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What we’ve learned so far

VAEs
Diffusion models

This week: GANS

Connecting the dots




The problem

From a large collection of images of faces, can a
network learn to generate new portrait

— Generate samples from the distribution of “face”
Images
e How do we even characterize this distribution?



But first...

 Discriminative vs. Generative models

e Discriminative models learn to discriminate

— Determine the class given the input
 Compute P(y|x)

* Generative models can generate

— Produce more instances like the training data
* Compute and/or draw from P(x,y)



Discriminative vs Generative Models

Given a distribution of inputs X and labels Y.

Discriminative models Generative models
- Discriminative models learn + Generative models learn the
conditional distribution P(Y | X) Generative models learn the joint

distribution P(Y, X)
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Discriminative vs Generative Models

Given a distribution of inputs X and labels Y.

Discriminative models

Discriminative models learn
conditional distribution P(Y | X)

Learns decision boundary between
classes.

Limited scope. Can only be used for
classification tasks.

E.g. Logistic regression, SVM etc.

Generative models

Generative models learn the
Generative models learn the joint
distribution P(Y, X)

Learns actual probability distribution of
data.

Can do both generative and
discriminative tasks.

E.g. Naive Bayes, Gaussian Mixture
Model etc.

arder problem, requires a deepe
understanding of the distribution than
discriminative models.




Explicit vs Implicit Models

Explicit distribution models Implicit distribution models

 Calculates P(x ~ X) for -+ Generate x ~ X
all x



Poll 1

e What s the difference between Discriminative models vs. Generative

models
— Discriminative models model the decision boundary between classes, whereas
Generative models model class distributions

— Generative models model the decision boundary between classes, whereas
Discriminative models model class distributions

 What s the difference between Explicit and Implicit Generative models?

— Implicit models compute the probability of samples, whereas Explicit models
only let you draw samples from the distribution

— Explicit models compute the probability of samples, whereas Implicit models
only let you draw samples from the distribution



Poll 1

e What s the difference between Discriminative models vs. Generative
models

— Discriminative models model the decision boundary between classes,
whereas Generative models model class distributions

— Generative models model the decision boundary between classes, whereas
Discriminative models model class distributions

 What s the difference between Explicit and Implicit Generative models?

— Implicit models compute the probability of samples, whereas Explicit models
only let you draw samples from the distribution

— Explicit models compute the probability of samples, whereas Implicit models
only let you draw samples from the distribution
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The problem

From a large collection of images of faces, can a

network learn to generate new portrait

— Generate samples from the distribution of “face”
images

* How do we even characterize this distribution?
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What we have seen: VAE

Generated

Generator
[ZNP(Z)]— G(2)

data

— s X

e Generator is a decoder of a VAE
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What we have seen: VAE

e

[Z~P(Z)]— Generator AAD—vaP(X; 0)

G(Z;0)

e Generator is a decoder of a VAE

This is a parametric model
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What we have seen: VAE

e

[Z~P(Z)]—

Generator
G(Z;0)

44,)— X~P(X; 0)

This is a parametric model

e Generator is a decoder of a VAE

* Trained by maximizing the likelihood of the data

0* = arg max

0

logP(X;0)
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What we have seen: VAE

e

[Z~P(Z)]—

Generator
G(Z;0)

44,)— X~P(X; 0)

This is a parametric model

e Generator is a decoder of a VAE

* Trained by maximizing the likelihood of the data

0* = arg min

0

—log P(X; 0)
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What we have seen: VAE

e

[Z~P(Z)]— Generator AAD—vaP(X; 0)

G(Z;0)

This is a parametric model

e Generator is a decoder of a VAE

e Trainec
— Likeli

by maximizing the likelihood of the data

nood maximization does not actually relate to

whet

ner the output actually looks like a face

0* = arg mein —log P(X; 0)



Training the VAE

e

[Z~P(Z)]— Generator AAD—vaP(X; 0)

G(Z;0)

e Generator is a decoder of a VAE
* Trained by maximizing the likelihood of the data

— Likelihood maximization does not actually relate to
whether the output actually looks like a face

* Can we make the training criterion more direct?



Replacing negative log likelihood with
a more relevant loss

e

\ l Does it
[Z~P(Z) N CEmElER) look like a DILLAF

G(Z;0) fca? loss

20



Poll 2

VAEs are implicit Generative models, True or False
— True
— False

Why would likelihood maximization not result in a model that produces more face-
like outputs (for a face-generating VAE)?

— The model can maximize the likelihood of training data without any assurance about what
other (non-training) samples look like

— The model is more likely to run into poor local optima

— The model only captures the mode of the distribution of faces, whereas most face-like images
are in the tail of the distribution

The face-generating model is more likely to generate face-like images if it were
trained with a differentiable loss function that explicitly evaluates if the outputs
look like faces or note, True or False

— True

— False



Poll 2

VAEs are implicit Generative models, True or False
— True
— False

Why would likelihood maximization not result in a model that produces more face-
like outputs (for a face-generating VAE)?

— The model can maximize the likelihood of training data without any assurance about what
other (non-training) samples look like

— The model is more likely to run into poor local optima

— The model only captures the mode of the distribution of faces, whereas most face-like images
are in the tail of the distribution

The face-generating model is more likely to generate face-like images if it were
trained with a differentiable loss function that explicitly evaluates if the outputs
look like faces or note, True or False

— True

— False
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Replacing negative log likelihood with
a more relevant loss

Does it
[Z~P(Z)]—‘ Generator || o jikea | DTLLAF
G(Z; 8) face? IOSS

* But what is a good DILLAF loss?

23
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What are GANs

Generative Adversarial Networks



What are GANs

Adversarial Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)
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What are GANs

Generativel Adversarial)Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)
that are trying beat each other.
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What are GANs

Generativel Adversarial

Neural Networks
Generative Models which generate

data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)
that are trying beat each other.
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Generative Adversarial Networks

Introduced in 2014

Goal is to model P(X), the distribution of training
data

— Model can generate samples from P(X)
Trained using a pair of models acting as “adversaries”
— A “Generator” that generates data

— A “Discriminator” that evaluates it

e The DILLAF loss!!



What are GANs?

Generated

Generator
G(Z)

data

— s X

Real data

X

Discriminator
D(X)

— Real/Fake?

DILLAF
loss
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What are GANs?

[Z~P(Z)]——>

Generator
G(Z)

Generated

data
X

Real data

X

Discriminator
D(X)

— Real/Fake?
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The Generator

Generator
[ZNP(Z)]ﬁ G(2)

Generated
data

* The generator produces realistic looking X = G(z) from a latent vector Z

 Generator input Z can be sampled from a known prior, e.g. standard Gaussian

* Goal: generated distribution, P; (X) matches the true data distribution Py (X)

—  P;(X) is the more “memorable” notation for P (X), the probability that a generated

sample X takes the value X

32



The Discriminator

| Discriminator || pooieqke?

D(X)

* Discriminator D (X) is trained to tell the difference between real
and generated (fake) data

— Specifically, data produced by the generator

— If a perfect discriminator is fooled, the generated data cannot be
distinguished from real data

33



Training a GAN

[Z~P(Z)]——>

Generator
G(Z)

 Both, t
trainec

Generated

data
X

Real data

X

Discriminator
D(X)

— Real/Fake?

ne generator and discriminator must be

34



Training the discriminator

F

Discriminator
D(X)

__, Real/Fake?

<

* Training the discriminator:

— The discriminator is provided training examples of real and

synthetic faces

— The discriminator is trained to minimize its classification loss

* Minimize error between actual and predicted labels

— Discriminator parameters are trained such that
* D(X) = 1 forreal faces
* D(X) = 0forsyntheticfaces(iel —D(X) =1)
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Training the discriminator

y .« 9

Discriminator
D(X)

__, Real/Fake?

<

* Training the discriminator:

— The discriminator is provided training examples of real and

synthetic faces

— The discriminator is trained to minimize its classification loss

* Minimize error between actual and predicted labels

— Discriminator parameters are trained such that
* Maximize log (D(X)) for real faces
* Maximize log (1 — D(X)) for synthetic faces
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Training the generator

F

Generator
[ZNP(Z)]_d G(2)

Discriminator
D(X)

__, Real/Fake?

* Training the generator:

— The discriminator’s loss is backpropagated to the

generator

— The generator is trained to maximize the discriminator loss

e |tis trained to “fool” the discriminator

— Generator parameters are trained such that
e D(G(Z)) = 1 (i.e. 1= D(G(Z)) =0)
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Training the generator

F

Generator
[ZNP(Z)]_d G(2)

Discriminator
D(X)

__, Real/Fake?

* Training the generator:

— The discriminator’s loss is backpropagated to the

generator

— The generator is trained to maximize the discriminator loss

e |tis trained to “fool” the discriminator

— Generator parameters are trained such that
* Minimize log (1 — D(G(Z))
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The GAN formulation

Generated
data

Generator
Z~P(Z) 6(2) — X

Real data
X

e Discriminator:

Discriminator
D(X)

— Real/Fake?

— For real data X, Maximize log (D (X))
— For synthetic data Maximize log (1 — D()?))

* (enerator
— Minimize log (1 — D()?))
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The GAN formulation

— Real/Fake?

Generated
- . data
enerator 5
Z~P(Z) 6(2) — X
Discriminator
D(X)
Real data

X

 The original GAN formulation is the following min-max optimization

minmax EylogD(X) + E;log(1 — D(G(Z)))

G D

* Objectiveof D: D(X) = 1andD(G(Z)) = 0
* Objectiveof G: D(G(Z)) = 1

40



How to Train a GAN?

Discriminator
D(X) ‘ |
Step 1:

Train the Discriminator
using the current Generator

Generator
G(Z)

Step 2:
Train the Generator
to beat the Discriminator

Optimize: minmaxEylogD(X) + E; log(1 — D(G(Z)))

G D

The discriminator is not needed after convergence

41



Poll 3

* When training a GAN, which component must
you train first

— The discriminator
— The generator

 Which component is updated more frequently
— The discriminator
— The generator



Poll 3

* When training a GAN, which component must
you train first

— The discriminator
— The generator

 Which component is updated more frequently
— The discriminator
— The generator

The discriminator is the (DILLAF) loss. Training the loss is more important,
since the loss guides the training!




The GAN formulation

Generated
data

Generator
Z~P(Z) 6(2) — X

Real data
X

Discriminator
D(X)

— Real/Fake?

* So how does this behave when each

component is optimized...
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The GAN formulation

Generated

Generator
Z~P(Z) 6(2) — X

Discriminator
D(X)

— Real/Fake?

Real data
X

* So how does this behave when each

component is optimized...

— The optimal discriminator:
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The perfect discriminator:
Consider a binary classification problem

* The a posteriori probability of the classes for any instance x = X is

. P(Xiyl)
POX) = P(X,y,) + P(X,y,)
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The perfect discriminator:

Consider a binary classification problem
P(322|x)

\ /P(xryZ)

P(x' yl)

0.5

>
X

* The a posteriori probability of the classes for any instance x = X is

. P(X'yl)
POX) = P(X,y1) + P(X,y5)
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The perfect discriminator:
Consider a binary classification problem

P(x,y1) P(x,y,)

T /

>
X

The a posteriori probability of the classes for any instance x = X is

P(Xryl)
P(X,y1)+P(X,y2)

P(y;|X) =

The perfect decision boundary is where P(y;|X) = P(y,|X)
— The perfect discriminator will compute P(y;|X) for each class
— It will assign any X to the class with the higher P(y;|X)
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The optimal discriminator

Generated
data

Generator
Z~P(Z) 6(2) — X

Discriminator | | hal/Fake?
D(X)

Real data
X

* The optimal discriminator would be a Bayesian classifier
_ P(X)
D(X) =
Px(X) + P (X)

— Assuming uniform prior

Pg(X) Px(X)




The GAN formulation

Generator
G(Z)

Real data
X

Discriminator
D(X)

— Real/Fake?

* So how does this behave when each

component is optimized...
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Updating the Generator:
Fooling the perfect discriminator

PG (X, 6k+1)
N

* Relearn generator parameters so that the new
distribution of generated data “fools” the discriminator

— By moving it into the region assigned to the other class by
the (perfect) discriminator
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The iterated learning

D(X; ) X

e Discriminator learns perfect boundary
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The iterated learning

PG (X, 6k+1)

Py (X)

"
“
2%

X> D(X; ™) X>

‘e
‘e
Yy,

D(X; %)

e Discriminator learns perfect boundary

 Generator moves its distribution past the boundary “into” the real
distribution
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The iterated learning

PG (X, 0k+1)

Py (X)

‘e
‘e
vy,

D(X; ¢k+1) X
Discriminator learns perfect boundary
Generator moves its distribution past the boundary “into” the real
distribution
Discriminator relearns new “perfect” boundary

<y
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The iterated learning

PG (X, 0k+1)

Py (X)

<y

D(X;¢k+1) X D(X;¢k+1)

Discriminator learns perfect boundary

Generator moves its distribution past the boundary “into” the real
distribution

Discriminator relearns new “perfect” boundary
Generator shifts distribution past new boundary

55



The iterated learning

>
X
>
X
Discriminator learns perfect boundary
Generator moves its distribution past the boundary “into”
the real distribution
Discriminator relearns new “perfect” boundary
Generator shifts distribution past new boundary >
X

In the limit Generator’s distribution sits perfectly on “real”
distribution and the perfect discriminator is still random
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Analysis of optimal behavior:
The optimal discriminator

Generated
data

Generator
Z~P(Z) 6(2) — X

Discriminator| | p bal/Fake?
D(X)

Real data
X

* The optimal discriminator would be a
Bayesian classifier
Py (X)
Px(X) + Pg(X)
— Assuming uniform prior

D(X) =
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Analysis of optimal behavior:
The optimal generator

— Real/Fake?

Generated
G . ta
enerator
Z~P(¥) 6(2)
Discriminator

D(X
b = P @

PX(X) + PG(X) ReaIXdata

min max Ey log D(X) + E; log(1 — D(G(Z)))

G

D
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Analysis of optimal behavior:
The optimal generator

Z~P(¥)

Generator
G(Z)

—

D(X) = Px (X)

PX(X) + PG (X) Real data

X

Generated
ta

Discriminator
D(X)

— Real/Fake?

min max Ey log D(X) + E; log(1 — D(G(Z)))

G

D

With a perfect discriminator:

L =Ex p,x)logD(X) + Ex.p.(x) log(1 — D(X))
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Analysis of optimal behavior:
The optimal generator

Generated
G t -
enerator
Z~P(¥) G(2)
Discriminator | Real/Fake?
D(X
PP /169 &
Py (X) + Py (X) ReaIXdata
min max Ey log D(X) + E; log(1 — D(G(Z)))

G D
With a perfect discriminator:
L = Ex-pyx)logD(X) + Ex-p(x) log(1 — D(X))

) Py (X) Pg (X)
= Ex-py(x) 108 (PX(X) ¥ P, (X)) + Bx-roen L8 (PX(X) +Pg (X))
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The KL Divergence

KL (P,Q) = ) P(X)1og(P(X)/Q(X)
X
* What are the problems with this?
KL(Q,P) = ) Q(X)log(Q(X)/P(X))
X

* What are the problems with this?



The KL Divergence

KL (P,Q) = ) P(X)1og(P(X)/Q(X)
X
* What are the problems with this?
KL(Q,P) = ) Q(X)log(Q(X)/P(X))
X

* What are the problems with this?

KL is not symmetric, and runs into issues if either P or Q become O
(whichever is inside the log)



The Jensen Shannon Divergence

JSD (P, Q)
= 0.5 KL(P,0.5(P + Q)) + 0.5KL(Q,0.5(P + Q))

* |f the term inside the log is 0, both P and Q are
0

—0log 0 =0, sothere are no problems

* Also, this is symmetric: JSD(P,Q) = JSD(Q,P)



The Jensen Shannon Divergence

JSD (P, Q)
= 0.5 KL(P,0.5(P + Q)) + 0.5KL(Q,0.5(P + Q))

* A symmetric variant of KL that does not
exaggerate instances to which one of the

distributions assigns O probability

—KL(P,Q) = Xx P(X)log(P(X)/Q(X)) blows up
the contributions of X with Q(X) = 0



Analysis of optimal behavior:
The optimal generator

Generated
G t -
enerator
Z~P(¥) G(2)
Discriminator | Real/Fake?
D(X
PP /169 &
Py (X) + Py (X) ReaIXdata
min max Ey log D(X) + E; log(1 — D(G(Z)))

G D
* With a perfect discriminator:
L = Ex-pyx)logD(X) + Ex-p(x) log(1 — D(X))

) Py (X) Pg (X)
= Ex-py(x) 108 (PX(X) ¥ P, (X)) + Bx-roen L8 (PX(X> +Pg (X))

* Thisis just the Jensen-Shannon divergence between Py (X) and P, (X) to within a
scaling factor and a constant

L = 2JSD(Py(X), Pp(X)) — log4



Analysis of optimal behavior:
The optimal generator

Generated
c y ta
enerator
Discriminator | Real/Fake?
D(X
D(X) = Py (X) =
P (X) + Po (X) ReaIXdata

 The optimal generator:

min 2/SD (Px(X),Ps(X)) —log4

* The optimal generator minimizes the Jensen Shannon
divergence between the distributions of the actual and

synthetic data!

— Tries to make the two distributions maximally similar
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The optimal generator with the
optimal discriminator

>

X
* The generator of the fully optimized GAN will generate P;(X) =
Py (X), i.e. the distribution of the generated data will be identical to
that of the original data
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The optimal generator with the
optimal discriminator

— >

X
The generator of the fully optimized GAN will generate P (X) =
Py (X), i.e. the distribution of the generated data will be identical to
that of the original data

At any X, P.(X) = Px(X)
—le.DX)=—2x% ___ g5

Px(X)+PG(X)
— The derivative of D(X) w.rt X =0
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The optimal generator with the
optimal discriminator

m
data VxD(X) =0

— Real/Fake?

Generator
Z~P(Z) 6(2) » X
Discriminator
D(X)
Real data

X

- V,D(X) =0

* All derivatives going backward are O

* There will be no further updates
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Min-Max Stationary Point

* There exists a stationary point:

— If the generated data exactly matches the real data, the discriminator
outputs 0.5 for all inputs

— If discriminator outputs 0.5, the gradients for the generator is flat, so
generator does not learn

— Unfortunately, this is also true of a random discriminator

e Stationary points need not be stable (depends on the exact GANs
formulation and other factors)

— Generator may overshoot some values or oscillate around the optimum

— A discriminator with unlimited capacity can still assign an arbitrarily
large distance to 2 similar distributions



Min-Max Optimization

e Generator and the discriminator need to be trained
simultaneously

— If discriminator is undertrained, it provides sub-optimal feedback to the
generator

— If the discriminator is overtrained, there is no local feedback for marginal
improvements



How to Train a GAN?

Discriminator
D(X) ‘ |
Step 1:

Train the Discriminator
using the current Generator

Generator
G(Z)

Step 2:
Train the Generator
to beat the Discriminator

Optimize: minmaxEylogD(X) + E; log(1 — D(G(Z)))

G D

The discriminator is not needed after convergence
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Features and Challenges

* GANs can produce clear crisp results for many
problems

e But they also have stability issues and are hard
to train

— Problems such as “mode collapse” are frequent

* Producing outputs with very low variability



Poll 4

ldentify potential reasons a GAN could fail

— Generator always generates the same face that
fools the discriminator

— The JSD may have poor derivatives preventing the
model from learning

— The discriminator may be random resulting in no
derivatives

— The discriminator may be too certain, resulting in
no derivatives



Poll 4

ldentify potential reasons a GAN could fail

— Generator always generates the same face that
fools the discriminator

— The JSD may have poor derivatives preventing
the model from learning

— The discriminator may be random resulting in no
derivatives

— The discriminator may be too certain, resulting in
no derivatives
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Variants and updates

A number of variations have been proposed to
improve the stability and outputs of GANs

— LAPGAN

— Wasserstein GAN
— C-GAN

— DCGAN

— CycleGAN

— StarGAN



Evaluate with Discriminative Network

Inception Score

Use the Inception V3 image classifier to classify generated
Images

Inception should produce a variety of labels
 As measured by the entropy of the average label distribution

Each label should have high confidence (low entropy)

 As measured by the average entropy of the Inception outputs for
individual instances

The two scores are combined into a single “inception” score
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VAEsS vs GANs

VAEs

Minimizing the KL divergence between
distributions of synthetic and true data

Uses an encoder to predict latent
distributions to optimize generator

More complex formulation

Simpler optimization. Trains faster and
more reliably

Results are blurry

GANSs

Minimizing the Jenson-Shannon
divergence between distributions of
synthetic and true data

Use a discriminator to optimize
generator

Simpler formulation
Noisy and difficult optimization

Sharper results



Original paper (GAN, 2014)

Output of original GAN paper, 2014 [GPM™T14]
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GANs with time

e Better quality
e High Resolution

2014

https://twitter.com/goodfellow_ian/status/10849735962361446407?lang=en
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StarGAN(2018)

Manipulating Celebrity Faces [CCKT17]

Blond hair Gender Aged Pale skin Input Angry Happy Fearful

. g T W |

g & | = wh W

Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset.
The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are
generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.
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Progressive growing of
GANs (2018)

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.
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High fidelity natural images
(2019)
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Next — Hao Chen

* Addressing many of the shortcomings of GANs

e Different types of GANs

* GAN applications



Improvement and Application of GANs

 Loss functions of GANs

— LSGAN
— WGAN (GP)

e Architecture of GANs
— Conditional GANs

— Progressive GANs
— StyleGAN

* I[mage-to-Image Translation GANs
* Text-to-Image GANSs



Problems of Vanilla GANs

* Vanishing gradients: the discriminator becomes too
“strong”, and thus the gradient of the generation vanishes

* Mode collapse: the generator distribution collapses to a
small set of samples
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Gradient Vanishing of JS-Div

Discriminator’s accuracy . Gradient of the generator with the original cost
1.0 T 10 T T T T T T T
— After 1 epoch —— After 1 epoch
— After 10 epochs 10° | — After 10 epochs |
0.9} —  After 25 epochs | —  After 25 epochs
1071
0.8 4 10~ e ! !
) . ‘
3 10 | : 1| [
s :
5 0.7 1 |
§ 10-#
0.6 R 10-3 ‘
I |
) ]
10-6
0.5 1 ‘
10~
0.4 L — — L — 10-% L 1 L I I L I
0 100 200 300 400 500 T 0 500 T000 1500 2000 2500 3000 3500 1000
Training iterations Training iterations

The “strong” discriminator reaches 100% accuracy quickly
The gradient would be almost zero everywhere
Generator receives quickly decayed gradients from D.
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Mode Collapse in Generator

Target

. -
- - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

* For different z, the generator produce similar output

 The generator learns to fool the discriminator perfectly by
only capturing a subset of the data



Least Square GANSs

Using least square loss instead of binary cross-entropy

mgn Visean(D) = %Emwpdm(m) [(D(=) — 1)°] + %Ezfvpz(Z) [(D(G(2))?]

min Viscan(€) = 5 Esup. (o) [(D(G(2)) —1)7]

Better gradient for generator and more stable training

12 T T T T T T T T T 16

14

12

10

Loss
o

Binary Cross-Entropy Least Square +



Least Square GANSs

101 10
+ Fake samples + Fake samples _
8 | O Real samples + + 8[| © Realsamples + L
* Fake samples for updating G ¥ Fake samples for updating G
6FL— Sigmoid decision boundary i 61— Least squares decision boundary i
T4
4
2k +
4+
0 +
2 i
-4 |
6
8
1 L L 1 L 1 1 1 1 ] _1 0 1 1 i} A 1 1 1 1]
-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10
Binary Cross-Entropy Least Square

BCE: once fake samples fool discriminator, gradient becomes small

Least Square: gradient of fake samples in square relationship
according to their distance with the decision boundary

Pearson X' ? divergence instead of JS divergence
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WP, P

Wasserstein GANSsS

e Uses Earth-mover (Wasserstein-1) distance to
measure the distance between two distributions

W(]P)Tapg) = inf E(x,y)fv'y[‘lx — y“]

yell(P,,P,)

1.0
L)
0.8
.. (]
0.6 L) ] R .
L) (]
é,

0.4+

0.2}

0_0 L - L
-1.0 -0.5 0.0 0.5 1.0

0

Wasserstein-1
Continuous and useful gradient everywhere

S 0.4}

_: 0.3'

0.6 |

05}

0.2

0.1}

0'0 L - L
-1.0 -0.5 0.0 0.5 1.0

)

JS
Not Continuous
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Wasserstein GANSsS

e W-GANSs loss function:

minmax B D@)] - E D@)

— Derived under the assumption of 1-Lipschitz discriminator
— How to enforce that?



Wasserstein GANSsS

e W-GANSs loss function:

minmax B D@)] - E D@)

— Derived under the assumption of 1-Lipschitz discriminator
— How to enforce that?

* Weight Clipping w < clip(w, —c, ¢)



Wasserstein GANSsS

e W-GANSs loss function:

minmax B D@)] - E D@)

— Derived under the assumption of 1-Lipschitz discriminator
— How to enforce that?

* Weight Clipping w < clip(w, —c, c) Unstable!

* Gradient Penalty x & (

ii}N]P);ﬁ

V.D(#)||,-1)°]-
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Wasserstein GANSsS

W-GANSs loss fu

nction:

minmax E [D(x)] — E [D(&))]

G

— Derived under the assumption of 1-Lipschitz discriminator

DED CEN]P)T jmpg

— How to enforce that?

Weight Clipping w ¢ clip(w, —c, c)

Gradient Penalty x E |[(

Spectral Norma

o(A) :=

V.D(#)||,-1)°]-

Ci}N]P):E
lization
Ah
max | AR}l = max ||Ahl|,
hh#0 ||h|2  |Bl.<1

Wsn (W) := W /a(W)



f-GANSs

* GAN loss functions = How to measure the divergence
between two distributions

* F-divergence

D((P|Q) = [ q(m)f(p(“’))dw

X q(x)

* Summary

Name Ds(P|Q) Generator f(u) T*(x)
Kullback-Leibler [ p(z) log % dz ulogu 1 +log %

Reverse KL [ q(z) log % dz —logu - %

Pearson x2 il m%z—)ﬁ dzr (u—1)2 2(% -1)

. 2 2 T T

Squared Hellinger [ (\/p(w) — \/q(a:)) dz (Vu—1) (\/ Z% —1)- %
Jensen-Shannon 3 [ p(z) log p(jff;)(m) + q(x) log % dz —(u+1)log “5* +ulogu  log p(iﬁa;)(sc)

GAN [ p(z)log p(jff’;)(m) + ¢(z) log p(j)qi?(w) dz —log(4) wulogu — (u+1)log(u+1) log %

Nowozin et al. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. 2017. 96



Improvement and Application of GANs

e Architecture of GANs
— Conditional GANs

— Progressive GANs
— StyleGAN



Conditional GANs

* Generator is conditioning ony

e Discriminator predicts both

Y
w
Q

— Real vs Fake o (@) h

— Class of the images 00000
00000 ©0000)

/ averato S YYXYX) h
00000
iy

(@QQO\ @OQQQ})

Mirza et al. Conditional Generative Adversarial Nets. 2014. 98



Progressive GANSs

* Grow both generator and discriminator progressively
— Speed up and stabilize training
— High-resolution image generation

G Latent Latent Latent

‘
Ba
II:II
' ; | ]
i [ ]
1 " [ ]
: : ' '
: : ' !
] ; 1024x1024 |
R. R. - 8
i 1 Reals i Reals . iReaIs
P i Y
D B 1 1024x1024 ]
. B . X
Vo P [ ]
' [ ]
. y v I ]
Ba i
Training progresses >

Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 2017. 99



StyleGAN

Latent z € Z

 AdalN
X; — H(Xz')

AdalN (x;,y) = ¥s. + ¥b,i
g (Xz)

Normalize

[ Fully-connected |

[PixeiNom]
* A better latent space e

4x4

Y
| Upsalmple |

Conv 3x3 |

(a) Distribution of (b) Mapping from (c) Mapping from [_Conv3x3 |

features in training set Z to features W to features | PixelNorm |

8x8

Y

(a) Traditional

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. 2017.

Latent z € Z

Synthesis network g

Noise

| Const 4x4x512 |

| Upsalmple |

| Conv 3x3

(b) Style-based generator
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StyleGAN

¢ 22ano§

Source A

¢ 92In0s WIOLJ SA[AIS 3sIROD)



Improvement and Application of GANs

* I[mage-to-Image Translation GANs



Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

output input output

Input Blond hair Gender Pale skin Happy Fearful

B A | | = E B2 ]
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Pix2Pix

D

[ " H H i_’ real
| X0 |

* A conditional GAN, but the condition is source-domain

e PatchGAN discriminator

— Instead of predicting single real/fake classification
— Predicting real/fake at feature elements from feature maps
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CycleGAN

* Problem of Pix2Pix:

— Need paired source-target data

— Sometimes we don’t have such data

Paired
Ly

{ I yg

* How can we train image-to-image translation GANs

without paired data?

Unpaired
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CycleGAN

* Forward translation X ->Y, need paired data to train

Dy
| G ?
/-\

X Y

* Backward translation Y -> X, need paired data to train




CycleGAN

e Bi-directional translation: forward and then

backward
Dx Dy
' GQ A
x| Ty
\/
F
* Enforcing cycle consistency
G %Y P G
7 [ " . N
z Y N | 2 Y X Yy
F F
£ & X Y cycle-consistency
cycle—c;);ssistency g e \ 3 ;..\ ..... - loss
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StarGAN

* CycleGAN was designed for two domains
 What if we have multiple domains?



StarGAN

* CycleGAN was designed for two domains
 What if we have multiple domains?

— Have generators and discriminators for each domain

(a) Cross-domain models (b) StarGAN

£33

O o=@
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StarGAN

* CycleGAN was designed for two domains

 What if we have multiple domains?

— Have generators and discriminators for each domain

(a) Cross-domain models (b) StarGAN

— During training, sample two domains and do cycleGAN!

(a) Training the discriminator (b) original-to-target doma (c) Target-to-original domain (d) Fooling the discriminator

[

Depth-wise concatenation 1

Fk image

(1) (2)(—J \—jtl)

omain

Iptmg
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Improvement and Application of GANs

* Text-to-Image GANSs

111



Text-to-Image GANSs

* Generator and Discriminator design

Pretrained Learned

text encoder text encoder [ Convolutional

m @ Liocal [ selt-attention
miing o Q@ [ Cross-attention
painting of a CL|PE s _—
corgi” . tg]ohal
U - I

Textc

Constant

1M1
T |}/
z~N(©0) —| |7 i

Latent code
\

Our high-capacity text-to-image generator

Multi-scale output

\

Text conditioning tp @
hRIF

- v
Xi

- A -
|

[ convolutional
[ self-attention

Sweep through multi-scale input

112



