
Neural Networks:
Optimization Part 1

Intro to Deep Learning, Fall 2024

Attendance: @426

1

Story so far
• Neural networks are universal approximators

– Can model any odd thing
– Provided they have the right architecture

• We must train them to approximate any function
– Specify the architecture
– Learn their weights and biases

• Networks are trained to minimize total “loss” on a training
set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
• The gradient of the error with respect to network

parameters is computed through backpropagation
2

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• Do
–

–

• while
3

Recap: Training Neural Nets by Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer compute:

•
ೖ ೖ

•
ೖ

𝑇

• Until has converged
4

Total training error:

Computed using backprop

Recap: Vector derivatives

• At any layer, forward pass

• Backward pass

5

Jacobian

Neural network training algorithm
• Initialize all weights and biases
• Do:

–

– For all , initialize
ೖ

,
ೖ

– For all # Loop through training instances
• Forward pass : Compute

– Output 𝒕 ,
– Divergence 𝒕 𝒕

• Backward pass: For all compute:
– 𝐖ೖ 𝒕 𝒕 , 𝐛ೖ 𝒕 𝒕

– 𝐖ೖ 𝐖ೖ 𝒕 𝒕 ; 𝐛ೖ 𝐛ೖ 𝒕 𝒕

– For all update:

௞ ௞
ఎ

் 𝐖ೖ

்
; ௞ ௞

ఎ

் 𝐖ೖ

்

• Until has converged
6

Computing
gradient
(uses
backprop)

Gradient
descent

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

7

Poll 0 (@419)

Backpropagating from the kth layer, which is the derivative for
the weights ?
 ௞ିଵ ௭ೖ

: The product of the output of the th layer and the
derivative for the affine value of the th layer (in that order)

 ௭ೖ ௞ିଵ : The product of the derivative for the affine value at the
th layer and the output of the th layer (in that order)

 ௞ିଵ
ୃ

௭ೖ
: The product of the transpose of the output of the

th layer and the derivative for the affine value of the th layer (in that
order)

 ௭ೖ ௞ିଵ
ୃ : The product of the derivative for the affine value at the

th layer and the transpose output of the th layer (in that order)

8

Poll 0

Backpropagating from the kth layer, which is the derivative for
the weights ?
 𝒌ି𝟏 𝒛𝒌

: The product of the output of the th layer and the
derivative for the affine value of the th layer (in that order)

 ௭ೖ ௞ିଵ : The product of the derivative for the affine value at the
th layer and the output of the th layer (in that order)

 ௞ିଵ
ୃ

௭ೖ
: The product of the transpose of the output of the

th layer and the derivative for the affine value of the th layer (in that
order)

 ௭ೖ ௞ିଵ
ୃ : The product of the derivative for the affine value at the

th layer and the transpose output of the th layer (in that order)

9

Onward

10

Onward

• Does backprop always work?
• Convergence of gradient descent

– Rates, restrictions,
– Hessians
– Acceleration and Nestorov
– Alternate approaches

• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad

11

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually finds the minimum of the

divergence function?

(Actual question: Does gradient descent find the
right solution, even when it finds the actual
minimum)

12

Recap: The differentiable activation

• Threshold activation: Equivalent to counting errors
– Shifting the threshold from T1 to T2 does not change classification error
– Does not indicate if moving the threshold left was good or not

13

T1 T2x x

y y

• Differentiable activation: Computes “distance to answer”
– “Distance” == divergence
– Perturbing the function changes this quantity,

• Even if the classification error itself doesn’t change

T2T1

0.5 0.5

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually finds the global minimum of the loss

(average divergence)?

• In classification problems, the classification error is a
non-differentiable function of weights

• The divergence function minimized is only a proxy for
classification error

• Minimizing divergence may not minimize classification
error

14

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89

• Simple problem, 3 training instances, single neuron

• Perceptron training rule trivially find a perfect solution

(1,0), +1

(0,1), +1

(-1,0), -1

15

Backprop vs. Perceptron

• Back propagation using logistic function and
divergence

• Unique minimum trivially proved to exist, backprop
finds it

(1,0), +1

(0,1), +1

(-1,0), -1

16

Unique solution exists

• Let ିଵ

– E.g. 𝑢 = 𝑓ିଵ 0.99 representing a 99% confidence in the class

• From the three points we get three independent equations:

௫ ௬

௫ ௬

௫ ௬

• Unique solution ௫ ௫ exists
– represents a unique line regardless of the value of 𝑢

(1,0), +1

(0,1), +1

(-1,0), -1

17

Backprop vs. Perceptron

• Now add a fourth point
• is very large (point near)
• Perceptron trivially finds a solution (may take t2

iterations)

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

18

Backprop

• Consider backprop:
• Contribution of fourth point

to derivative of L2 error:

ସ ௬
2

Notation:
= logistic activation

ସ

௬
௬ ௬

ସ
௬ ௬

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

19

1- is the actual
achievable value

Backprop

ସ ௬
2

Notation:
= logistic activation

ସ

௬
௬ ௬

ସ
௬ ௬

• For very large positive , (where)

• as

• exponentially as
• Therefore, for very large positive

20

Backprop

• The fourth point at does not change the gradient of the L2
divergence near the optimal solution for 3 points

• The optimum solution for 3 points is also a broad local minimum (0
gradient) for the 4-point problem!
– Will be found by backprop nearly all the time

• Although the global minimum with unbounded weights will separate the classes correctly

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

21

Backprop

• Local optimum solution found by backprop

• Does not separate the points even though the
points are linearly separable!

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

22

Backprop

• Solution found by backprop
• Does not separate the points even though the points are linearly

separable!
• Compare to the perceptron: Backpropagation fails to separate

where the perceptron succeeds

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

23

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Several linearly separable training examples
• Simple setup: both backprop and perceptron

algorithms find solutions 24

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly 25

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly

– Assuming weights are constrained to be bounded 26

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 27

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 28

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 29

So what is happening here?
• The perceptron may change greatly upon adding just a

single new training instance
– But it fits the training data well
– The perceptron rule has low bias

• Makes no errors if possible

– But high variance
• Swings wildly in response to small changes to input

• Backprop is minimally changed by new training
instances
– Prefers consistency over perfection
– It is a low-variance estimator, at the potential cost of bias

30

Backprop fails to separate even when
possible

• This is not restricted to single perceptrons

• An MLP learns non-linear decision boundaries that are
determined from the entirety of the training data

• Adding a few “spoilers” will not change their behavior

31

Backprop fails to separate even when
possible

32

• This is not restricted to single perceptrons

• An MLP learns non-linear decision boundaries that are
determined from the entirety of the training data

• Adding a few “spoilers” will not change their behavior

Backpropagation: Finding the separator

• Backpropagation will often not find a separating
solution even though the solution is within the
class of functions learnable by the network

• This is because the separating solution is not a
feasible optimum for the loss function

• One resulting benefit is that a backprop-trained
neural network classifier has lower variance than
an optimal classifier for the training data

33

Poll (@420)

34

Minimizing the (differentiable) loss function will also minimize classification error, true or false

 True
 False (true)

Poll 1

35

Minimizing the (differentiable) loss function will also minimize classification error, true or false

 True
 False (true)

The Loss Surface

• The example (and statements)
earlier assumed the loss
objective had a single global
optimum that could be found
– Statement about variance is

assuming global optimum

• What about local optima

36

The Loss Surface
• Popular hypothesis:

– In large networks, saddle points are far more
common than local minima

• Frequency of occurrence exponential in network size

– Most local minima are equivalent
• And close to global minimum

– This is not true for small networks

• Saddle point: A point where
– The slope is zero
– The surface increases in some directions, but

decreases in others
• Some of the Eigenvalues of the Hessian are positive;

others are negative

– Gradient descent algorithms often get “stuck” in
saddle points

37

The Controversial Loss Surface
• Baldi and Hornik (89), “Neural Networks and Principal Component

Analysis: Learning from Examples Without Local Minima” : An MLP with a
single hidden layer has only saddle points and no local Minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization” : An exponential number of
saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For
large networks, most local minima lie in a band and are equivalent
– Based on analysis of spin glass models

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

• Watch this space…
38

Story so far
• Neural nets can be trained via gradient descent that minimizes a

loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model
– The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of
unpleasant saddle points or local minima
– Which backpropagation may find

39

Convergence

• In the discussion so far we have assumed the
training arrives at a local minimum

• Does it always converge?
• How long does it take?

• Hard to analyze for an MLP, but we can look at
the problem through the lens of convex
optimization

40

A quick tour of (convex) optimization

41

Convex Loss Functions

• A surface is “convex” if it is
continuously curving upward
– We can connect any two points

on or above the surface without
intersecting it

– Many mathematical definitions
that are equivalent

• Caveat: Neural network loss
surface is generally not convex
– Streetlight effect

Contour plot of convex function

42

Convergence of gradient descent

• An iterative algorithm is said to
converge to a solution if the value
updates arrive at a fixed point
– Where the gradient is 0 and further

updates do not change the estimate

• The algorithm may not actually
converge
– It may jitter around the local

minimum
– It may even diverge

• Conditions for convergence?

converging

jittering

diverging

43

Convergence and convergence rate
• Convergence rate: How fast the

iterations arrive at the solution
• Generally quantified as

– (௞ାଵ)is the k-th iteration
– ∗is the optimal value of

• If is a constant (or upper bounded),
the convergence is linear
– In reality, its arriving at the solution

exponentially fast
(௞) ∗ ௞ (଴) ∗

converging

44

Convergence for quadratic surfaces

• Gradient descent to find the
optimum of a quadratic,
starting from

• Assuming fixed step size
• What is the optimal step size

to get there fastest?

Gradient descent with fixed step size
to estimate scalar parameter

(௞)

ଶ

45

Convergence for quadratic surfaces
• Any quadratic objective can be written as

(௞) ᇱ ௞ (௞)

ଵ

ଶ
(௞) (௞)

ଶ

– Taylor expansion

• Minimizing w.r.t , we get (Newton’s method)

௠௜௡
௞ ௞ ିଵ ௞

• Note:
(௞)

(௞)

• Comparing to the gradient descent rule, we see
that we can arrive at the optimum in a single step
using the optimum step size

௢௣௧
௞ ିଵ ି𝟏

(௞ାଵ) (௞)
(௞)

46

With non-optimal step size

• For the algorithm
will converge monotonically

• For we
have oscillating
convergence

• For we get
divergence

Gradient descent with fixed step size
to estimate scalar parameter

47

For generic differentiable convex
objectives

• Any differentiable convex objective can be approximated as

(௞) (௞)
(௞)

(௞)
ଶ ଶ (௞)

ଶ

– Taylor expansion

• Using the same logic as before, we get (Newton’s method)

௢௣௧

ଶ (௞)

ଶ

ିଵ

• We can get divergence if ௢௣௧
48

approx

𝑚𝑖𝑛

For functions of multivariate inputs

• Consider a simple quadratic convex (paraboloid) function

– Since ் (is scalar), can always be made symmetric
• For strictly convex , is always positive definite, and has positive eigenvalues

• When is diagonal:

– The ௜s are uncoupled
– For paraboloid (convex) , the ௜௜ values are all positive
– Just a sum of independent quadratic functions

, is a vector

49

Multivariate Quadratic with Diagonal

• Equal-value contours will ellipses with
principal axes parallel to the spatial axes

50

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axes
– All “slices” parallel to an axis are shifted versions of one another

51

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axis
– All “slices” parallel to an axis are shifted versions of one another

52

“Descents” are uncoupled

• The optimum of each coordinate is not affected by the other coordinates
– I.e. we could optimize each coordinate independently

• Note: Optimal learning rate is different for the different coordinates

ଵଵ ଵ
ଶ

ଵ ଵ ଵ ଶଶ ଶ
ଶ

ଶ ଶ ଶ

ଵ,௢௣௧ ଵଵ
ିଵ

ଶ,௢௣௧ ଶଶ
ିଵ

53

Vector update rule

• Conventional vector update rules for gradient descent:
update entire vector against direction of gradient
– Note : Gradient is perpendicular to equal value contour

– The same learning rate is applied to all components

(௞ାଵ)
(௞)

54

Problem with vector update rule

55

• This optimal step size can be different for
different directions
– The optimal step size in one direction can even cause

divergence in another

Dependence on learning rate

• ଵ,௢௣௧ ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

56

Problem with vector update rule

• The learning rate must be lower than twice the smallest
optimal learning rate for any component

– Otherwise the learning will diverge

• This, however, makes the learning very slow
– And will oscillate in all directions where

57

Dependence on learning rate

•
58

Generic differentiable multivariate
convex functions

• For generic convex multivariate functions (not necessarily quadratic), we can employ
quadratic Taylor series expansions and much of the analysis still applies

• Taylor expansion
(𝒌)

𝐰
(𝒌) (𝒌) (𝒌) 𝑻

𝑬
(𝒌) (𝒌)

• The optimal step size is inversely proportional to the Eigen values of the Hessian
– The second derivative along the orthogonal coordinates
– For the smoothest convergence, these must all be equal

59

Convergence
• Convergence behaviors become increasingly unpredictable as dimensions

increase

• For the fastest convergence, ideally, the learning rate must be close to
both, the largest ௜,௢௣௧ and the smallest ௜,௢௣௧

– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if
୫ୟ୶

೔
ఎ೔,೚೛೟

୫୧୬
೔

ఎ೔,೚೛೟
is large

– The “condition” number
• Must be close to 1.0 for fast convergence

• Following (hidden) slides discuss solutions that “normalize the space by
stretching different directions differently to standardize optimal step size
– A big topic for optimization
– Unfortunately, infeasible for neural networks

60

Comments on the quadratic
• Why are we talking about quadratics?

– Quadratic functions form some kind of benchmark
– Convergence of gradient descent is linear

• Meaning it converges to solution exponentially fast

• The convergence for other kinds of functions can be viewed against this
benchmark

• Actual losses will not be quadratic, but may locally have other structure
– Local between current location and nearest local minimum

• Some examples in the following slides..
– Strong convexity
– Lifschitz continuity
– Lifschitz smoothness

– ..and how they affect convergence of gradient descent

61

Quadratic convexity

• A quadratic function has the form ଵ
ଶ

் ்

– Every “slice” is a quadratic bowl

• In some sense, the “standard” for gradient-descent based optimization
– Others convex functions will be steeper in some regions, but flatter in others

• Gradient descent solution will have linear convergence
– Take steps to get within of the optimal solution

62

Strong convexity

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

63

Strong convexity

64

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

Types of continuity

• Most functions are not strongly convex (if they are convex)
• Instead we will talk in terms of Lifschitz smoothness
• But first : a definition
• Lifschitz continuous: The function always lies outside a cone

– The slope of the outer surface is the Lifschitz constant

–
65

From wikipedia

Lifschitz smoothness

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)
66

Lifschitz smoothness

67

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)

Types of smoothness

68

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Types of smoothness

69

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Convergence Problems
• For quadratic (strongly) convex functions, gradient descent is exponentially

fast
– Linear convergence

• Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow

(௞) ∗ (଴) ∗

– And inversely proportional to learning rate

(௞) ∗ (଴) ∗

– Takes iterations to get to within of the solution

– An inappropriate learning rate will destroy your happiness

• Second order methods will locally convert the loss function to quadratic
– Convergence behavior will still depend on the nature of the original function

• Continuing with the quadratic-based explanation…
70

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate
must be close to both, the largest and the
smallest
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if is large

– The “condition” number is small
71

One reason for the problem

72

• The objective function has different eccentricities in different directions
– Resulting in different optimal learning rates for different directions
– The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two

directions are coupled! Moving in one direction changes the gradient along the other

• Solution: Normalize the objective to have identical eccentricity in all directions
– Then all of them will have identical optimal learning rates
– Easier to find a working learning rate

Solution: Scale the axes

• Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
– Equal-value contours are circular
– Movement along the coordinate axes become independent

• Note: equation of a quadratic surface with circular equal-value contours can be
written as

் ்

ଵ

ଶ

ଵ

ଶ

ଵ ଵ ଵ

ଶ ଶ ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

73

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

74

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

75

By inspection:

Scaling the axes
• We have

• Equating linear and quadratic coefficients, we get

• Solving: ,
76

Scaling the axes

• We have

• Solving for we get

,

77

Scaling the axes

• We have

• Solving for we get

,

78

The Inverse Square Root of A

• For any positive definite , we can write

– Eigen decomposition
– is an orthogonal matrix
– is a diagonal matrix of non-zero diagonal entries

• Defining
– Check

• Defining
– Check:

79

Returning to our problem

•

• Computing the gradient, and noting that is
symmetric, we can relate and :

80

Returning to our problem

•

• Gradient descent rule:

–

– Learning rate is now independent of direction

• Using , and

81

Modified update rule

•

• Leads to the modified gradient descent rule

82

଴.ହ

் ் ் ்

For non-axis-aligned quadratics..

• If is not diagonal, the contours are not axis-aligned
– Because of the cross-terms 𝑎௜௝𝑤௜𝑤௝

– The major axes of the ellipsoids are the Eigenvectors of 𝐀, and their diameters are
proportional to the Eigen values of 𝐀

• But this does not affect the discussion
– This is merely a rotation of the space from the axis-aligned case
– The component-wise optimal learning rates along the major and minor axes of the equal-

contour ellipsoids will be different, causing problems
• The optimal rates along the axes are Inversely proportional to the eigenvalues of 𝐀

் ்

௜௜ ௜
ଶ

௜

௜௝ ௜ ௝

௜ஷ௝

௜ ௜

௜

83

For non-axis-aligned quadratics..

• The component-wise optimal learning rates along the major and
minor axes of the contour ellipsoids will differ, causing problems
– Inversely proportional to the eigenvalues of

• This can be fixed as before by rotating and resizing the different
directions to obtain the same normalized update rule as before:

(௞ାଵ) (௞) ିଵ
84

Generic differentiable multivariate
convex functions

• Taylor expansion
(𝒌)

𝐰
(𝒌) (𝒌) (𝒌) 𝑻

𝑬
(𝒌) (𝒌)

85

Generic differentiable multivariate
convex functions

• Taylor expansion

(𝒌)
𝐰

(𝒌) (𝒌) (𝒌) 𝑻
𝑬

(𝒌) (𝒌)

• Note that this has the form ଵ
ଶ

் ்

• Using the same logic as before, we get the normalized update rule
(௞ାଵ) (௞)

ா
(௞) ିଵ

𝐰
(௞) 𝑇

• For a quadratic function, the optimal is 1 (which is exactly Newton’s method)
– And should not be greater than 2!

86

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–

Fit a quadratic at each
point and find the
minimum of that
quadratic

87

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

88

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

89

• Iterated localized optimization with quadratic approximations

–

Minimization by Newton’s method

90

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
91

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
92

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
93

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
94

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
95

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
96

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

–
97

Issues: 1. The Hessian
• Normalized update rule

• For complex models such as neural networks, with a
very large number of parameters, the Hessian

is extremely difficult to compute
– For a network with only 100,000 parameters, the Hessian

will have 1010 cross-derivative terms

– And its even harder to invert, since it will be enormous

98

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

99

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

100

Issues: 1 – contd.
• A great many approaches have been proposed in the

literature to approximate the Hessian in a number of ways
and improve its positive definiteness
– Boyden-Fletcher-Goldfarb-Shanno (BFGS)

• And “low-memory” BFGS (L-BFGS)
• Estimate Hessian from finite differences

– Levenberg-Marquardt
• Estimate Hessian from Jacobians
• Diagonal load it to ensure positive definiteness

– Other “Quasi-newton” methods

• Hessian estimates may even be local to a set of variables

• Not particularly popular anymore for large neural networks..
101

Issues: 2. The learning rate

• Much of the analysis we just saw was based on trying
to ensure that the step size was not so large as to cause
divergence within a convex region

–

102

Issues: 2. The learning rate

• For complex models such as neural networks the loss
function is often not convex
– Having can actually help escape local optima

• However always having will ensure that you
never ever actually find a solution

103

Decaying learning rate

• Start with a large learning rate
– Greater than 2 (assuming Hessian normalization)
– Gradually reduce it with iterations

Note: this is actually a
reduced step size

104

Decaying learning rate
• Typical decay schedules

– Linear decay: బ

– Quadratic decay: బ
మ

– Exponential decay: , where

• A common approach (for nnets):
1. Train with a fixed learning rate until loss (or performance on

a held-out data set) stagnates
2. , where (typically 0.1)
3. Return to step 1 and continue training from where we left off

105

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Convergence issues abound
– The loss surface has many saddle points

• Although, perhaps, not so many bad local minima
• Gradient descent can stagnate on saddle points

– Vanilla gradient descent may not converge, or may
converge toooooo slowly

• The optimal learning rate for one component may be too
high or too low for others

106

Poll 2 (@421)

107

Slide 117

Mark all true statements

 Step sizes that are greater than twice the inverse of the second derivative can cause gradient
descent to diverge (true)

 This is always a bad thing
 Gradient descent will not converge without decaying learning rates

Poll 2

108

Slide 117

Mark all true statements

 Step sizes that are greater than twice the inverse of the second derivative can cause gradient
descent to diverge (true)

 This is always a bad thing
 Gradient descent will not converge without decaying learning rates

Story so far : Second-order methods

• Second-order methods “normalize” the variation
along the components to mitigate the problem of
different optimal learning rates for different
components
– But this requires computation of inverses of second-

order derivative matrices

– Computationally infeasible

– Not stable in non-convex regions of the loss surface

– Approximate methods address these issues, but
simpler solutions may be better

109

Story so far : Learning rate

• Divergence-causing learning rates may not be a
bad thing
– Particularly for ugly loss functions

• Decaying learning rates provide good
compromise between escaping poor local minima
and convergence

• Many of the convergence issues arise because we
force the same learning rate on all parameters

110

Lets take a step back

• Problems arise because of requiring a fixed
step size across all dimensions
– Because steps are “tied” to the gradient

• Let’s try releasing this requirement

(௞ାଵ)
(௞)

111

Derivative-inspired algorithms

• Algorithms that use derivative information for
trends, but do not follow them absolutely

• Rprop
• Quick prop

112

RProp

• Resilient propagation
• Simple algorithm, to be followed independently for each

component
– I.e. steps in different directions are not coupled

• At each time
– If the derivative at the current location recommends continuing in the

same direction as before (i.e. has not changed sign from earlier):
• increase the step, and continue in the same direction

– If the derivative has changed sign (i.e. we’ve overshot a minimum)
• reduce the step and reverse direction

113

Rprop

• Select an initial value and compute the derivative
– Take an initial step against the derivative

• In the direction that reduces the function

–
ௗா(௪ෝ)

ௗ௪

–

଴

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

114

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a longer step
• =

•

 > 1

଴ ଵ

଴଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

115

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a step
• =

•

 > 1

଴ ଵ

଴

ଶ

ଶ
଴

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

116

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

ଷ

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

117

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

ଷ

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

118

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

 < 1

଴ ଵ

଴

ଶ

ଶ
଴

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

119

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

 < 1

଴ ଵ

଴

ଶ

ଶ
଴

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

120

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize ௟,௜,௝, ௟,௜,௝ ,

–
ௗ௅௢௦௦(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

– ௟,௜,௝ ௟,௜,௝

– While not converged:
• 𝑤௟,௜,௝ = 𝑤௟,௜,௝ − ∆𝑤௟,௜,௝

• 𝐷 𝑙, 𝑖, 𝑗 =
ௗ௅௢௦௦(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤௟,௜,௝ = min (𝛼∆𝑤௟,௜,௝, ∆௠௔௫)

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤௟,௜,௝ = 𝑤௟,௜,௝ + ∆𝑤௟,௜,௝

– ∆𝑤௟,௜,௝ = max (𝛽∆𝑤௟,௜,௝, ∆௠௜௡)

Ceiling and floor on step

121

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize ௟,௜,௝, ௟,௜,௝ ,

–
ௗ௅௢௦௦(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

– ௟,௜,௝ ௟,௜,௝

– While not converged:
• 𝑤௟,௜,௝ = 𝑤௟,௜,௝ − ∆𝑤௟,௜,௝

• 𝐷 𝑙, 𝑖, 𝑗 =
ௗ௅௢௦௦(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤௟,௜,௝ = 𝛼∆𝑤௟,௜,௝

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤௟,௜,௝ = 𝑤௟,௜,௝ + ∆𝑤௟,௜,௝

– ∆𝑤௟,௜,௝ = 𝛽∆𝑤௟,௜,௝

Obtained via backprop

Note: Different parameters updated
independently

122

RProp
• A remarkably simple first-order algorithm,

that is frequently much more efficient than
gradient descent.
– And can even be competitive against some of the

more advanced second-order methods

• Only makes minimal assumptions about the
loss function
– No convexity assumption

123

Poll 3 (@423)

124

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking
a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark
all true statements

 Rprop will revert to the earlier estimate and take a smaller step (true)
 Rprop will change direction and begin taking steps in the opposite direction

Poll 3

125

The derivative of the loss w.r.t a parameter w, computed at the current estimate is positive. After taking
a step (updating the parameter by a increment dw) the sign of the derivative becomes negative. Mark
all true statements

 Rprop will revert to the earlier estimate and take a smaller step (true)
 Rprop will change direction and begin taking steps in the opposite direction

QuickProp

• Quickprop employs the Newton updates with two modifications
(௞ାଵ) (௞)

ா
(௞) ିଵ

𝐰
(௞) 𝑇

• But with two modifications

126

QuickProp: Modification 1

• It treats each dimension independently
• For

௜
௞ାଵ

௜
௞ ᇱᇱ

௜
௞

௝
௞ ିଵ

௜
௞

௝
௞

• This eliminates the need to compute and invert expensive Hessians

𝑤

𝐸(𝑤)

𝑤𝑘𝑤௞ାଵ

Within each component

127

QuickProp: Modification 2

• It approximates the second derivative through finite differences
• For

௜
௞ାଵ

௜
௞

௜
௞

௜
௞ିଵ ିଵ

௜
௞

௝
௞

• This eliminates the need to compute expensive double derivatives

𝑤

𝐸(𝑤)

𝑤𝑘𝑤௞ାଵ

Within each component

128

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

(௞ାଵ) (௞)
ᇱ ௞ (௞ିଵ)

(௞ିଵ)

ିଵ

(௞)

Finite-difference approximation to double derivative
obtained assuming a quadratic

௟,௜௝
(௞ାଵ)

௟,௜௝
(௞)

௟,௜௝
(௞)

௟,௜௝
(௞) ௟,௜௝

(௞ିଵ)

ᇱ
௟,௜௝
(௞) ᇱ

௟,௜௝
(௞ିଵ)

ᇱ
௟,௜௝
(௞)

129

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

(௞ାଵ) (௞)
ᇱ ௞ (௞ିଵ)

(௞ିଵ)

ିଵ

(௞)

Finite-difference approximation to double derivative
obtained assuming a quadratic

௟,௜௝
(௞ାଵ)

௟,௜௝
(௞)

௟,௜௝
(௞)

௟,௜௝
(௞) ௟,௜௝

(௞ିଵ)

ᇱ
௟,௜௝
(௞) ᇱ

௟,௜௝
(௞ିଵ)

ᇱ
௟,௜௝
(௞)

Computed using
backprop

130

Quickprop

• Employs Newton updates with empirically
derived derivatives

• Prone to some instability for non-convex
objective functions

• But is still one of the fastest training
algorithms for many problems

131

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to
the differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve
convergence

132

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

133

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

134

The momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

135

Momentum Update

• The momentum method maintains a running average of all gradients until
the current step

ௐ
௞ିଵ ୃ

(௞) (௞ିଵ)

(௞) (௞ିଵ) (௞)

– Typical value is 0.9

• The running average steps
– Get longer in directions where gradient retains the same sign
– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

136

Training by gradient descent

• Initialize all weights

• Do:
– For all , initialize

ೖ

– For all
• For every layer :

– Compute ௐೖ ௧ ௧

– Compute ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer :

ೖ
𝑇

• Until has converged
137

Training with momentum

• Initialize all weights
• Do:

– For all layers , initialize
ೖ

,

– For all
• For every layer :

– Compute gradient ௐೖ ௧ ௧

– ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer
௞ ௞ ௐೖ

𝑇

௞ ௞ ௞

• Until has converged
138

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

139

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

140

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the scaled previous step
• Which is actually a running average

141

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average

– To get the final step
142

Momentum update

• Momentum update steps are actually computed in two stages
– First: We take a step against the gradient at the current location
– Second: Then we add a scaled version of the previous step

• The procedure can be made more optimal by reversing the order of
operations..

143

1

2

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
144

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
145

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

146

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

147

Nestorov’s Accelerated Gradient

• Nestorov’s method

148

Nestorov’s Accelerated Gradient

• Comparison with momentum (example from
Hinton)

• Converges much faster

149

Training with Nestorov
• Initialize all weights
• Do:

– For all layers , initialize
ೖ

,

– For every layer
௞ ௞ ௞

– For all
• For every layer :

– Compute gradient ௐೖ ௧ ௧

– ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer
௞ ௞ ௐೖ

𝑇

௞ ௞ ௐೖ
𝑇

• Until has converged
150

Momentum and trend-based
methods..

• We will return to this topic again, very soon..

151

Poll 4 (@424)

152

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient
descent, true or false

 True
 False (correct) – momentum only changes step size

Poll 4

153

On a flat surface of constant slope momentum methods will converge faster than vanilla gradient
descent, true or false

 True
 False (correct) – momentum only changes step size

Story so far
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence

• Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

154

Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

155

