
GANs (Generative Adversarial Networks)

By Amit, Parth and HariharanBy Yash Belhe, Hao Liang

Agenda

● Generative models
● Revisiting GANs
● WGAN

● WGAN-Gradient penalty (WGANGP)
○ Code walk through GANS, WGAN, WGANGP

● Cycle GAN
○ Code walk through Cycle GAN

● STAR GAN
○ Code walk through STAR GAN

Generative Models

Basic idea is to learn the underlying distribution of the data and generate
more samples for the distribution.

Some examples of generative models

● Probabilistic Graphical Models
● Bayesian Networks
● Variational Autoencoder
● Generative Adversarial Networks

Generative Models

● Unknown distribution P
r
 (r for real)

● Known distribution Pθ
● Two approaches

○ Optimise Pθ
to estimate P

r

○ Learn a function gθ
(Z) which transforms Z into Pθ

Approach 1: Optimise Pθ to estimate Pr

● Maximum Likelihood Estimation (MLE) :
○ This is same as minimizing the KL divergence

● Kullback-Leibler (KL) divergence:
● Issue: Exploding of KL-divergence for zero values of Pθ

○ Add random noise to Pθ

Approach 2: Learn a function gθ
(z)

● We learn a function gθ (z) that transforms z into Pθ
○ Z is a known distribution like Uniform or Gaussian

● We train gθ by minimizing the distance between gθ and P
r

● Any of the distance metrics like KL divergence, JS divergence or Earth
Mover (EM) distance can be used.

Revisiting GANs

● GANs are generative models which try to understand underlying
distribution to generate more sample.

● GANs typically have 2 networks trained in an adversarial fashion.

○ Generator
○ Discriminator

Revisiting GANs- Generative Network

Revisiting GANs- Generator + Discriminator

Revisiting GANs - training

Revisiting GANs - training

WGANs-Earth Mover Distance

Wasserstein distance: the minimum energy cost of moving and transforming a pile of dirt in the shape of one

probability distribution to the the shape of other distribution.

P and Q: 4 piles of dirt made up
of 10 shovelfuls of dirt present.

❏ P1 = 3, P2 = 2, P3 = 1, P4 = 4
❏ Q1 = 1, Q2 = 2, Q3 = 4, Q4 = 3
❏ W = 5

WGANs-Objective function

● We train GANs using this wasserstein distance.
● Discriminative is no more a direct critic. It is trained to estimate the

wasserstein distance between real and generated data.

LD = EXD(X) - EZD(G(Z))

● Lipschitz is clipped to 1 i.e. |f(x) - f(y)|/(x-y) <=1
○ This bound on discriminator is not good, instead we clip the

gradients.

WGAN-Gradient Penalty

● Bound on discriminator is not great and leads to poor discriminator.
● We can add the gradient penalty in the loss function making sure that

the lipschitz is almost 1 everywhere.

LD = EXD(X) - EZD(G(Z)) + λEX’(||∇D(X’)||2 -1)2

● We do not constraint the gradients everywhere.
○ We penalize where there is linear interpolation between real and fake

data.

Code Walkthrough

GANs, WGAN-GP

Image translation

● Image-to-image translation involves generating a new synthetic
version of a given image.

● Example: Changing a summer landscape --> winter landscape, blonde

--> black hair, image --> painting.
● Data for such image translation is very limited or sometimes difficult to

generate.
● 2 variants of GANs are used for this specific task.

○ Cycle GAN
○ STAR GAN

Cycle GANs

● Instead of a single Generator-Discriminator we have two Generators and
discriminators.
○ One generator takes images from the first domain and outputs images

from the second domain.
○ Discriminator models are used to determine how plausible generated

images are and update the generator accordingly.
● The overall loss function for the cycle GAN is given below apart from the

standard objective we have an added cycle-consistency loss.

Cycle GAN

Cycle-consistency loss:

Application: Style Transfer

Application: Object Transfiguration

Star GAN (Unified GAN for Multi-Domain I2I
translation
● Star GAN helps us to generate images in target domain given an input

and target domain.
○ Image of a man and target domain is gender.

○ Image of a person and target domain is age.
● We train the generator-discriminator in adversarial fashion with an

added auxiliary classifier.
● Along with normal adversarial loss this loss is added while training the

generator and discriminator.

Star GAN - Generator

● Generator have 3 objectives:
○ Tries to generate realistic images
○ The weights of generator are adjusted so that the generated

images are classified as target domain by the discriminator.
○ Construct original image from the fake image given the original

label domain label.

Objective
function:

Star GAN - Discriminator

● Discriminator has 2 objectives:
○ Whether the image is fake or real
○ What is the domain in which the image belongs.

● If the generator is able to generate fool the discriminator then
discriminator would predict the target domain and we stop training.

Objective function:

Applications

Thank You!

Thank You!

Slow and steady wins the race is a lie, so pace up: Amit

Code Walkthrough

Cycle GAN and STAR GAN

References
● https://arxiv.org/abs/1701.07875 (Wasserstein GAN)

● https://arxiv.org/abs/1703.10593 (Cycle GAN)

● https://arxiv.org/abs/1711.09020 (Star GAN)

● https://machinelearningmastery.com/what-is-cyclegan/

● https://towardsdatascience.com/stargan-image-to-image-translation-44d4230fbb48

● Lecture notes of 11-777

GANs - Code
Walkthrough

Yash Belhe, Hao Liang

GAN Loss Function

Some Notation:
p(x) − The distribution over all possible real images that we want to model

GAN Loss Function

Some Notation:
p(x) − The distribution over all possible real images that we want to model

p(z) − The distribution over the generator's input e.g U[0,1]N if z ∈ ℝN

GAN Loss Function

Some Notation:
p(x) − The distribution over all possible real images that we want to model

p(z) − The distribution over the generator's input e.g U[0,1]N if z ∈ ℝN

G − Generator, output is an image G(z)

GAN Loss Function

Some Notation:
p(x) − The distribution over all possible real images that we want to model

p(z) − The distribution over the generator's input e.g U[0,1]N if z ∈ ℝN

G − Generator, output is an image G(z)

D − Discriminator, output is the probability that the image is real D(x) ∈ [0,1]

GAN Loss Function

Some Notation:
p(x) − The distribution over all possible real images that we want to model

p(z) − The distribution over the generator's input e.g U[0,1]N if z ∈ ℝN

G − Generator, output is an image G(z)

D − Discriminator, output is the probability that the image is real D(x) ∈ [0,1]

Real Image Label - 1

Fake Image Label - 0

GAN Loss Function

Some Notation:

ℒGAN = min
G

max
D

𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

p(x) − The distribution over all possible real images that we want to model

p(z) − The distribution over the generator's input e.g U[0,1]N if z ∈ ℝN

G − Generator, output is an image G(z)

D − Discriminator, output is the probability that the image is real D(x) ∈ [0,1]

Real Image Label - 1

Fake Image Label - 0

GAN Loss Function
ℒGAN = min

G
max

D
𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

GAN Loss Function
ℒGAN = min

G
max

D
𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

We estimate the expectation by an average over samples

GAN Loss Function
ℒGAN = min

G
max

D
𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

We estimate the expectation by an average over samples

Let 𝒳 be a minibatch of samples drawn from p(x), |𝒳 | = N

Let Z be a minibatch of samples drawn from p(z), |Z | = N

GAN Loss Function
ℒGAN = min

G
max

D
𝔼x∼p(x)[log(D(x))] + 𝔼z∼p(z)[log(1 − D(G(z)))]

We estimate the expectation by an average over samples

ℒGAN = min
G

max
D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

Let 𝒳 be a minibatch of samples drawn from p(x), |𝒳 | = N

Let Z be a minibatch of samples drawn from p(z), |Z | = N

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

−
1
N ∑

x∈𝒳

log(D(x))

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

−
1
N ∑

x∈𝒳

log(D(x)) cross-entropy loss between the predicted
labels D(x) and real labels i.e 1

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

−
1
N ∑

x∈𝒳

log(D(x)) cross-entropy loss between the predicted
labels D(x) and real labels i.e 1

−
1
N ∑

z∈Z

log(1 − D(G(z)))

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

−
1
N ∑

x∈𝒳

log(D(x)) cross-entropy loss between the predicted
labels D(x) and real labels i.e 1

−
1
N ∑

z∈Z

log(1 − D(G(z))) cross-entropy loss between the predicted
labels D(G(z)) and fake labels i.e 0

Discriminator Loss
ℒD = − min

D

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

−
1
N ∑

x∈𝒳

log(D(x)) cross-entropy loss between the predicted
labels D(x) and real labels i.e 1

−
1
N ∑

z∈Z

log(1 − D(G(z))) cross-entropy loss between the predicted
labels D(G(z)) and fake labels i.e 0

D_real_loss = bce_loss(D(x), torch.ones(batch_size))
D_fake_loss = bce_loss(D(G(z)), torch.zeros(batch_size))

Generator Loss
ℒGsat

= − max
G

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

Generator Loss
ℒGsat

= − max
G

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

ℒGsat
= − max

G

1
N ∑

z∈Z

log(1 − D(G(z)))

Generator Loss
ℒGsat

= − max
G

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

ℒGsat
= − max

G

1
N ∑

z∈Z

log(1 − D(G(z)))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

Generator Loss
ℒGsat

= − max
G

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

ℒGsat
= − max

G

1
N ∑

z∈Z

log(1 − D(G(z)))

-ve cross-entropy loss between the predicted labels D(G(z)) and fake labels i.e 0

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

Generator Loss
ℒGsat

= − max
G

1
N ∑

x∈𝒳

log(D(x)) +
1
N ∑

z∈Z

log(1 − D(G(z)))

ℒGsat
= − max

G

1
N ∑

z∈Z

log(1 − D(G(z)))

-ve cross-entropy loss between the predicted labels D(G(z)) and fake labels i.e 0

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

Generator Loss
-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]
G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

Generator Loss

• D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
• Often happens during the beginning of training
• Empirically this means that the gradients received by G vanish

-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

Generator Loss

• D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
• Often happens during the beginning of training
• Empirically this means that the gradients received by G vanish

-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

ℒGno_sat
= − min

G [−
1
N ∑

z∈Z

− log(D(G(z)))]

Generator Loss

• D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
• Often happens during the beginning of training
• Empirically this means that the gradients received by G vanish

ℒGno_sat
= − min

G

1
N ∑

z∈Z

log(D(G(z)))

-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

ℒGno_sat
= − min

G [−
1
N ∑

z∈Z

− log(D(G(z)))]

Generator Loss

• D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
• Often happens during the beginning of training
• Empirically this means that the gradients received by G vanish

ℒGno_sat
= − min

G

1
N ∑

z∈Z

log(D(G(z)))
cross-entropy loss between
the predicted labels D(G(z))
and real labels i.e 1

-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

ℒGno_sat
= − min

G [−
1
N ∑

z∈Z

− log(D(G(z)))]

Generator Loss

• D(G(z)) -> 0, when the discriminator is confident that G(z) is fake
• Often happens during the beginning of training
• Empirically this means that the gradients received by G vanish

ℒGno_sat
= − min

G

1
N ∑

z∈Z

log(D(G(z)))
cross-entropy loss between
the predicted labels D(G(z))
and real labels i.e 1

-ve cross-entropy loss
between the predicted labels
D(G(z)) and fake labels i.e 0

G_loss = bce_loss(D(G(z)), torch.ones(batch_size))

G_loss = -bce_loss(D(G(z)), torch.zeros(batch_size))

ℒGsat
= − min

G [−
1
N ∑

z∈Z

log(1 − D(G(z)))]

ℒGno_sat
= − min

G [−
1
N ∑

z∈Z

− log(D(G(z)))]

Rough Code Implementation
(full code link)

G = generator()
D = discriminator()

bce_loss = nn.BCELoss()
D_optimizer = optim.Adam(D.parameters())
G_optimizer = optim.Adam(G.parameters())

z = get_noise()
x = get_real()

D_real_loss = bce_loss(D(x), torch.ones(batch_size))
D_fake_loss = bce_loss(D(G(z)), torch.zeros(batch_size))

D_loss = D_real_loss + D_fake_loss
D_loss.backward()
D_optimizer.step()

G_loss = bce_loss(D(G(z)), torch.ones(batch_size))
G_loss.backward()
G_optimizer.step()

https://github.com/znxlwm/pytorch-generative-model-collections/blob/master/GAN.py

W-GAN

Where ∥D∥L ≤ K, i.e D is K-Lipschitz Continuous

ℒW−GAN = min
G

max
D

𝔼x∼p(x)[D(x)] − 𝔼z∼p(z)[D(G(z))]

W-GAN

• Measures the Wasserstein/ Earth Mover Distance
between two distributions

Where ∥D∥L ≤ K, i.e D is K-Lipschitz Continuous

ℒW−GAN = min
G

max
D

𝔼x∼p(x)[D(x)] − 𝔼z∼p(z)[D(G(z))]

How To Enforce K-Lipschitz
Continuity for the Discriminator?

• Heuristic: Clip each weight w of the discriminator s.t |w| <
c

• Is this a good way of maintaining Lipschitz Continuity -
No

• Does it work? Sometimes

How To Enforce K-Lipschitz
Continuity for the Discriminator?

• Heuristic: Clip each weight w of the discriminator s.t |w| <
c

• Is this a good way of maintaining Lipschitz Continuity -
No

• Does it work? Sometimes

How To Enforce K-Lipschitz
Continuity for the Discriminator?

• Heuristic: Clip each weight w of the discriminator s.t |w| <
c

• Is this a good way of maintaining Lipschitz Continuity -
No

• Does it work? Somewhat

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
N ∑

x∈𝒳

D(x) −
1
N ∑

z∈Z

D(G(z))

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
N ∑

x∈𝒳

D(x) −
1
N ∑

z∈Z

D(G(z))

ℒD = min
D [−

1
N ∑

x∈𝒳

D(x) +
1
N ∑

z∈Z

D(G(z))]

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
N ∑

x∈𝒳

D(x) −
1
N ∑

z∈Z

D(G(z))

ℒD = min
D [−

1
N ∑

x∈𝒳

D(x) +
1
N ∑

z∈Z

D(G(z))]
D_loss = -D(x).mean() + D(G(z)).mean()

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
N ∑

x∈𝒳

D(x) −
1
N ∑

z∈Z

D(G(z))

ℒD = min
D [−

1
N ∑

x∈𝒳

D(x) +
1
N ∑

z∈Z

D(G(z))]
D_loss = -D(x).mean() + D(G(z)).mean()

For Lipschitz Continuity:

W-GAN Discriminator Loss
ℒD = max

D
𝔼x∼pr

[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = max
D

1
N ∑

x∈𝒳

D(x) −
1
N ∑

z∈Z

D(G(z))

ℒD = min
D [−

1
N ∑

x∈𝒳

D(x) +
1
N ∑

z∈Z

D(G(z))]
D_loss = -D(x).mean() + D(G(z)).mean()

for p in D.parameters():
 p.data.clamp_(-c, c)

For Lipschitz Continuity:

W-GAN Generator Loss

ℒD = min
G

𝔼x∼pr
[D(x)] − 𝔼z∼pr(z)[D(G(z))]

W-GAN Generator Loss

ℒD = min
G

𝔼x∼pr
[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = min
G

−
1
N ∑

z∈Z

D(G(z))

W-GAN Generator Loss

ℒD = min
G

𝔼x∼pr
[D(x)] − 𝔼z∼pr(z)[D(G(z))]

ℒD = min
G

−
1
N ∑

z∈Z

D(G(z))

G_loss = -D(G(z)).mean()

Rough Code Implementation
(full code link)

G = generator()
D = discriminator()

c = 0.01 #Some small number

D_optimizer = optim.Adam(D.parameters())
G_optimizer = optim.Adam(G.parameters())

z = get_noise()
x = get_real()

D_loss = -D(x).mean() + D(G(z)).mean()
D_loss.backward()
D_optimizer.step()

for p in D.parameters():
 p.data.clamp_(-c, c)

G_loss = -D(G(z)).mean()
G_loss.backward()
G_optimizer.step()

https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/wgan/wgan.py

