
Generative Aversarial Networks
(Based on slides from Ben Striner)

11785 Deep Learning
Fall 2024

1

What we’ve learned so far

• VAEs
• Diffusion models

• This week: GANS
• Connecting the dots

2

The problem

• From a large collection of images of faces, can a
network learn to generate new portrait
– Generate samples from the distribution of “face”

images
• How do we even characterize this distribution?

3

But first…

• Discriminative vs. Generative models

• Discriminative models learn to discriminate
– Determine the class given the input

• Compute P(y|x)

• Generative models can generate
– Produce more instances like the training data

• Compute and/or draw from P(x,y)

4

Discriminative vs Generative Models

• Discriminative models learn
conditional distribution P(Y | X)

• Learns decision boundary between
classes.

• Limited scope. Can only be used for
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the
Generative models learn the joint
distribution P(Y, X)

• Learns actual probability distribution of
data.

• Can do both generative and
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture
Model etc.

• Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

5

Discriminative models Generative models

Given a distribution of inputs X and labels Y.

Discriminative vs Generative Models

• Discriminative models learn
conditional distribution P(Y | X)

• Learns decision boundary between
classes.

• Limited scope. Can only be used for
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the
Generative models learn the joint
distribution P(Y, X)

• Learns actual probability distribution of
data.

• Can do both generative and
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture
Model etc.

• Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

6

Discriminative models Generative models

Given a distribution of inputs X and labels Y.

Discriminative vs Generative Models

• Discriminative models learn
conditional distribution P(Y | X)

• Learns decision boundary between
classes.

• Limited scope. Can only be used for
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the
Generative models learn the joint
distribution P(Y, X)

• Learns actual probability distribution of
data.

• Can do both generative and
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture
Model etc.

• Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

7

Discriminative models Generative models

Given a distribution of inputs X and labels Y.

Discriminative vs Generative Models

• Discriminative models learn
conditional distribution P(Y | X)

• Learns decision boundary between
classes.

• Limited scope. Can only be used for
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the
Generative models learn the joint
distribution P(Y, X)

• Learns actual probability distribution of
data.

• Can do both generative and
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture
Model etc.

• Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

8

Discriminative models Generative models

Given a distribution of inputs X and labels Y.

Discriminative vs Generative Models

• Discriminative models learn
conditional distribution P(Y | X)

• Learns decision boundary between
classes.

• Limited scope. Can only be used for
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the
Generative models learn the joint
distribution P(Y, X)

• Learns actual probability distribution of
data.

• Can do both generative and
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture
Model etc.

• Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

9

Discriminative models Generative models

Given a distribution of inputs X and labels Y.

• Calculates P(x ~ X) for
all x

• Generate x ~ X

Explicit distribution models Implicit distribution models

10

Explicit vs Implicit Models

Poll 1
• What is the difference between Discriminative models vs. Generative

models
– Discriminative models model the decision boundary between classes, whereas

Generative models model class distributions
– Generative models model the decision boundary between classes, whereas

Discriminative models model class distributions

• What is the difference between Explicit and Implicit Generative models?
– Implicit models compute the probability of samples, whereas Explicit models

only let you draw samples from the distribution
– Explicit models compute the probability of samples, whereas Implicit models

only let you draw samples from the distribution

11

Poll 1
• What is the difference between Discriminative models vs. Generative

models
– Discriminative models model the decision boundary between classes,

whereas Generative models model class distributions
– Generative models model the decision boundary between classes, whereas

Discriminative models model class distributions

• What is the difference between Explicit and Implicit Generative models?
– Implicit models compute the probability of samples, whereas Explicit models

only let you draw samples from the distribution
– Explicit models compute the probability of samples, whereas Implicit models

only let you draw samples from the distribution

12

The problem

• From a large collection of images of faces, can a
network learn to generate new portrait
– Generate samples from the distribution of “face”

images
• How do we even characterize this distribution?

13

What we have seen: VAE

• Generator is a decoder of a VAE

14

Generator

Generated
data

What we have seen: VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to
whether the output actually looks like a face

15

Generator +

This is a parametric model

What we have seen: VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to
whether the output actually looks like a face

16

Generator +

This is a parametric model

What we have seen: VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to
whether the output actually looks like a face

17

Generator +

This is a parametric model

What we have seen: VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to
whether the output actually looks like a face

18

Generator +

This is a parametric model

Training the VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to
whether the output actually looks like a face

• Can we make the training criterion more direct?
19

Generator +

Replacing negative log likelihood with
a more relevant loss

20

Generator +
Does it

look like a
face?

DILLAF
loss

Poll 2
• VAEs are implicit Generative models, True or False

– True
– False

• Why would likelihood maximization not result in a model that produces more face-
like outputs (for a face-generating VAE)?

– The model can maximize the likelihood of training data without any assurance about what
other (non-training) samples look like

– The model is more likely to run into poor local optima
– The model only captures the mode of the distribution of faces, whereas most face-like images

are in the tail of the distribution

• The face-generating model is more likely to generate face-like images if it were
trained with a differentiable loss function that explicitly evaluates if the outputs
look like faces or note, True or False

– True
– False

21

Poll 2
• VAEs are implicit Generative models, True or False

– True
– False

• Why would likelihood maximization not result in a model that produces more face-
like outputs (for a face-generating VAE)?

– The model can maximize the likelihood of training data without any assurance about what
other (non-training) samples look like

– The model is more likely to run into poor local optima
– The model only captures the mode of the distribution of faces, whereas most face-like images

are in the tail of the distribution

• The face-generating model is more likely to generate face-like images if it were
trained with a differentiable loss function that explicitly evaluates if the outputs
look like faces or note, True or False

– True
– False

22

• But what is a good DILLAF loss?

23

Generator
Does it

look like a
face?

DILLAF
loss

Replacing negative log likelihood with
a more relevant loss

24

What
are

GANs!

What are GANs

25

Generative Adversarial Networks

What are GANs

26

Generative Adversarial Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)

What are GANs

27

Generative Adversarial Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)
that are trying beat each other.

What are GANs

28

Generative Adversarial Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)
that are trying beat each other.

Neural Networks

Generative Adversarial Networks

• Introduced in 2014

• Goal is to model , the distribution of training
data

– Model can generate samples from

• Trained using a pair of models acting as “adversaries”

– A “Generator” that generates data

– A “Discriminator” that evaluates it

• The DILLAF loss!!

29

What are GANs?

30

Generator

Discriminator

Generated
data

Real data

Real/Fake?

DILLAF
loss

What are GANs?

31

Generator

Discriminator

Generated
data

Real data

Real/Fake?

The Generator

• The generator produces realistic looking from a latent vector

• Generator input can be sampled from a known prior, e.g. standard Gaussian

• Goal: generated distribution, ீ matches the true data distribution ௑

– ீ is the more “memorable” notation for 𝑿෡ , the probability that a generated
sample 𝑋෠ takes the value 𝑋

32

Generator

Generated
data

The Discriminator

• Discriminator is trained to tell the difference between real
and generated (fake) data

– Specifically, data produced by the generator

– If a perfect discriminator is fooled, the generated data cannot be
distinguished from real data

33

Discriminator Real/Fake?

Training a GAN

34

Generator

Discriminator

Generated
data

Real data

Real/Fake?

• Both, the generator and discriminator must be
trained

Training the discriminator

• Training the discriminator:
– The discriminator is provided training examples of real and

synthetic faces
– The discriminator is trained to minimize its classification loss

• Minimize error between actual and predicted labels

– Discriminator parameters are trained such that
• for real faces
• for synthetic faces (i.e)

35

Discriminator Real/Fake?

Training the discriminator

• Training the discriminator:
– The discriminator is provided training examples of real and

synthetic faces
– The discriminator is trained to minimize its classification loss

• Minimize error between actual and predicted labels

– Discriminator parameters are trained such that
• Maximize for real faces
• Maximize for synthetic faces

36

Discriminator Real/Fake?

Training the generator

• Training the generator:
– The discriminator’s loss is backpropagated to the

generator

– The generator is trained to maximize the discriminator loss
• It is trained to “fool” the discriminator

– Generator parameters are trained such that
• (i.e.)

37

Discriminator Real/Fake?Generator

Training the generator

• Training the generator:
– The discriminator’s loss is backpropagated to the

generator

– The generator is trained to maximize the discriminator loss
• It is trained to “fool” the discriminator

– Generator parameters are trained such that
• Minimize

38

Discriminator Real/Fake?Generator

The GAN formulation

• Discriminator:
– For real data , Maximize

– For synthetic data Maximize

• Generator
– Minimize

39

The GAN formulation

• The original GAN formulation is the following min-max optimization

• Objective of : and
• Objective of :

40

How to Train a GAN?

Step 1:
Train the Discriminator
using the current Generator

Step 2:
Train the Generator
to beat the Discriminator

41

GeneratorDiscriminator

Optimize:

The discriminator is not needed after convergence

Poll 3

• When training a GAN, which component must
you train first
– The discriminator
– The generator

• Which component is updated more frequently
– The discriminator
– The generator

42

Poll 3

• When training a GAN, which component must
you train first
– The discriminator
– The generator

• Which component is updated more frequently
– The discriminator
– The generator

43

The discriminator is the (DILLAF) loss. Training the loss is more important,
since the loss guides the training!

The GAN formulation

• So how does this behave when each
component is optimized…

44

The GAN formulation

• So how does this behave when each
component is optimized…
– The optimal discriminator:

45

The perfect discriminator:
Consider a binary classification problem

• The a posteriori probability of the classes for any instance is

• The perfect decision boundary is where

46

ଵ ଶ

ଶ

ଵ

• The a posteriori probability of the classes for any instance is

• The perfect decision boundary is where

47

ଵ

ଶ

0.5

The perfect discriminator:
Consider a binary classification problem

• The a posteriori probability of the classes for any instance is

௜
௜

ଵ ଶ

• The perfect decision boundary is where ଵ ଶ

– The perfect discriminator will compute ௜ for each class
– It will assign any to the class with the higher ௜

48

ଵ ଶ

The perfect discriminator:
Consider a binary classification problem

The optimal discriminator

• The optimal discriminator would be a Bayesian classifier
௑

௑ ீ

– Assuming uniform prior

49

ீ
௑

The GAN formulation

• So how does this behave when each
component is optimized…

50

Updating the Generator:
Fooling the perfect discriminator

• Relearn generator parameters so that the new
distribution of generated data “fools” the discriminator
– By moving it into the region assigned to the other class by

the (perfect) discriminator
51

ீ
௞

௑

ீ
௞ାଵ

The iterated learning

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” the real

distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• … 52

ீ
௞

௑

௞

The iterated learning

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” the real

distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• … 53

ீ
௞

௑

௞ ௞

௑
ீ

௞
ீ

௞ାଵ

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” the real

distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• … 54

The iterated learning

ீ
௞

௑

௞ ௞

௑
ீ

௞
ீ

௞ାଵ

ீ
௞ାଵ

௑

௞ାଵ

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” the real

distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• … 55

The iterated learning

ீ
௞

௑

௞ ௞

௑
ீ

௞
ீ

௞ାଵ

ீ
௞ାଵ

௑

௞ାଵ ௞ାଵ

௑

ீ
௞ାଶ

The iterated learning

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into”

the real distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• …
• In the limit Generator’s distribution sits perfectly on “real”

distribution and the perfect discriminator is still random

56

Analysis of optimal behavior:
The optimal discriminator

• The optimal discriminator would be a
Bayesian classifier

– Assuming uniform prior

57

Analysis of optimal behavior:
The optimal generator

ீ ஽
௑ ௓

• With a perfect discriminator:

௑~௉೉(௑) ௑~௉ಸ(௑)

௑~௉೉(௑)
௑

௑ ஽
௑~௉ಸ(௑)

ீ

௑ ஽

• This is just the Jensen-Shannon divergence between ௑ and ீ to within a
scaling factor and a constant

௑ ஽ 58

௑

௑ ீ

Analysis of optimal behavior:
The optimal generator

ீ ஽
௑ ௓

• With a perfect discriminator:

௑~௉೉(௑) ௑~௉ಸ(௑)

௑~௉೉(௑)
௑

௑ ஽
௑~௉ಸ(௑)

ீ

௑ ஽

• This is just the Jensen-Shannon divergence between ௑ and ீ to within a
scaling factor and a constant

௑ ஽ 59

௑

௑ ீ

Analysis of optimal behavior:
The optimal generator

ீ ஽
௑ ௓

• With a perfect discriminator:

௑~௉೉(௑) ௑~௉ಸ(௑)

௑~௉೉(௑)
௑

௑ ீ
௑~௉ಸ(௑)

ீ

௑ ீ

• This is just the Jensen-Shannon divergence between ௑ and ீ to within a
scaling factor and a constant

௑ ஽ 60

௑

௑ ீ

The KL Divergence

• What are the problems with this?

• What are the problems with this?

61

The KL Divergence

• What are the problems with this?

• What are the problems with this?

62

KL is not symmetric, and runs into issues if either P or Q become 0
(whichever is inside the log)

The Jensen Shannon Divergence

• If the term inside the log is 0, both P and Q are
0
– 0 log 0 = 0, so there are no problems

• Also, this is symmetric: JSD(P,Q) = JSD(Q,P)

63

The Jensen Shannon Divergence

• A symmetric variant of KL that does not
exaggerate instances to which one of the
distributions assigns 0 probability
– blows up

the contributions of with

64

Analysis of optimal behavior:
The optimal generator

ீ ஽
௑ ௓

• With a perfect discriminator:

௑~௉೉(௑) ௑~௉ಸ(௑)

௑~௉೉(௑)
௑

௑ ீ
௑~௉ಸ(௑)

ீ

௑ ீ

• This is just the Jensen-Shannon divergence between ௑ and ீ to within a
scaling factor and a constant

௑ ஽ 65

௑

௑ ீ

Analysis of optimal behavior:
The optimal generator

• The optimal generator:

• The optimal generator minimizes the Jensen Shannon
divergence between the distributions of the actual and
synthetic data!
– Tries to make the two distributions maximally similar

66

௑

௑ ீ

The optimal generator with the
optimal discriminator

• The generator of the fully optimized GAN will generate
, i.e. the distribution of the generated data will be identical to

that of the original data

• At any ,

– I.e. ௉೉(௑)

௉೉(௑)ା௉ಸ(௑)

– The derivative of w.r.t = 0
67

The optimal generator with the
optimal discriminator

• The generator of the fully optimized GAN will generate
, i.e. the distribution of the generated data will be identical to

that of the original data

• At any ,

– I.e. ௉೉(௑)

௉೉(௑)ା௉ಸ(௑)

– The derivative of w.r.t = 0
68

The optimal generator with the
optimal discriminator

•

• All derivatives going backward are 0

• There will be no further updates
69

௑

• There exists a stationary point:

– If the generated data exactly matches the real data, the discriminator
outputs 0.5 for all inputs

– If discriminator outputs 0.5, the gradients for the generator is flat, so
generator does not learn

– Unfortunately, this is also true of a random discriminator

• Stationary points need not be stable (depends on the exact GANs
formulation and other factors)

– Generator may overshoot some values or oscillate around the optimum

– A discriminator with unlimited capacity can still assign an arbitrarily
large distance to 2 similar distributions

70

Min-Max Stationary Point

Min-Max Optimization

• Generator and the discriminator need to be trained
simultaneously

– If discriminator is undertrained, it provides sub-optimal feedback to the
generator

– If the discriminator is overtrained, there is no local feedback for marginal
improvements

71

How to Train a GAN?

Step 1:
Train the Discriminator
using the current Generator

Step 2:
Train the Generator
to beat the Discriminator

72

GeneratorDiscriminator

Optimize:

The discriminator is not needed after convergence

Features and Challenges

• GANs can produce clear crisp results for many
problems

• But they also have stability issues and are hard
to train
– Problems such as “mode collapse” are frequent

• Producing outputs with very low variability

73

Poll 4

• Identify potential reasons a GAN could fail
– Generator always generates the same face that

fools the discriminator
– The JSD may have poor derivatives preventing the

model from learning
– The discriminator may be random resulting in no

derivatives
– The discriminator may be too certain, resulting in

no derivatives

74

Poll 4

• Identify potential reasons a GAN could fail
– Generator always generates the same face that

fools the discriminator
– The JSD may have poor derivatives preventing

the model from learning
– The discriminator may be random resulting in no

derivatives
– The discriminator may be too certain, resulting in

no derivatives

75

Variants and updates

• A number of variations have been proposed to
improve the stability and outputs of GANs
– LAPGAN
– Wasserstein GAN
– C-GAN
– DCGAN
– CycleGAN
– StarGAN
– …

76

Evaluate with Discriminative Network

• Inception Score

– Use the Inception V3 image classifier to classify generated
images

– Inception should produce a variety of labels

• As measured by the entropy of the average label distribution

– Each label should have high confidence (low entropy)

• As measured by the average entropy of the Inception outputs for
individual instances

– The two scores are combined into a single “inception” score

77

VAEs vs GANs

• Minimizing the KL divergence between
distributions of synthetic and true data

• Uses an encoder to predict latent
distributions to optimize generator

• More complex formulation

• Simpler optimization. Trains faster and
more reliably

• Results are blurry

• Minimizing the Jenson-Shannon
divergence between distributions of
synthetic and true data

• Use a discriminator to optimize
generator

• Simpler formulation

• Noisy and difficult optimization

• Sharper results

VAEs GANs

78

Original paper (GAN, 2014)

79

GANs with time

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

• Better quality
• High Resolution

80

StarGAN(2018)

81

Progressive growing of
GANs (2018)

82

High fidelity natural images
(2019)

83

Next – Hao Chen

• Addressing many of the shortcomings of GANs

• Different types of GANs

• GAN applications

84

Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs

85

Problems of Vanilla GANs

• Vanishing gradients: the discriminator becomes too
“strong”, and thus the gradient of the generation vanishes

• Mode collapse: the generator distribution collapses to a
small set of samples

86

Gradient Vanishing of JS-Div

87

• The “strong” discriminator reaches 100% accuracy quickly
• The gradient would be almost zero everywhere
• Generator receives quickly decayed gradients from D.

Arjovsky et al. Towards Principled Methods for Training Generative Networks. 2017.

Mode Collapse in Generator

88

• For different , the generator produce similar output
• The generator learns to fool the discriminator perfectly by

only capturing a subset of the data

Ian Goodfellow. NeurIPS 2016 Tutorial: Generative Adversarial Networks. 2017.

Least Square GANs
• Using least square loss instead of binary cross-entropy

• Better gradient for generator and more stable training

89Binary Cross-Entropy Least Square

Least Square GANs

90

Binary Cross-Entropy Least Square

• BCE: once fake samples fool discriminator, gradient becomes small
• Least Square: gradient of fake samples in square relationship

according to their distance with the decision boundary
• Pearson divergence instead of JS divergence

Mao et al. Least Squares Generative Adversarial Networks. 2017.

Wasserstein GANs
• Uses Earth-mover (Wasserstein-1) distance to

measure the distance between two distributions

91

Wasserstein-1
Continuous and useful gradient everywhere

JS
Not Continuous

Arjovsky et al. Wasserstein GAN. 2017.

Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

92Gulrajani et al. Improved Training of Wasserstein GANs. 2017.

Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

• Weight Clipping

93Gulrajani et al. Improved Training of Wasserstein GANs. 2017.

Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

• Weight Clipping Unstable!
• Gradient Penalty

94Gulrajani et al. Improved Training of Wasserstein GANs. 2017.

Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

• Weight Clipping
• Gradient Penalty
• Spectral Normalization

95Miyato et al. Spectral Normalization of Generative Adversarial Networks. 2018.

f-GANs
• GAN loss functions = How to measure the divergence

between two distributions
• F-divergence

• Summary

96Nowozin et al. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. 2017.

Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs

97

Conditional GANs
• Generator is conditioning on y

• Discriminator predicts both
– Real vs Fake
– Class of the images

98Mirza et al. Conditional Generative Adversarial Nets. 2014.

Progressive GANs
• Grow both generator and discriminator progressively

– Speed up and stabilize training
– High-resolution image generation

99Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 2017.

StyleGAN

• AdaIN

• A better latent space

100Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. 2017.

StyleGAN

101

Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs

102

Image-to-Image Translation

103

Pix2Pix

• A conditional GAN, but the condition is source-domain
• PatchGAN discriminator

– Instead of predicting single real/fake classification
– Predicting real/fake at feature elements from feature maps

104Isola et al. Image-to-Image Translation with Conditional Adversarial Network. 2018.

CycleGAN
• Problem of Pix2Pix:

– Need paired source-target data
– Sometimes we don’t have such data

• How can we train image-to-image translation GANs
without paired data?

105Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.

CycleGAN
• Forward translation X -> Y, need paired data to train

• Backward translation Y -> X, need paired data to train

106Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.

CycleGAN
• Bi-directional translation: forward and then

backward

• Enforcing cycle consistency

107Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.

StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

108Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.

StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

– Have generators and discriminators for each domain

109Choi et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. 2018.

StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

– Have generators and discriminators for each domain

– During training, sample two domains and do cycleGAN!

110Choi et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. 2018.

Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs

111

Text-to-Image GANs

• Generator and Discriminator design

112Kang et al. Scaling up GANs for Text-to-Image Synthesis. 2023.

