
Homework 3 Part 2
Utterance to Phoneme Mapping

11-785: Introduction to Deep Learning (Spring 2020)

DUE: April 5th, 2020, 11:59 PM

1 Introduction

In this homework you will again be working with speech data. We are going to be using
unaligned labels in this contest, which means the correlation between the features and labels
is not given explicitly and your model will have to figure this out by itself. Hence your data
will have a list of phonemes for each utterance, but not which frames correspond to which
phonemes.

Your main task for this assignment will be to predict the phonemes contained in utterances
in the test set. You are not given aligned phonemes in the training data, and you are not
asked to produce alignment for the test data.

2 Dataset

Similar to HW1P2, you will be provided with mel-spectrograms that have 40 band frequen-
cies for each time step of the speech data. However in this assignment, the labels will not
have a direct mapping to each time step of your feature, instead they are simply the list of
phonemes in the utterance [0-45]. There are 46 phoneme labels. The phoneme array will be
as long as however many phonemes are in the utterance. We provide a look- up, mapping
each phoneme to a single character for the purposes of this competition.

The feature data is an array of utterances, whose dimensions are (frames,time step,40),
and the labels will be of the dimension (frames, frequencies). The second dimension, viz.,
frequencies will have variable length which has no correlation to the time step dimension in
feature data.

2.1 File Structure

In total, we have 7 files for this assignment, including 1 ’.csv’ file, 1 ’.py’ file and 5 ’.npy’
files. Their functions and structure of organization are explained below.

• wsj0 train.npy: This file contains your feature data for training the model. It will be
of the shape (frames, time step, 40), where the second dimension will be variable as in
HW1P2.

1



• wsj0 dev.npy: This file is similar to wsj0 train.npy, but should be used to calculate
your validation losses and accuracy.

• wsj0 test.npy: This file is similar to wsj0 train.npy, but should be used to predict the
phoneme labels for the final Kaggle submission.

• wsj0 train merged labels.npy: This file contains the labels or phoneme list for each
utterance of the wsj0 train.npy file. The dimensions of the data in this file will be of
the form (frames, frequencies) where the second dimension is variable.

• wsj0 dev merged labels.npy: This file is similar to the one above, but instead will map
the labels to the wsj0dev.npy file. You can use this for predicting validation losses and
accuracy.

• samplesubmission.csv: This is an empty submission file that contains the headers in
the firs trow,followed by the test utterance Id and predictions for each utterance of test
data.

• phonemelist.py: This file contains the phoneme list and the mapping of each phoneme
in the list to their respective sounds. Your submission file should contain these sounds
as output and not the phoneme or their corresponding integer.

3 Getting Started

3.1 CTC Loss

As described above, there is no alignment between utterances and their corresponding
phonemes. Thus, train your network using CTC loss. Decode your predictions, prefer-
ably using beam search. Use the list of phonemes provided on the data page to make each
prediction into a text string.

Tensor flow has built-in CTC loss function. Also for Pytorch, you can use nn.CTCLoss as
mentioned in the recitation.

3.2 CTC Decoding

If you are using PyTorch you can manually install the library, ctcdecode, here. They have
an implementation of beam search, use it in your code to decode the output of your model.
If you are using Tensorflow, it has it’s own implementation of beam search.

3.3 Using Beam Search for CTC Decode

You have already implemented Beam Search in BeamSearch.py in your part-1, you can use
that implementation here. The Beam Search implementation of part-1 outputs 2 arguments
one of which is the best sequence path which can be used to predict your sequence of
phoneme.

2

http://www.sharelatex.com


4 Evaluation & Submission

You will be evaluated using Kaggle’s character-level string edit distance. Since we mapped
each phoneme to a single character, that means you are being evaluated on phoneme edit-
distance.

We are using Levenshtein distance, which counts how many additions, deletions and modi-
fications are required to make one sequence into another.

Your submission should be a CSV file. The headers should be ”Id”, and ”Predicted” - Id
refers to the 0-based index of utterance in the test set and Predicted is the phoneme string.
Please note that the headers are case sensitive.

See sample submission for details.

5 Conclusion

That’s all. As always, feel free to ask on Piazza if you have any questions.

Glhf!

3


	Introduction
	Dataset
	File Structure

	Getting Started
	CTC Loss
	CTC Decoding
	Using Beam Search for CTC Decode

	Evaluation & Submission
	Conclusion

