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What we’ve learned so far

• VAEs
• Diffusion models

• This week: GANS
• Connecting the dots
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The problem

• From a large collection of images of faces, can a 
network learn to generate new portrait
– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?
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But first…

• Discriminative vs. Generative models

• Discriminative models learn to discriminate
– Determine the class given the input

• Compute P(y|x)

• Generative models can generate
– Produce more instances like the training data

• Compute and/or draw from P(x,y)
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Discriminative vs Generative Models

• Discriminative models learn 
conditional distribution P(Y | X)

• Learns decision boundary between 
classes.

• Limited scope. Can only be used for 
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the 
Generative models learn the joint 
distribution P(Y, X)

• Learns actual probability distribution of 
data.

• Can do both generative and 
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture 
Model etc.

• Harder problem, requires a deeper 
understanding of the distribution than 
discriminative models.
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• Calculates P(x ~ X) for 
all x

• Generate x ~ X

Explicit distribution models Implicit distribution models
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Poll 1
• What is the difference between Discriminative models vs. Generative 

models
– Discriminative models model the decision boundary between classes, whereas 

Generative models model class distributions
– Generative models model the decision boundary between classes, whereas 

Discriminative models model class distributions

• What is the difference between Explicit and Implicit Generative models?
– Implicit models compute the probability of samples, whereas Explicit models 

only let you draw samples from the distribution
– Explicit models compute the probability of samples, whereas Implicit models 

only let you draw samples from the distribution
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– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?

13



What we have seen: VAE

• Generator is a decoder of a VAE
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What we have seen: VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to 
whether the output actually looks like a face
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Training the VAE

• Generator is a decoder of a VAE
• Trained by maximizing the likelihood of the data

– Likelihood maximization does not actually relate to 
whether the output actually looks like a face

• Can we make the training criterion more direct?
19
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Replacing negative log likelihood with 
a more relevant loss
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Generator +
Does it

look like a 
face?

DILLAF 
loss



Poll 2
• VAEs are implicit Generative models, True or False

– True
– False

• Why would likelihood maximization not result in a model that produces more face-
like outputs (for a face-generating VAE)?

– The model can maximize the likelihood of training data without any assurance about what 
other (non-training) samples look like

– The model is more likely to run into poor local optima
– The model only captures the mode of the distribution of faces, whereas most face-like images 

are in the tail of the distribution

• The face-generating model is more likely to generate face-like images if it were 
trained with a differentiable loss function that explicitly evaluates if the outputs 
look like faces or note, True or False

– True
– False
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• But what is a good DILLAF loss?
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Generator
Does it

look like a 
face?

DILLAF 
loss

Replacing negative log likelihood with 
a more relevant loss
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Generative Adversarial Networks

• Introduced in 2014

• Goal is to model , the distribution of training 
data

– Model can generate samples from 

• Trained using a pair of models acting as “adversaries”

– A “Generator” that generates data

– A “Discriminator” that evaluates it

• The DILLAF loss!!
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What are GANs?
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The Generator

• The generator produces realistic looking from a latent vector 

• Generator input can be sampled from a known prior, e.g. standard Gaussian

• Goal: generated distribution, ீ  matches the true data distribution ௑

– ீ is the more “memorable” notation for 𝑿෡ , the probability that a generated 
sample 𝑋෠ takes the value 𝑋
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The Discriminator

• Discriminator is trained to tell the difference between real 
and generated (fake) data

– Specifically, data produced by the generator

– If a perfect discriminator is fooled, the generated data cannot be 
distinguished from real data

33
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Training a GAN
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Generator

Discriminator

Generated
data

Real data

Real/Fake?

• Both, the generator and discriminator must be 
trained



Training the discriminator

• Training the discriminator:
– The discriminator is provided training examples of real and 

synthetic faces
– The discriminator is trained to minimize its classification loss

• Minimize error between actual and predicted labels

– Discriminator parameters are trained such that
• for real faces
• for synthetic faces (i.e )
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Training the discriminator

• Training the discriminator:
– The discriminator is provided training examples of real and 

synthetic faces
– The discriminator is trained to minimize its classification loss

• Minimize error between actual and predicted labels

– Discriminator parameters are trained such that
• Maximize for real faces
• Maximize for synthetic faces
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Training the generator

• Training the generator:
– The discriminator’s loss is backpropagated to the 

generator

– The generator is trained to maximize the discriminator loss
• It is trained to “fool” the discriminator

– Generator parameters are trained such that
• (i.e. )
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Training the generator

• Training the generator:
– The discriminator’s loss is backpropagated to the 

generator

– The generator is trained to maximize the discriminator loss
• It is trained to “fool” the discriminator

– Generator parameters are trained such that
• Minimize  
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The GAN formulation

• Discriminator:
– For real data , Maximize 

– For synthetic data Maximize 

• Generator
– Minimize 
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The GAN formulation

• The original GAN formulation is the following min-max optimization

• Objective of :   and 
• Objective of :  
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How to Train a GAN?

Step 1:
Train the Discriminator
using the current Generator

Step 2:
Train the Generator
to beat the Discriminator

41

GeneratorDiscriminator

Optimize:

The discriminator is not needed after convergence



Poll 3

• When training a GAN, which component must 
you train first
– The discriminator
– The generator

• Which component is updated more frequently
– The discriminator
– The generator
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The discriminator is the (DILLAF) loss. Training the loss is more important, 
since the loss guides the training! 



The GAN formulation

• So how does this behave when each 
component is optimized…
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The GAN formulation

• So how does this behave when each 
component is optimized…
– The optimal discriminator:
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The perfect discriminator:
Consider a binary classification problem

• The a posteriori probability of the classes for any instance is 

• The perfect decision boundary is where 
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Consider a binary classification problem



• The a posteriori probability of the classes for any instance is 

௜
௜

ଵ ଶ

• The perfect decision boundary is where ଵ ଶ

– The perfect discriminator will compute ௜ for each class
– It will assign any to the class with the higher ௜
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The perfect discriminator:
Consider a binary classification problem



The optimal discriminator

• The optimal discriminator would be a Bayesian classifier
௑

௑ ீ

– Assuming uniform prior
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The GAN formulation

• So how does this behave when each 
component is optimized…
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Updating the Generator:
Fooling the perfect discriminator

• Relearn generator parameters so that the new 
distribution of generated data “fools” the discriminator
– By moving it into the region assigned to the other class by 

the (perfect) discriminator
51
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The iterated learning

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” the real 

distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• … 52
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The iterated learning

• Discriminator learns perfect boundary
• Generator moves its distribution past the boundary “into” 

the real distribution
• Discriminator relearns new “perfect” boundary
• Generator shifts distribution past new boundary
• …
• In the limit Generator’s distribution sits perfectly on “real” 

distribution and the perfect discriminator is still random
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Analysis of optimal behavior: 
The optimal discriminator

• The optimal discriminator would be a 
Bayesian classifier

– Assuming uniform prior
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Analysis of optimal behavior: 
The optimal generator

ீ ஽
௑ ௓

• With a perfect discriminator:

௑~௉೉(௑) ௑~௉ಸ(௑) 

௑~௉೉(௑)
௑

௑ ஽
௑~௉ಸ(௑)

ீ

௑ ஽

• This is just the Jensen-Shannon divergence between ௑ and ீ to within a 
scaling factor and a constant

௑ ஽ 58
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The KL Divergence

• What are the problems with this?

• What are the problems with this?
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The KL Divergence

• What are the problems with this?

• What are the problems with this?
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KL is not symmetric, and runs into issues if either P or Q become 0
(whichever is inside the log)



The Jensen Shannon Divergence

• If the term inside the log is 0, both P and Q are 
0
– 0 log 0 = 0,  so there are no problems

• Also, this is symmetric: JSD(P,Q) = JSD(Q,P)
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The Jensen Shannon Divergence

• A symmetric variant of KL that does not 
exaggerate instances to which one of the 
distributions assigns 0 probability
– blows up 

the contributions of with 

64



Analysis of optimal behavior: 
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Analysis of optimal behavior: 
The optimal generator

• The optimal generator:

• The optimal generator minimizes the Jensen Shannon 
divergence between the distributions of the actual and 
synthetic data!
– Tries to make the two distributions maximally similar

66
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The optimal generator with the 
optimal discriminator

• The generator of the fully optimized GAN will generate 
, i.e. the distribution of the generated data will be identical to 

that of the original data

• At any , 

– I.e. ௉೉(௑)

௉೉(௑)ା௉ಸ(௑)

– The derivative of w.r.t = 0
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The optimal generator with the 
optimal discriminator

•

• All derivatives going backward are 0

• There will be no further updates
69
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• There exists a stationary point:

– If the generated data exactly matches the real data, the discriminator 
outputs 0.5 for all inputs

– If discriminator outputs 0.5, the gradients for the generator is flat, so 
generator does not learn

– Unfortunately, this is also true of a random discriminator

• Stationary points need not be stable (depends on the exact GANs 
formulation and other factors)

– Generator may overshoot some values or oscillate around the optimum

– A discriminator with unlimited capacity can still assign an arbitrarily 
large distance to 2 similar distributions

70

Min-Max Stationary Point



Min-Max Optimization

• Generator and the discriminator need to be trained 
simultaneously

– If discriminator is undertrained, it provides sub-optimal feedback to the 
generator

– If the discriminator is overtrained, there is no local feedback for marginal 
improvements 
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How to Train a GAN?

Step 1:
Train the Discriminator
using the current Generator

Step 2:
Train the Generator
to beat the Discriminator

72

GeneratorDiscriminator

Optimize:

The discriminator is not needed after convergence



Features and Challenges

• GANs can produce clear crisp results for many 
problems

• But they also have stability issues and are hard 
to train
– Problems such as “mode collapse” are frequent

• Producing outputs with very low variability

73



Poll 4

• Identify potential reasons a GAN could fail
– Generator always generates the same face that 

fools the discriminator
– The JSD may have poor derivatives preventing the 

model from learning
– The discriminator may be random resulting in no 

derivatives
– The discriminator may be too certain, resulting in 

no derivatives
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Variants and updates

• A number of variations have been proposed to 
improve the stability and outputs of GANs
– LAPGAN 
– Wasserstein GAN
– C-GAN 
– DCGAN 
– CycleGAN
– StarGAN
– …
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Evaluate with Discriminative Network

• Inception Score

– Use the Inception V3 image classifier to classify generated 
images

– Inception should produce a variety of labels

• As measured by the entropy of the average label distribution

– Each label should have high confidence (low entropy)

• As measured by the average entropy of the Inception outputs for 
individual instances

– The two scores are combined into a single “inception” score
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VAEs vs GANs

• Minimizing the KL divergence between 
distributions of synthetic and true data

• Uses an encoder to predict latent 
distributions to optimize generator

• More complex formulation

• Simpler optimization. Trains faster and 
more reliably 

• Results are blurry

• Minimizing the Jenson-Shannon 
divergence between distributions of 
synthetic and true data

• Use a discriminator to optimize 
generator

• Simpler formulation

• Noisy and difficult optimization

• Sharper results

VAEs GANs
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Original paper (GAN, 2014)
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GANs with time

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

• Better quality
• High Resolution
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StarGAN(2018)
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Progressive growing of 
GANs (2018)
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High fidelity natural images 
(2019)
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Next – Hao Chen

• Addressing many of the shortcomings of GANs

• Different types of GANs

• GAN applications
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Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs
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Problems of Vanilla GANs

• Vanishing gradients: the discriminator becomes too 
“strong”, and thus the gradient of the generation vanishes

• Mode collapse: the generator distribution collapses to a 
small set of samples
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Gradient Vanishing of JS-Div

87

• The “strong” discriminator reaches 100% accuracy quickly
• The gradient would be almost zero everywhere
• Generator receives quickly decayed gradients from D.

Arjovsky et al. Towards Principled Methods for Training Generative Networks. 2017.



Mode Collapse in Generator

88

• For different , the generator produce similar output
• The generator learns to fool the discriminator perfectly by 

only capturing a subset of the data

Ian Goodfellow. NeurIPS 2016 Tutorial: Generative Adversarial Networks. 2017.



Least Square GANs
• Using least square loss instead of binary cross-entropy

• Better gradient for generator and more stable training

89Binary Cross-Entropy Least Square



Least Square GANs
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Binary Cross-Entropy Least Square

• BCE: once fake samples fool discriminator, gradient becomes small
• Least Square: gradient of fake samples in square relationship 

according to their distance with the decision boundary
• Pearson divergence instead of JS divergence

Mao et al. Least Squares Generative Adversarial Networks. 2017.



Wasserstein GANs
• Uses Earth-mover (Wasserstein-1) distance to 

measure the distance between two distributions

91

Wasserstein-1
Continuous and useful gradient everywhere

JS
Not Continuous

Arjovsky et al. Wasserstein GAN. 2017.



Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

92Gulrajani et al. Improved Training of Wasserstein GANs. 2017.
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Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

• Weight Clipping Unstable!
• Gradient Penalty

94Gulrajani et al. Improved Training of Wasserstein GANs. 2017.



Wasserstein GANs
• W-GANs loss function:

– Derived under the assumption of 1-Lipschitz discriminator
– How to enforce that?

• Weight Clipping
• Gradient Penalty
• Spectral Normalization

95Miyato et al. Spectral Normalization of Generative Adversarial Networks. 2018.



f-GANs
• GAN loss functions = How to measure the divergence 

between two distributions
• F-divergence

• Summary

96Nowozin et al. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. 2017.



Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs

97



Conditional GANs
• Generator is conditioning on y

• Discriminator predicts both
– Real vs Fake
– Class of the images

98Mirza et al. Conditional Generative Adversarial Nets. 2014.



Progressive GANs
• Grow both generator and discriminator progressively

– Speed up and stabilize training
– High-resolution image generation

99Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 2017.



StyleGAN

• AdaIN

• A better latent space

100Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks. 2017.



StyleGAN
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Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs
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Image-to-Image Translation

103



Pix2Pix

• A conditional GAN, but the condition is source-domain
• PatchGAN discriminator

– Instead of predicting single real/fake classification
– Predicting real/fake at feature elements from feature maps

104Isola et al. Image-to-Image Translation with Conditional Adversarial Network. 2018.



CycleGAN
• Problem of Pix2Pix:

– Need paired source-target data
– Sometimes we don’t have such data

• How can we train image-to-image translation GANs 
without paired data?

105Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.



CycleGAN
• Forward translation X -> Y, need paired data to train 

• Backward translation Y -> X, need paired data to train

106Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.



CycleGAN
• Bi-directional translation: forward and then 

backward

• Enforcing cycle consistency 

107Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.



StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

108Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020.



StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

– Have generators and discriminators for each domain

109Choi et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. 2018.



StarGAN
• CycleGAN was designed for two domains
• What if we have multiple domains?

– Have generators and discriminators for each domain

– During training, sample two domains and do cycleGAN!

110Choi et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. 2018.



Improvement and Application of GANs

• Loss functions of GANs
– LSGAN
– WGAN (GP)

• Architecture of GANs
– Conditional GANs
– Progressive GANs
– StyleGAN

• Image-to-Image Translation GANs
• Text-to-Image GANs
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Text-to-Image GANs

• Generator and Discriminator design

112Kang et al. Scaling up GANs for Text-to-Image Synthesis. 2023.


