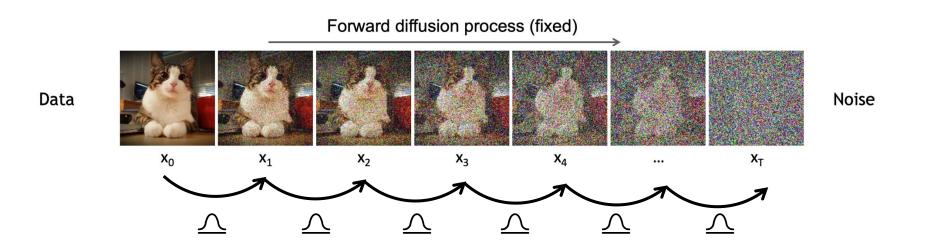
General form of probability density function

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}}$$

- Maximizing the log-likelihood requires us to know $Z_{ heta}$
 - Often intractable

Instead, we can model the score function

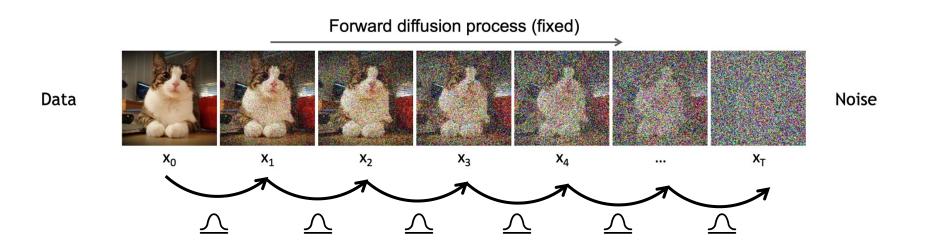
$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$



Consider a forward process with many many small steps (continuous time)

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) = \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight)$$

$$\mathbf{x}_t = \sqrt{1 - eta_t} \mathbf{x}_{t-1} + \sqrt{eta_t} \mathcal{N}(\mathbf{0}, \mathbf{I})$$



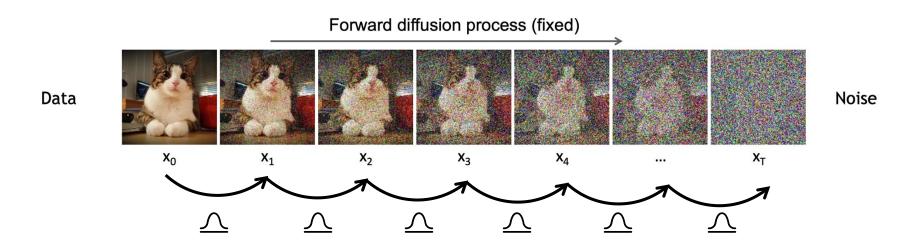
Consider a forward process with many many small steps

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) = \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight)$$

$$egin{aligned} \mathbf{x}_t &= \sqrt{1-eta_t}\mathbf{x}_{t-1} + \sqrt{eta_t}\mathcal{N}(\mathbf{0},\mathbf{I}) \ &= \sqrt{1-eta(t)\Delta t}\mathbf{x}_{t-1} + \sqrt{eta(t)\Delta t}\mathcal{N}(\mathbf{0},\mathbf{I}) \end{aligned} \qquad (eta_t := eta(t)\Delta t)$$

Allows different size along t

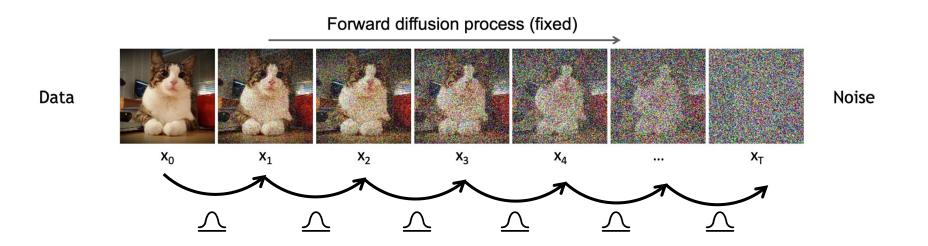
Step size



Consider a forward process with many many small steps

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) = \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight)$$

$$egin{aligned} \mathbf{x}_t &= \sqrt{1-eta_t}\mathbf{x}_{t-1} + \sqrt{eta_t}\mathcal{N}(\mathbf{0},\mathbf{I}) \ &= \sqrt{1-eta(t)\Delta t}\mathbf{x}_{t-1} + \sqrt{eta(t)\Delta t}\mathcal{N}(\mathbf{0},\mathbf{I}) & (eta_t := eta(t)\Delta t) \ &pprox \mathbf{x}_{t-1} - rac{eta(t)\Delta t}{2}\mathbf{x}_{t-1} + \sqrt{eta(t)\Delta t}\mathcal{N}(\mathbf{0},\mathbf{I}) & ext{Taylor expansion} \end{aligned}$$

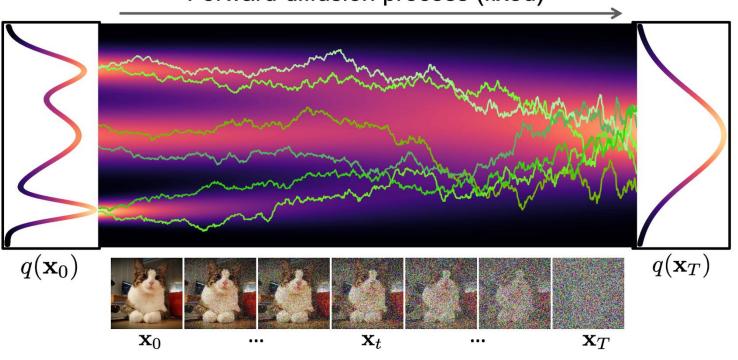


An iterative update that can be viewed as SDEs

$$\mathbf{x}_{t}pprox\mathbf{x}_{t-1}-rac{eta(t)\Delta t}{2}\mathbf{x}_{t-1}+\sqrt{eta(t)\Delta t}\mathcal{N}(\mathbf{0},\mathbf{I})$$

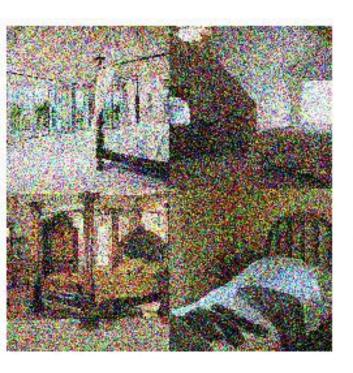
$$\mathrm{d}\mathbf{x}_t = -rac{1}{2}eta(t)\mathbf{x}_t \; \mathrm{d}t + \sqrt{eta(t)}\mathrm{d}oldsymbol{\omega}_t$$

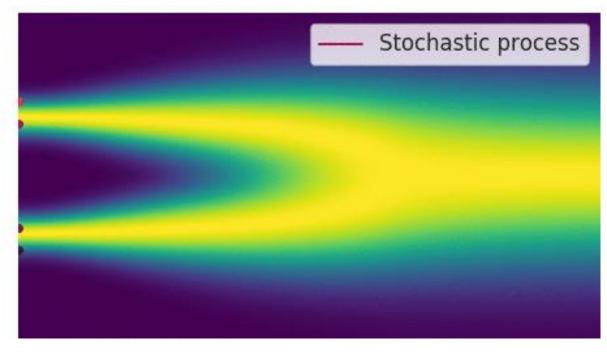
Stochastic Differential Equation (SDE)



$$\mathrm{d}\mathbf{x}_t = -rac{1}{2}eta(t)\mathbf{x}_t \; \mathrm{d}t + \sqrt{eta(t)}\mathrm{d}oldsymbol{\omega}_t$$

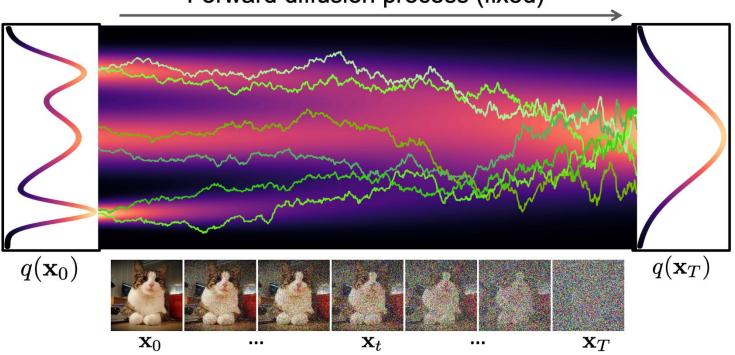
Drift Term Diffusion Term (Pulls toward the mode) (Injects Noise)





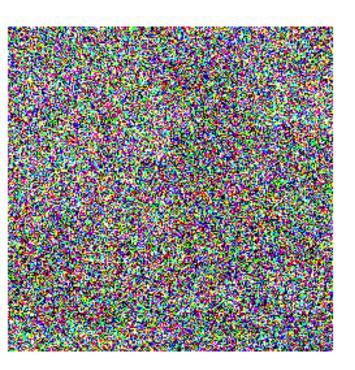
Generative Reverse SDEs

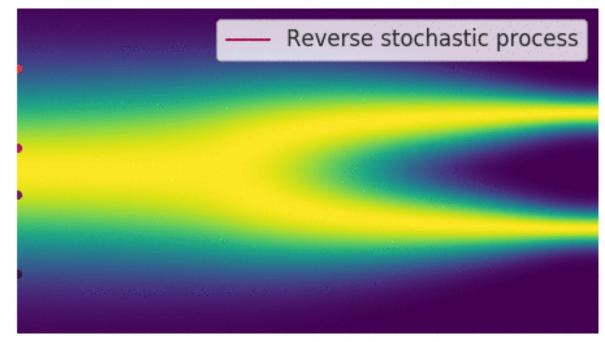
Forward diffusion process (fixed)



The forward SDE has a reverse form:

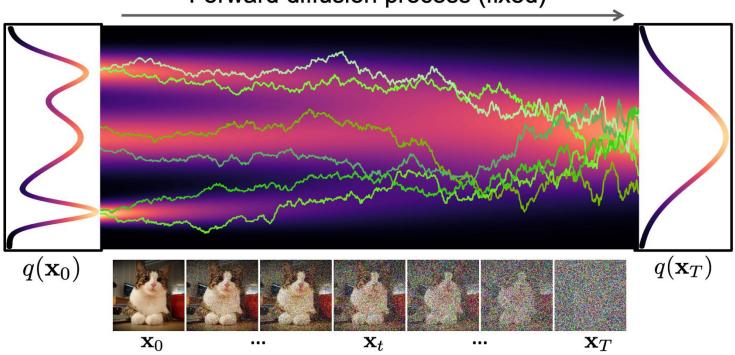
$$\mathrm{d}\mathbf{x}_t = \left[-rac{1}{2}eta(t)\mathbf{x}_t - eta(t)
abla_{\mathbf{x}_t}\log q_t\left(\mathbf{x}_t
ight)
ight]\mathrm{d}t + \sqrt{eta(t)}\mathrm{d}\overline{oldsymbol{\omega}}_t$$





Generative Reverse SDEs

Forward diffusion process (fixed)

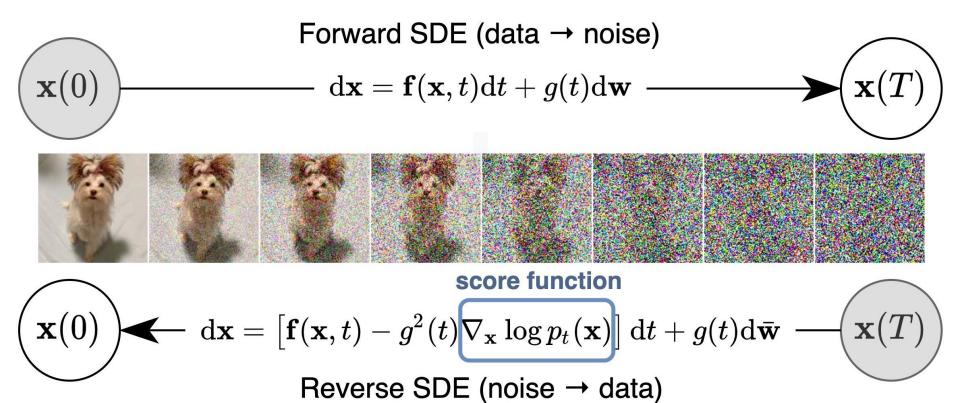


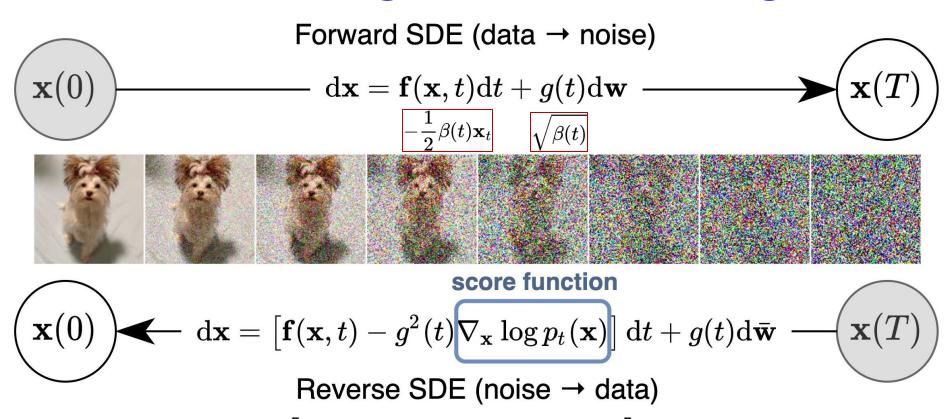
The forward SDE has a reverse form:

$$\mathrm{d}\mathbf{x}_t = \left[-rac{1}{2}eta(t)\mathbf{x}_t - eta(t) \overline{
abla_{\mathbf{x}_t} \log q_t\left(\mathbf{x}_t
ight)}
ight] \mathrm{d}t + \sqrt{eta(t)} \mathrm{d}\overline{oldsymbol{\omega}}_t$$

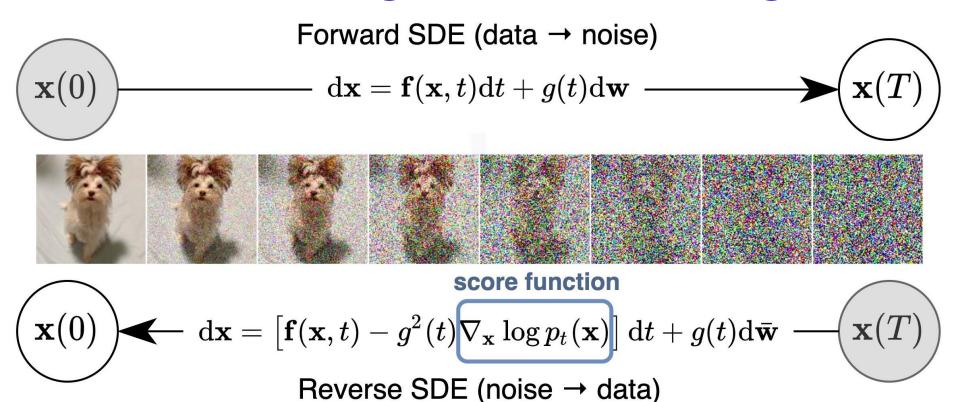
Score function

How to get it?





$$\mathrm{d}\mathbf{x}_t = \left[-rac{1}{2}eta(t)\mathbf{x}_t - eta(t)
abla_{\mathbf{x}_t}\log q_t\left(\mathbf{x}_t
ight)
ight]\mathrm{d}t + \sqrt{eta(t)}\mathrm{d}\overline{oldsymbol{\omega}}_t$$



$$\min_{\boldsymbol{\theta}} \underbrace{\mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x}_t \sim q_t(\mathbf{x}_t \mid \mathbf{x}_0)}}_{\text{diffusion}} \underbrace{\tilde{w}(t)}_{\text{diffusion}} \underbrace{\tilde{w}(t)}_{\text{neural}} - \underbrace{\nabla_{\mathbf{x}_t} \log q_t \left(\mathbf{x}_t \mid \mathbf{x}_0\right)}_{\text{score of diffused}} \|_2^2$$

$$\underset{\text{time } t \text{ sample } \mathbf{x}_0 \text{ sample } \mathbf{x}_t \text{ function}}_{\text{topological problem}} \underbrace{\tilde{w}(t)}_{\text{neural}} - \underbrace{\nabla_{\mathbf{x}_t} \log q_t \left(\mathbf{x}_t \mid \mathbf{x}_0\right)}_{\text{score of diffused}} \|_2^2$$

Looks similar?

Denoising score matching objective

$$\min_{\boldsymbol{\theta}} \underbrace{\mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x}_t \sim q_t(\mathbf{x}_t \mid \mathbf{x}_0)}}_{\text{diffusion}} \underbrace{\tilde{w}(t)}_{\text{deffusion}} \underbrace{\frac{\tilde{w}(t)}{\mathbf{x}_t \mid \mathbf{x}_0}}_{\text{neural}} - \underbrace{\frac{\nabla_{\mathbf{x}_t} \log q_t \left(\mathbf{x}_t \mid \mathbf{x}_0\right)}{\text{score of diffused}}}_{\text{data sample}}^{2}$$

Re-parametrized sampling:

$$\mathbf{x}_t = lpha_t \mathbf{x}_0 + \sigma_t oldsymbol{\epsilon} \quad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Score function:

$$abla_{\mathbf{x}_t} \log q_t \left(\mathbf{x}_t \mid \mathbf{x}_0
ight) = -
abla_{\mathbf{x}_t} rac{\left(\mathbf{x}_t - lpha_t \mathbf{x}_0
ight)^2}{2\sigma_t^2} = - rac{\mathbf{x}_t - lpha_t \mathbf{x}_0}{\sigma_t^2} = - rac{lpha_t \mathbf{x}_0 + \sigma_t oldsymbol{\epsilon} - lpha_t \mathbf{x}_0}{\sigma_t^2} = - rac{oldsymbol{\epsilon}}{\sigma_t}$$

Denoising network:

$$\mathbf{s}_{oldsymbol{ heta}}\left(\mathbf{x}_{t},t
ight):=-rac{oldsymbol{\epsilon}_{oldsymbol{ heta}}\left(\mathbf{x}_{t},t
ight)}{\sigma_{t}}$$

Final objective:

$$\min_{oldsymbol{ heta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \hat{w}(t) \cdot \|oldsymbol{\epsilon} - oldsymbol{\epsilon}_{oldsymbol{ heta}} \left(\mathbf{x}_t,t
ight) \|_2^2 \quad \hat{w}(t) = rac{w(t)}{\sigma_t}$$

Weighted Diffusion Objective

Denoising score matching objective with loss weighting

$$\min_{oldsymbol{ heta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})} rac{\lambda(t)}{\sigma_t^2} \|oldsymbol{\epsilon} - oldsymbol{\epsilon}_{oldsymbol{ heta}} (\mathbf{x}_t,t) \|_2^2$$

- Loss weights trade-off between
 - good perceptual quality: $\lambda(t) = \sigma_t^2$
 - maximum likelihood: $\lambda(t) = \beta(t)$
- More complicated model parametrization and loss weighting leads to different diffusion model variants in the literature!

Poll

Content

- Diffusion Model Basics
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Denoising Diffusion Implicit Model (DDIM)
- Conditional Diffusion Models
- Applications of Diffusion Models

Many Steps in Diffusion

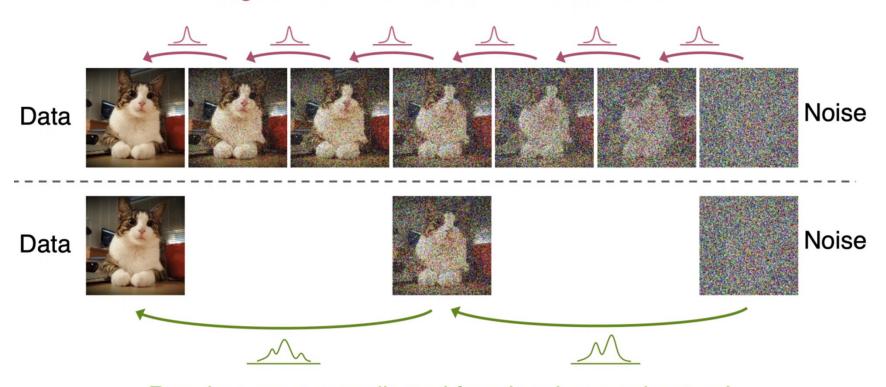
Slow in generation

In Training, we randomly sample one time step

- But in inference, we must transit from T to 0
 - 1000 steps
 - extremely slow for raw images/signals

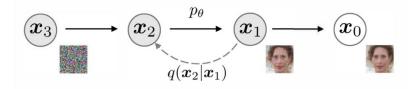
Can we do generation with less steps?

Denoising Process with Uni-modal Normal Distribution



Requires more complicated functional approximators!

DDPM

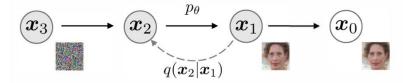


$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) = \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight)$$

$$q\left(\mathbf{x}_{t}\mid\mathbf{x}_{0}
ight)=\mathcal{N}\left(\mathbf{x}_{t};\sqrt{ar{lpha}_{t}}\mathbf{x}_{0},\left(1-ar{lpha}_{t}
ight)\mathbf{I}
ight)
ight)$$

$$L_{ ext{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)}[\|\epsilon - \epsilon_{ heta}(\underbrace{\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}}_{\mathbf{x}_t}\epsilon, t)\|^2]$$

DDPM



Only depends on previous step

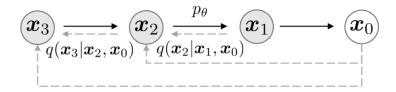
$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}
ight) = \mathcal{N}\left(\mathbf{x_{t}}; \sqrt{1-eta_{t}}\mathbf{x_{t-1}}, eta_{t}\mathbf{I}
ight)$$

$$q\left(\mathbf{x}_{t}\mid\mathbf{x}_{0}
ight)=\mathcal{N}\left(\mathbf{x}_{t};\sqrt{ar{lpha}_{t}}\mathbf{x}_{0},\left(1-ar{lpha}_{t}
ight)\mathbf{I}
ight)
ight)$$

$$L_{ ext{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)}[\|\epsilon - \epsilon_{ heta}(\underbrace{\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}}_{\mathbf{x}_t}\epsilon, t)\|^2]$$

Only used during training

DDIM

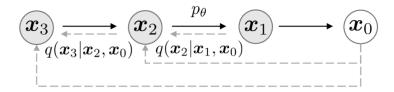


$$egin{aligned} q_{\sigma}\left(oldsymbol{x}_{1:T} \mid oldsymbol{x}_{0}
ight) &:= q_{\sigma}\left(oldsymbol{x}_{T} \mid oldsymbol{x}_{0}
ight) \prod_{t=2}^{T} q_{\sigma}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}, oldsymbol{x}_{0}
ight) \ q_{\sigma}\left(oldsymbol{x}_{T} \mid oldsymbol{x}_{0}
ight) &= \mathcal{N}\left(\sqrt{lpha_{T}}oldsymbol{x}_{0}, \left(1-lpha_{T}
ight)oldsymbol{I}
ight) \ q_{\sigma}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}, oldsymbol{x}_{0}
ight) &= \mathcal{N}\left(\sqrt{lpha_{t-1}}oldsymbol{x}_{0} + \sqrt{1-lpha_{t-1}-\sigma_{t}^{2}} \cdot rac{oldsymbol{x}_{t}-\sqrt{lpha_{t}}oldsymbol{x}_{0}}{\sqrt{1-lpha_{t}}}, \sigma_{t}^{2}oldsymbol{I}
ight) \end{aligned}$$

A Non-Markovian Forward Process

$$q_{\sigma}\left(oldsymbol{x}_{t} \mid oldsymbol{x}_{t-1}, oldsymbol{x}_{0}
ight) = rac{q_{\sigma}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}, oldsymbol{x}_{0}
ight)q_{\sigma}\left(oldsymbol{x}_{t} \mid oldsymbol{x}_{0}
ight)}{q_{\sigma}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{0}
ight)}$$

DDIM



Backward process

$$p_{ heta}^{(t)}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}
ight) = egin{cases} \mathcal{N}\left(f_{ heta}^{(1)}\left(oldsymbol{x}_{1}
ight), \sigma_{1}^{2}oldsymbol{I}
ight) & ext{if } t=1 \ q_{\sigma}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}, f_{ heta}^{(t)}\left(oldsymbol{x}_{t}
ight)
ight) & ext{otherwise}, \ f_{ heta}^{(t)}\left(oldsymbol{x}_{t}
ight) & ext{otherwise}, \ \end{pmatrix} f_{ heta}^{(t)}\left(oldsymbol{x}_{t}
ight) & ext{otherwise}, \end{cases}$$

DDPM vs DDIM

Algorithm DDPM Sampling

$$\begin{aligned} \mathbf{x}_T &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ & \textbf{for all } t \text{ from } T \text{ to 1 do} \\ & \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ & \mu \leftarrow \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t)) \\ & \mathbf{x}_{t-1} \leftarrow \mu + \sigma_t \epsilon \end{aligned} \\ & \textbf{Stochastic} \\ & \textbf{end for} \\ & \textbf{return } \mathbf{x}_0 \end{aligned}$$

Algorithm DDIM Sampling

$$\begin{aligned} \mathbf{x}_T &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \text{for all } t \text{ from } T \text{ to } 1 \text{ do} \\ \bar{\varepsilon} &\leftarrow \epsilon_{\theta}(\mathbf{x}_t, t) \\ \bar{\mathbf{x}}_0 &\leftarrow \frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t \bar{\epsilon}}}{\sqrt{\bar{\alpha}_t}} \quad \text{Estimate } \mathbf{x}_0 \\ \mathbf{x}_{t-1} &\leftarrow \sqrt{\bar{\alpha}_{t-1}} \bar{\mathbf{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \bar{\epsilon} \\ \text{end for} \\ \text{return } \mathbf{x}_0 \end{aligned}$$

DDIM with Fewer Steps Sampling

DDIM

Algorithm Original DDIM Sampling

$$\begin{aligned} & \overline{\mathbf{x}_{T}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ & \mathbf{for \ all} \ t \ \text{from} \ T \ \text{to} \ 1 \ \mathbf{do} \\ & \bar{\epsilon} \leftarrow \epsilon_{\theta}(\mathbf{x}_{t}, t) \\ & \bar{\mathbf{x}}_{0} \leftarrow \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \bar{\epsilon}}{\sqrt{\bar{\alpha}_{t}}} \\ & \mathbf{x}_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \bar{\mathbf{x}}_{0} + \sqrt{1 - \bar{\alpha}_{t-1}} \bar{\epsilon} \\ & \mathbf{end \ for} \\ & \mathbf{return} \ \mathbf{x}_{0} \end{aligned}$$

Increasing Sub-sequence
$$[1,...,T] \Longrightarrow [\tau_0=0,...,\tau_S=T]$$
 E.g., $\tau=[0,10,20,30,...,1000]$

Algorithm Fewer-Steps DDIM Sampling

$$\mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
for all s from S to 1 **do**

$$t \leftarrow \tau_{s}$$

$$t' \leftarrow \tau_{s-1}$$

$$\bar{\epsilon} \leftarrow \epsilon_{\theta}(\mathbf{x}_{t}, t)$$

$$\bar{\mathbf{x}}_{0} \leftarrow \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}}\bar{\epsilon}}{\sqrt{\bar{\alpha}_{t}}}$$

$$\mathbf{x}_{t'} \leftarrow \sqrt{\bar{\alpha}_{t'}}\bar{\mathbf{x}}_{0} + \sqrt{1 - \bar{\alpha}_{t'}}\bar{\epsilon}$$
end for

$$\mathbf{return} \ \mathbf{x}_{0}$$

DDIM Results

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta=1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T=1000 steps, and S< T can be seen as simulating DDPMs trained with S steps), and $\eta=0.0$ indicates DDIM.

	CIFAR10 (32 × 32)						CelebA (64 × 64)				
	S	10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
m	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

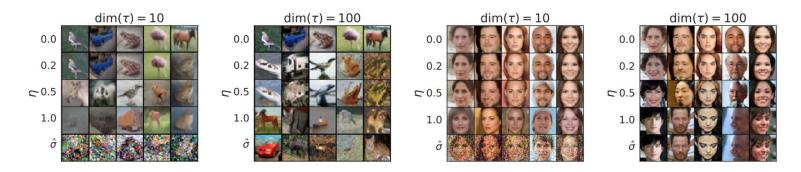


Figure 3: CIFAR10 and CelebA samples with $\dim(\tau) = 10$ and $\dim(\tau) = 100$.

Poll

Content

- Diffusion Model Basics
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Denoising Diffusion Implicit Model (DDIM)
- Conditional Diffusion Models
- Applications of Diffusion Models

Conditional Diffusion Models

Un-conditional

$$p\left(oldsymbol{x}_{0:T}
ight) = p\left(oldsymbol{x}_{T}
ight) \prod_{t=1}^{T} p_{oldsymbol{ heta}}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_{t}
ight)$$

Conditional

$$p\left(oldsymbol{x}_{0:T}\mid y
ight)=p\left(oldsymbol{x}_{T}
ight)\prod_{t=1}^{T}p_{oldsymbol{ heta}}\left(oldsymbol{x}_{t-1}\mid oldsymbol{x}_{t},y
ight)$$

More controllable!

Conditional Score Matching

Score matching with conditional information

$$egin{aligned}
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) &=
abla \log \left(rac{p\left(oldsymbol{x}_{t}
ight)p\left(y\midoldsymbol{x}_{t}
ight)}{p(y)}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(y\midoldsymbol{x}_{t}
ight) -
abla \log p(y) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(y\midoldsymbol{x}_{t}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) =
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) \ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{y}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{y}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}_{t}
ight) -
abla \log p\left(oldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}\midoldsymbol{x}\mid$$

Classifier Guidance

• Use a discriminative classifier for $\nabla \log p \, (y \mid \boldsymbol{x}_t)$

$$abla \log p\left(oldsymbol{x}_{t}\mid y
ight) =
abla \log p\left(oldsymbol{x}_{t}
ight) + \gamma
abla \log p\left(y\mid oldsymbol{x}_{t}
ight)$$

• γ controls the strength of the condition

- Limitations:
 - Need a separate classifier
 - Conditioning depends on the performance of classifier

Classifier-Free Guidance

Score matching with conditional information

$$egin{aligned}
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) &=
abla \log p\left(oldsymbol{x}_{t}
ight) + \gamma
abla \log p\left(y \mid oldsymbol{x}_{t}
ight) \\
abla \log p\left(y \mid oldsymbol{x}_{t}
ight) &=
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) -
abla \log p\left(oldsymbol{x}_{t}
ight) \end{aligned}$$

Classifier-free guidance

$$egin{aligned}
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) &=
abla \log p\left(oldsymbol{x}_{t}
ight) + \gamma \left(
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) -
abla \log p\left(oldsymbol{x}_{t}
ight) \\ &=
abla \log p\left(oldsymbol{x}_{t}
ight) +
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) +
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) - \gamma
abla \log p\left(oldsymbol{x}_{t}
ight) \\ &=
abla
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) +
abla
abla \log p\left(oldsymbol{x}_{t} \mid y
ight) -
abla
abla \log p\left(oldsymbol{x}_{t}
ight) \\ &=
abla
abl$$

Training of Classifier-Free Guidance

- For conditional embeddings
 - Randomly drop **p** original conditionals with an additional unconditional class

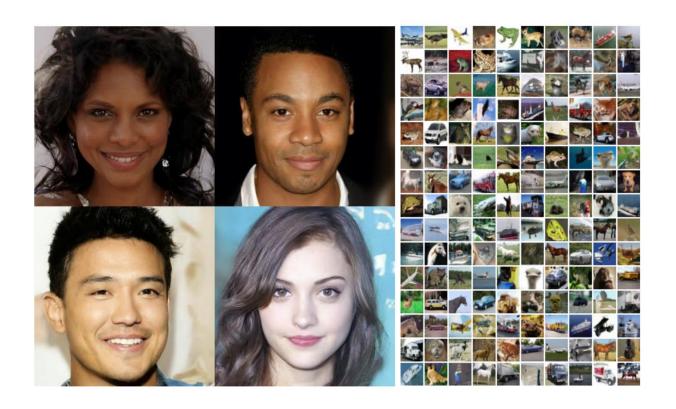
$$\mathbb{E}_{\mathcal{E}(x),y,\epsilon \sim \mathcal{N}(0,1),t}\left[\left\|\epsilon - \epsilon_{ heta}\left(z_{t},t, au_{ heta}(y)
ight)
ight\|_{2}^{2}
ight]$$

Content

- Diffusion Model Basics
- Diffusion Models from Stochastic Differential Equations and Score Matching Perspective
- Denoising Diffusion Implicit Model (DDIM)
- Conditional Diffusion Models
- Applications of Diffusion Models

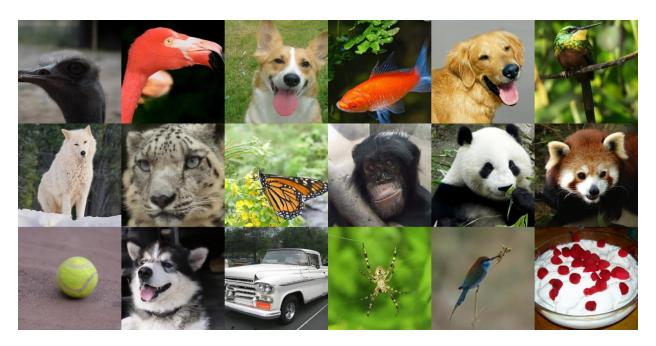
DDPM

 Training diffusion models on raw images with a U-Net model



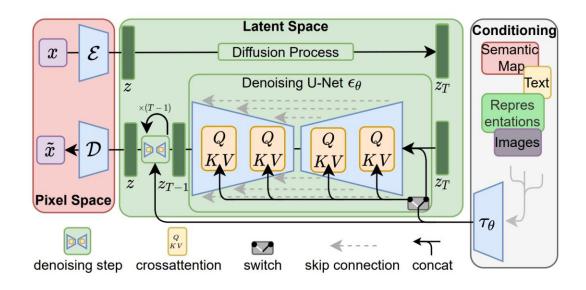
Diffusion Models Beat GANs

- Larger denoising model with sophisticated design
 - Adaptive group normalization
 - Attention layers in U-Net



Latent Diffusion Models (LDMs)

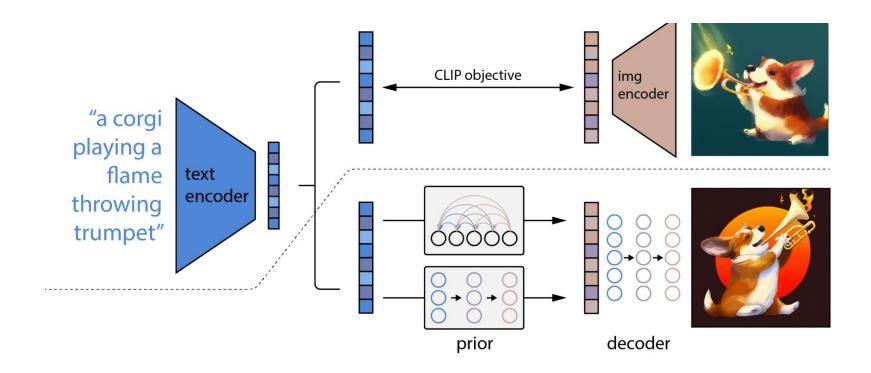
- Learn diffusion on VAE's latent
 - Yet another VAE! Except pre-trained.



Stable Diffusion

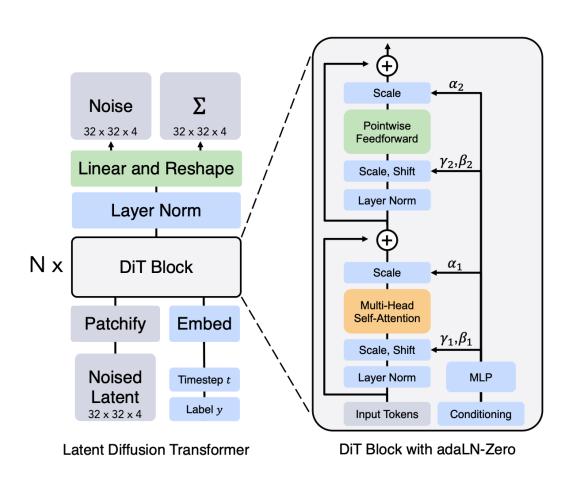
- Large-scale text-conditional LDMs
 - With VAEs trained also on larger datasets

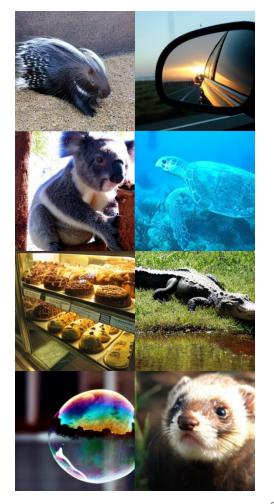
DALLE



DiT

A transformer architecture for diffusion models





MAR

An autoregressive model with diffusion loss

