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Generative Models

Basic idea is to learn the underlying distribution of the data and generate 
more samples for the distribution.

Some examples of generative models

● Probabilistic Graphical Models
● Bayesian Networks
● Variational Autoencoder
● Generative Adversarial Networks



Generative Models

● Unknown distribution P
r
 (r for real)

● Known distribution Pθ
● Two approaches

○ Optimise Pθ  
to estimate P

r 

○ Learn a function gθ 
(Z) which transforms Z into Pθ



Approach 1: Optimise Pθ to estimate Pr

● Maximum Likelihood Estimation (MLE)  : 
○ This is same as minimizing the KL divergence

● Kullback-Leibler (KL) divergence:
● Issue: Exploding of KL-divergence for zero values of Pθ

○ Add random noise to Pθ



Approach 2: Learn a function gθ 
(z)

● We learn a function gθ (z) that transforms z into  Pθ
○ Z is a known distribution like  Uniform or Gaussian

● We train gθ  by minimizing the distance between gθ and P
r 

● Any of the distance metrics like KL divergence, JS divergence or Earth 
Mover (EM) distance can be used.



Revisiting GANs

● GANs are generative models which try to understand underlying 
distribution to generate more sample.

● GANs typically have 2 networks trained in an adversarial fashion.

○ Generator
○ Discriminator



Revisiting GANs- Generative Network



Revisiting GANs- Generator + Discriminator



Revisiting GANs - training



Revisiting GANs - training



WGANs-Earth Mover Distance

Wasserstein distance: the minimum energy cost of moving and transforming a pile of dirt in the shape of one 

probability distribution to the the shape of other distribution.

P and Q: 4 piles of dirt made up 
of 10 shovelfuls of dirt present.

❏ P1 = 3, P2 = 2, P3 = 1, P4 = 4
❏ Q1 = 1, Q2 = 2, Q3 = 4, Q4 = 3
❏ W = 5



WGANs-Objective function

● We train GANs using this wasserstein distance.
● Discriminative is no more a direct critic. It is trained to estimate the 

wasserstein distance between real and generated data.

LD = EXD(X) - EZD(G(Z))

● Lipschitz is clipped to 1 i.e. |f(x) - f(y)|/(x-y) <=1 
○ This bound on discriminator is not good, instead we clip the 

gradients.   



WGAN-Gradient Penalty

● Bound on discriminator is not great and leads to poor discriminator.
● We can add the gradient penalty in the loss function making sure that 

the lipschitz is almost 1 everywhere.

LD = EXD(X) - EZD(G(Z)) + λEX’(||∇D(X’)||2 -1)2

● We do not constraint the gradients everywhere.
○  We penalize where there is linear interpolation between real and fake 

data.



Code Walkthrough

GANs, WGAN-GP



Image translation

● Image-to-image translation involves generating a new synthetic 
version of a given image.

● Example: Changing a summer landscape --> winter landscape, blonde 

--> black hair, image --> painting.
● Data for such image translation is very limited or sometimes difficult to 

generate.
● 2 variants of GANs are used for this specific task.

○ Cycle GAN
○ STAR GAN



Cycle GANs

● Instead of a single Generator-Discriminator we have two Generators and 
discriminators.
○ One generator  takes images from the first domain and outputs images 

from the second domain.
○ Discriminator models are used to determine how plausible generated 

images are and update the generator accordingly.
● The overall loss function for the cycle GAN is given below apart from the 

standard objective we have an added cycle-consistency loss.



Cycle GAN

Cycle-consistency loss:



Application: Style Transfer



Application: Object Transfiguration



Star GAN (Unified GAN for Multi-Domain I2I 
translation
● Star GAN helps us to generate images in target domain given an input 

and target domain.
○ Image of a man and target domain is gender.

○ Image of a person and target domain is age.
● We train the generator-discriminator in adversarial fashion with an 

added auxiliary classifier.
● Along with normal adversarial loss this loss is added while training the 

generator and discriminator.



Star GAN - Generator

● Generator have 3 objectives:
○ Tries to generate realistic images
○ The weights of generator are adjusted so that the generated 

images are classified as target domain by the discriminator.
○ Construct original image from the fake image given the original 

label domain label. 

Objective 
function: 



Star GAN - Discriminator  

● Discriminator has 2 objectives:
○ Whether the image is fake or real
○ What is the domain in which the image belongs.

● If the generator is able to generate fool the discriminator then 
discriminator would predict the target domain and we stop training.

Objective function:



Applications



Thank You!



Thank You!

Slow and steady wins the race is a lie, so pace up: Amit



Code Walkthrough

Cycle GAN and STAR GAN
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GAN Loss Function

Some Notation:

ℒGAN = min
G

max
D

𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]
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GAN Loss Function
ℒGAN = min

G
max

D
𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

We estimate the expectation by an average over samples

ℒGAN = min
G

max
D

1
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log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

Let 𝒳 be a minibatch of samples drawn from p(x), |𝒳 | = N
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Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))
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D_real_loss = bce_loss(D(x), torch.ones(batch_size)) 
D_fake_loss = bce_loss(D(G(z)), torch.zeros(batch_size))
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Generator Loss
-ve cross-entropy loss 
between the predicted labels 
D(G(z)) and fake labels i.e 0 

ℒGsat
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1
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Rough Code Implementation 
(full code link)

G = generator() 
D = discriminator() 

bce_loss = nn.BCELoss() 
D_optimizer = optim.Adam(D.parameters()) 
G_optimizer = optim.Adam(G.parameters()) 

z = get_noise() 
x = get_real() 

D_real_loss = bce_loss(D(x), torch.ones(batch_size)) 
D_fake_loss = bce_loss(D(G(z)), torch.zeros(batch_size)) 

D_loss = D_real_loss + D_fake_loss 
D_loss.backward() 
D_optimizer.step() 

G_loss = bce_loss(D(G(z)), torch.ones(batch_size)) 
G_loss.backward() 
G_optimizer.step() 

https://github.com/znxlwm/pytorch-generative-model-collections/blob/master/GAN.py


W-GAN

Where ∥D∥L ≤ K, i.e D is K-Lipschitz Continuous

ℒW−GAN = min
G

max
D

𝔼x∼p(x)[D(x)] − 𝔼z∼p(z)[D(G(z))]



W-GAN

• Measures the Wasserstein/ Earth Mover Distance 
between two distributions

Where ∥D∥L ≤ K, i.e D is K-Lipschitz Continuous

ℒW−GAN = min
G

max
D

𝔼x∼p(x)[D(x)] − 𝔼z∼p(z)[D(G(z))]



How To Enforce K-Lipschitz 
Continuity for the Discriminator?

• Heuristic: Clip each weight w of the discriminator s.t |w| < 
c


• Is this a good way of maintaining Lipschitz Continuity - 
No


• Does it work? Sometimes
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How To Enforce K-Lipschitz 
Continuity for the Discriminator?

• Heuristic: Clip each weight w of the discriminator s.t |w| < 
c


• Is this a good way of maintaining Lipschitz Continuity - 
No


• Does it work? Somewhat
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W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
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x∈𝒳

D(x) −
1
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D(G(z))
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1
N ∑

x∈𝒳

D(x) +
1
N ∑

z∈Z

D(G(z))]
D_loss =  -D(x).mean() + D(G(z)).mean() 

for p in D.parameters(): 
    p.data.clamp_(-c, c)

For Lipschitz Continuity:
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W-GAN Generator Loss

ℒD = min
G

𝔼x∼pr
[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = min
G

−
1
N ∑
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G_loss = -D(G(z)).mean() 



Rough Code Implementation 
(full code link)

G = generator() 
D = discriminator() 

c = 0.01 #Some small number 

D_optimizer = optim.Adam(D.parameters()) 
G_optimizer = optim.Adam(G.parameters()) 

z = get_noise() 
x = get_real() 

D_loss =  -D(x).mean() + D(G(z)).mean() 
D_loss.backward() 
D_optimizer.step() 

for p in D.parameters(): 
    p.data.clamp_(-c, c) 

G_loss = -D(G(z)).mean() 
G_loss.backward() 
G_optimizer.step() 

https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/wgan/wgan.py

