GANs (Generative Adversarial Networks)

By Yash Belhe, Hao Liang



Agenda

Generative models
Revisiting GANSs
WGAN
WGAN-Gradient penalty (WGANGP)
o Code walk through GANS, WGAN, WGANGP
e C(Cycle GAN
o Code walk through Cycle GAN
e STAR GAN
o Code walk through STAR GAN



Generative Models

Basic ideais to learn the underlying distribution of the data and generate
more samples for the distribution.

Some examples of generative models

Probabilistic Graphical Models
Bayesian Networks

Variational Autoencoder
Generative Adversarial Networks



Generative Models

e Unknown distribution P_(r for real)
e Known distribution Py
e Two approaches
o Optimise P, to estimate P_
o Learnafunction g, (Z) which transforms Z into Py



Approach 1: Optimise P, to estimate P,

m

e Maximum Likelihood Estimation (MLE) : ax,, Pd_ 3 togPylaV
o Thisis same as minimizing the KL dlvergence =

e Kaullback-Leibler (KL) divergence: I\L[.P“QJ—/J*’-UJl gi_r:,

e Issue: Exploding of KL-divergence for zero values of P
o Addrandom noise to P

\P{x)dr



Approach 2: Learn a function g, (z)

e Welearn afunction 8¢ (z) that transforms z into Pe
o Zisaknowndistribution like Uniform or Gaussian
e Wetrain g, by minimizing the distance between g, and P,
e Any of the distance metrics like KL divergence, JS divergence or Earth
Mover (EM) distance can be used.



Revisiting GANs

e GANs are generative models which try to understand underlying
distribution to generate more sample.
e GANSs typically have 2 networks trained in an adversarial fashion.
o Generator
o Discriminator



Revisiting GANs- Generative Network
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Revisiting GANSs - training

max min V (G, D) How do we optimize
b g this objective function?

V(g’ D) - Epdata(X) logD(x) + IE:pg(x) 108,'(1 == D(X))
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Revisiting GANSs - training

rngx mgin V(G,D) Optimization:
@ Fix generator, and update discriminator

@ Fix discriminator, and update generator
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WGANSs-Earth Mover Distance

Wasserstein distance: the minimum energy cost of moving and transforming a pile of dirt in the shape of one
probability distribution to the the shape of other distribution.
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WGANSs-Objective function

e We train GANs using this wasserstein distance.
e Discriminative is no more adirect critic. It is trained to estimate the
wasserstein distance between real and generated data.

L, =E,D(X) - E,D(G(Z))

e Lipschitzis clipped to 1i.e.|f(x) - f(y)|/(x-y) <=1
o This bound ondiscriminator is not good, instead we clip the
gradients.



WGAN-Gradient Penalty

e Boundondiscriminator is not great and leads to poor discriminator.
e We can add the gradient penalty in the loss function making sure that
the lipschitz is almost 1 everywhere.

L, =E D(X) - E,D(G(Z)) + AE, (|| VD(X)||,-1)*

e We do not constraint the gradients everywhere.
o  We penalize where there is linear interpolation between real and fake
data.



Code Walkthrough

GANs, WGAN-GP



Image translation

e Image-to-image translation involves generating a new synthetic
version of a given image.
e Example: Changing a summer landscape --> winter landscape, blonde
--> black hair, image --> painting.
e Data for such image translation is very limited or sometimes difficult to
generate.
e 2 variants of GANSs are used for this specific task.
o Cycle GAN
o STAR GAN



Cycle GANs

e Instead of asingle Generator-Discriminator we have two Generators and
discriminators.
o Onegenerator takes images from the first domain and outputs images
from the second domain.
o Discriminator models are used to determine how plausible generated
images are and update the generator accordingly.
e Theoverallloss function for the cycle GAN is given below apart from the

standard objective we have an added cycle-consistency loss.
£(G’h‘1 I)X’DY) =‘CGAN(("$1)Y1X?Y)
+ Loan(F, Dx, Y, X)
1 ’\Ccyc(Ga I"),



Cycle GAN
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Cycle-consistency loss: Leyc(G, F) = Eppy (o) 1 F(G () — z||1]
g = Ey~pa..(y)[||G(F(y)) —yY|l1)-



Application: Style Transfer

Input

Van Gogh

Monet

Cezanne Ukiyo-e

<~
ALITTY

1l
Example of Style Transfer from Famous Painters to Photographs of Landscapes.
Taken from: Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.



Application: Object Transfiguration

zcbra = horse
Example of Object Transfiguration from Horses to Zebra and Zebra to Horses.
Taken from: Unpaired Image-to-image Translation Using Cycle-Consistent Adversarial Networks.



Star GAN (Unified GAN for Multi-Domain 12l

translation
e Star GAN helps us to generate images in target domain given an input

and target domain.
o Image of a man and target domain is gender.
o |Image of a person and target domain is age.
e We train the generator-discriminator in adversarial fashion with an
added auxiliary classifier.
e Alongwith normal adversarial loss this loss is added while training the
generator and discriminator.



| Depth-wise concatenation

—

Star GAN - Generator

e Generator have 3 objectives:
o Tries to generate realistic images

Depth-wise concatenation

o The weights of generator are adjusted so that the generated
images are classified as target domain by the discriminator.

o Construct original image from the fake image given the original
label domain label.

Objective f

function: EG’ = ‘Cad'v + /\cls 8 T )\rec Erec

cls



Star GAN - Discriminator

e Discriminator has 2 objectives:
o Whether the image is fake or real
o What is the domain in which the image belongs.
e |fthe generator is able to generate fool the discriminator then
discriminator would predict the target domain and we stop training.

Objective function: LD et —Eadv - )\cls le.



Applications

Aged

Input Angry Happy Fearful

Input Blond hair

Gender

-

Pale skin
—




Thank You!



Thank You!

Slow and steady wins the race is a lie, so pace up: Amit



Code Walkthrough

Cycle GAN and STAR GAN
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GAN Loss Function

Some Notation:

p(x) — The distribution over all possible real images that we want to model

p(z) — The distribution over the generator's input e.g U[0,1]" if z € RY

G — Generator, output is an image G(z)

D — Discriminator, output is the probability that the image is real D(x) € [0,1]

Real Image Label - 1

Fake Image Label - 0

ZLGan = m(gn max = (0 108(D(X))]

_ZNP(Z)[IOg(l — D(G(2)))]




GAN Loss Function

Z 4y = MIN Max

G

D
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GAN Loss Function

gGAN — m(gn mglx _x~p(x)[10g(D(x))] + _ZNP(Z)[IOg(l _ D(G(Z)))]

We estimate the expectation by an average over samples

Let 2 be a minibatch of samples drawn from p(x), | 2| =N

Let Z be a minibatch of samples drawn from p(z), |Z| = N

L Gay = minmax — 2 log(D(x)) + — 2 log(1 — D(G(2)))

foX ZEZ



Discriminator Loss

L= — mln — Z log(D(x)) + — Z log(1 — D(G(2)))

ZEZ



Discriminator Loss

L= — mln — Z log(D(x)) + — Z log(1 — D(G(2)))
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Discriminator Loss
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Discriminator Loss

L= — mln — Z log(D(x)) + — Z log(1 — D(G(2)))

xefl"

—— Z log(D(x))

xefl”

—— Z log(1 — D(G(2)))

ZEZ

ZEZ

cross-entropy loss between the predicted
labels D(x) and real labels i.e 1

cross-entropy loss between the predicted
labels D(G(z)) and fake labels i.e 0



Discriminator Loss

L= — mln — Z log(D(x)) + — Z log(1 — D(G(2)))

xeﬂf ZEZ

— z : log( D(x)) cross-entropy loss between the predicted
p’ labels D(x) and real labels i.e 1
xe

_— Z log(1 — D(G(z))) cross-entropy loss between the predicted

labels D(G(z)) and fake labels i.e 0
ZEZ

D real loss = bce loss(D(x), torch.ones(batch size))
D fake loss bce loss(D(G(z)), torch.zeros (batch size))



Generator Loss
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Generator Loss
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Generator Loss
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Generator Loss

<, =~ max— Z log(D(x)) + — Z log(1 — D(G(2)))

sat

xefl" zEZ
<, =~ max— Z log(1 — D(G(2)))
ZEZ
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Generator Loss

<, =~ max— Z log(D(x)) + — Z log(1 — D(G(2)))

sat

xefl" ZEZ
<, =~ max— Z log(1 — D(G(2)))
ZEZ
Zg,,= = min |- Z log(1 — D(G(2)))
ZEZ

-ve cross-entropy loss between the predicted labels D(G(z)) and fake labels i.e O

G loss = -bce loss(D(G(z)), torch.zeros(batch size))



Generator Loss

1 ve cross-entro
— - - - py loss
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Generator Loss
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 Empirically this means that the gradients received by G vanish
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Generator Loss

_ -ve cross-entropy loss
Z C mln a7 Z IOg(l —D (G(Z))) between the predicted labels
zEZ D(G(z)) and fake labels i.e 0
G loss = -bce loss(D(G(z)), torch.zeros(batch size))

e D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
e Often happens during the beginning of training
 Empirically this means that the gradients received by G vanish
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Generator Loss

_ -ve cross-entropy loss
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Generator Loss

_ -ve cross-entropy loss
Z C mln a7 Z IOg(l —D (G(Z))) between the predicted labels
zEZ D(G(z)) and fake labels i.e 0
G loss = -bce loss(D(G(z)), torch.zeros(batch size))

e D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
e Often happens during the beginning of training
 Empirically this means that the gradients received by G vanish

Z6,,,,=—min | -— Z log(D(G(2)))
no_sat G
zEZ' _
cross-entropy loss between
A G = mln — Z log(D(G(z))) the predicted labels D(G(2))

and real labels i.e 1
ZEZ

G loss = bce loss(D(G(z)), torch.ones (batch size))



Rough Code Implementation
(full code link)

G = generator (

D = discriminator ()

bce loss = nn.BCELoss ()

D optimizer = optim.Adam(D.parameters/())

G optimizer = optim.Adam(G.parameters())

z = get noise ()

x = get real()

D real loss = bce loss(D(x), torch.ones(batch size))

D fake loss = bce loss(D(G(z)), torch.zeros(batch size))
D loss = D real loss + D fake loss

D loss.backward()
D optimizer.step ()

G loss = bce loss(D(G(z)), torch.ones (batch size))
G loss.backward()
G optimizer.step ()


https://github.com/znxlwm/pytorch-generative-model-collections/blob/master/GAN.py

W-GAN

LW-GAN = mcgn max Ep D] — E, ) [D(G(2))]

Where ||D||; < K,i.e D is K-Lipschitz Continuous



W-GAN

LW-GAN = mcgn max Ep D] — E, ) [D(G(2))]

Where ||D||; < K,i.e D is K-Lipschitz Continuous

e Measures the Wasserstein/ Earth Mover Distance
between two distributions



How To Enforce K-Lipschitz
Continuity for the Discriminator?

* Heuristic: Clip each weight w of the discriminator s.t |w| <
C
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How To Enforce K-Lipschitz
Continuity for the Discriminator?

* Heuristic: Clip each weight w of the discriminator s.t |w| <
C

e |s this a good way of maintaining Lipschitz Continuity -
No

e Does it work? Somewhat



W-GAN Discriminator Loss

ZLp = mDaX 'prr[D(x)] — [EZNPF(Z)[D(G(Z))]




W-GAN Discriminator Loss

L= mDaX ‘pr [D(x)] — ZNp (Z)[D(G(Z))]

Zp=max— Z D(x) — — Z D(G(z))

xefl” zeZ




W-GAN Discriminator Loss
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W-GAN Discriminator Loss

L= mDaX ‘pr [D(x)] — [EZNp (Z)[D(G(Z))]

Zp=max— Z D(x) — — Z D(G(z))

xefl” zeZ

&, =min | —— Z D(x) + — Z D(G(2))

D
xefl” zeZ

D loss = -D(x).mean() + D(G(z)) .mean ()



W-GAN Discriminator Loss

L= mDaX ‘pr [D(x)] — [EZNp (Z)[D(G(Z))]
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For Lipschitz Continuity:



W-GAN Discriminator Loss

L= mDaX ‘pr [D(x)] — [EZNp (Z)[D(G(Z))]

Zp=max— Z D(x) — — Z D(G(z))

xefl” ZEZ
&, =min | —— Z D(x) + — Z D(G(2))
D
_ xefl" ZEZ _
D loss = -D(x).mean() + D(G(z)) .mean ()

For Lipschitz Continuity:

for p 1n D.parameters() :
p.data.clamp (-c, c)



W-GAN Generator Loss

Zp = min = 1D — E, ) )| D(G(2))]




W-GAN Generator Loss
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W-GAN Generator Loss

ZLp= m(gn = 1D — E, ) )| D(G(2))]

_ 1
QCZD — m(;n — N Z D(G(Z))

€/

G loss = -D(G(z)) .mean()



Rough Code Implementation
(full code link)

G = generator ()

D = discriminator ()

c = 0.01

D optimizer = optim.Adam(D.parameters())
G optimizer = optim.Adam(G.parameters())
z = get noise()

x = get real()

D loss = -D(x).mean() + D(G(z)) .mean()
D loss.backward()
D optimizer.step ()

for p 1in D.parameters|() :
p.data.clamp (-c, c)

G loss = -D(G(z)) .mean()
G loss.backward()
G optimizer.step ()


https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/wgan/wgan.py

