
Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Fall 2024

1

2

Story so far

• Neural networks for computation
• All feedforward structures

• But what about..

3

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

4

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network

5

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

6

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

7

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

8

if

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

9

if

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

10

Example

11

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

13

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…
» And so on…

14

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

ஷ

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

15

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

16

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
17

Loopy network

• Let
ି be the output of the i-th neuron just before it responds to the

current field
• Let

ା be the output of the i-th neuron just after it responds to the current
field

• If
ି

 ஷ , then
ା

ି

– If the sign of the field matches its own sign, it does not flip

ା

ஷ

ି

ஷ 18

Loopy network

• If
ି

 ஷ , then
ା

ି

ା

ஷ

ି

ஷ

ା

ஷ

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

ஷ
19

Globally
• Consider the following sum across all nodes

– Assume

• For any unit that “flips” because of the local field

• This is strictly positive

20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

,ஷ

• is bounded

௫

,ஷ

• The minimum increment of in a flip is

, {௬, ୀଵ..ே}

ஷ

• Any sequence of flips must converge in a finite number of steps 21

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of
• The 0.5 is only needed for convention

• The evolution of a Hopfield network
constantly decreases its energy

22

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1

24

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

Poll 1

25

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of

• The evolution of a Hopfield network
constantly decreases its energy

• Where did this “energy” concept suddenly sprout
from?

26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

ஷ

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

ஷ

30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

ஷ

Response of current dipole

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

34

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system 36

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/39

Hopfield net examples

40

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

ஷ

41

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

42

Writing ଵ ଶ ଷ ே
ୃ

and arranging the weights as a matrix

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete

version 43

Poll 2

44

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local
minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Poll 2

45

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a
local minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

46

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

47

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
48

Storing a pattern

• Design such that the energy is a local
minimum at the desired
– Recall: the evolution is
– For static patterns,
– For stable patterns for small

1

-1

-1

-1 1

1

1

-1

1 -1

49

Storing a pattern

• Math: the ‘stable’ patterns must be close to the Eigen
vectors of
– For a network with neurons, we can store at most

patterns reliably

– For the rest, may end up at a different pattern

1

-1

-1

-1 1

1

1

-1

1 -1

50

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
51

Estimating the Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 52

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

53

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

54

Optimizing W

• Simple gradient descent:

55

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

56

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

57

The training again..

• Note the energy contour of a Hopfield
network for any weight

58state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

59state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

60state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

61state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

62state

Energy

Identifying the valleys..

63state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

64

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

65

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

66

Which valleys?

67state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

68state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

69state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

70

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

71

A possible problem

72state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

73state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

74state

Energy

Raising the neighborhood

75state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
•

்
ௗ ௗ

்

76

Story so far

• Hopfield nets with neurons can store up to
random patterns

– But comes with many parasitic memories

• Networks that store memories can be
trained through optimization
– By minimizing the energy of the target patterns,

while increasing the energy of the neighboring
patterns

77

Storing more than N patterns

• The memory capacity of an -bit network is at
most
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is

• How do we increase the capacity of the
network
– How to store more than patterns

78

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

79

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

80

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

82

Visible bits

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

83

Visible bits Hidden bits

Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– Optimize

• How do we store the patterns?
– Standard optimization method should work 84

Visible bits Hidden bits

Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended

patterns:
– Making errors in the don’t care bits doesn’t matter

85

Visible bits Hidden bits

Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits
– Possible to set the don’t care bits such that the overall pattern (and

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

• To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

86

A probabilistic interpretation of
Hopfield Nets

• For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution
– Minimizing energy maximizes log likelihood

87

The Energy of the Network

• We can define the energy of the system as before
• Neurons are stochastic, with disorder or entropy
• The equilibribum probability distribution over states is the

Boltzmann distribution at T=1
– This is the probability of different states that the network will

wander over at equilibrium

Visible
Neurons

The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

90

The field at a single node

• Let and be the states with the ith bit in the and
states

•

91

The field at a single node

• Giving us

• The probability of any node taking value 1
given other node values is a logistic

92

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

2. Iterate

ஷ

95

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate

ஷ

96

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

2. Iterate

ஷ

97

Assuming T = 1

Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଵ ଶ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௧ୀିெାଵ

– Estimates the probability that the bit is 1.0.
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

2. Iterate

ஷ

98

Assuming T = 1

Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଵ ଶ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௧ୀିெାଵ

1. Initialize network with initial pattern

2. For

i. For iter
a) For

ஷ

99

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion: Initialize the entire
network and let the entire network evolve

Maximum Likelihood Training

• Maximize the average log likelihood of all “training”
vectors
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

ழ

ᇱ

ᇱ

ழௌᇱ

ௌ∈𝐒

ழௌ

ᇱ

ᇱ

ழௌᇱ

Average log likelihood of training vectors
(to be maximized)

Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

Visible
Neurons

Hidden
Neurons

Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

Visible
Neurons

Hidden
Neurons

Gradients

• Gradients are computed as before, except that
the first term is now computed over the
expanded training data

ೞೠ

Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped

training samples
• Compute gradient and update weights
• Iterate

𝑺

ᇱ

ᇱ

ௌᇱ∈𝐒ೞೠ

Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than

Hopfield nets
• But also enables computation of probabilities

of patterns, and completion of pattern

Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate

𝑺

ᇱ

ᇱ

ௌᇱ∈𝐒ೞೠ

Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value

Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?

Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, …. , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features, anchor features, estimate a posteriori probability

distribution over classes
• Or choose most likely class

Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small
number of bits

Solution: Restricted Boltzmann
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul

Smolensky

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

VISIBLE

HIDDEN

VISIBLE

HIDDEN

Sampling: Restricted Boltzmann
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!

VISIBLE

HIDDEN

 ି௭

Sampling: Restricted Boltzmann
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN

Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v

Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to
hidden node j)

• <vi, hj> represents average over many generated training
samples

v0

h0

v1

h1

v2

h2

v

h

jiji

ij
hvhv

w

vp 0)(log

i

j

i i i

j j j

Recall: Hopfield Networks
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

118state

Energy

A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of
the gradient

v0

h0

v1

h1

10)(log

jiji
ij

hvhv
w

vp

i

j

i

j

Restricted Boltzmann Machines

• Excellent generative models for binary (or
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models

120

Continuous-values RBMs

VISIBLE

HIDDEN

VISIBLE

HIDDEN

Hidden units may also be continuous values

Other variants

• Left: “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm

Topics missed..

• Other algorithms for Learning and Inference
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …

123

