
11-785 Spring 2020
Recitation 9

Attention Networks
Ken, Yuying

What we could do with RNN so far

• “Many-to-One” Architecture
• (HW3P1) Sequence Classification: sequence -> label

• Streaming “Many-to-Many” Architecture
• (HW3P2) speech frame sequence -> phoneme sequence

• Order-correspondence
• Each output corresponds to a small segment of input sequence

How about these tasks?

Text → Translation of that text

Image → A caption describing the image

Document, Question → Answer selected from the document

“Generative” Architecture

• The output sequence can only be built after seeing the entire input sequence
• The output is itself a sequence, generated from the input sequence

Decoder = Conditional Generator
In Math:

𝑃 𝑦! x", … , x# , 𝑦", … , 𝑦!$")

Each item in the output sequence must be conditioned on:
• The entire input sequence
• All the past output items

In Deep Learning:

The decoder must have access to:
• Some kind of encoding of the entire input sequence
• The past states of the decoder

How to encode the input sequence
Recall the “many-to-many” Architecture (HW3P2):

Trained with downstream task

How to encode the input sequence
Now remove the output targets:
Hidden states only encode information about the history of inputs
Ideally the last hidden state is an encoding of the entire input sequence
Let’s consider the last hidden state first

How to inform the decoder of the input encoding

• Pass the last hidden state of the input sequence at:
• the first time step (to be forgotten later?)
• every time step

• Pass a more flexible input encoding at every time step
• How flexible? Determined by the current decoder state

Network Prototype 1

Produce an encoding of the entire input.

Repeatedly pass the encoding to the output network.

Problems?

• Using one fixed vector to encode an entire sequence, hoping that the
last hidden state could compress all the information

• Hard to train. Input encoding vector is overloaded with information,
and earlier inputs tends to get forgotten

• Hard for the decoder to focus. Each time it’s seeing the same thing

How to inform the decoder of the input encoding

• Pass the last hidden state of the input sequence at:
• the first time step (to be forgotten later?)
• every time step

• Pass a more flexible input encoding at every time step
• How flexible? Decided by the current decoder state

Let the decoder decide the input encoding

Intuition:
At each time step, the decoder focuses on a specific segment of the input
sequence to produce the current output

Formulation:
• Compute a time-varying input encoding that focuses on the part of input

that matters to the current time step in the output
• Therefore, this input encoding should be a function of:

• The decoder hidden state at the current time step
• The encoder hidden states at each input time step

General Attention Mechanism

• Construct a query q! from the decoder state 𝐡 !"#$
• Represents the decoder’s interest

• Construct a key 𝐤% from the encoder state 𝐡%&'(

• Calculate an attention score 𝐚𝐭𝐭(q!, 𝐤%)
• Tells how much at output time step 𝑖 the decoder should focus on the 𝑗-th

input item
• Construct a value 𝐯% from the encoder state 𝐡%#&$

• Then construct the encoding by computing a weighted sum of values using
attention scores as weights:
• ∑%'() 𝐚𝐭𝐭(q!, 𝐤%) 𝐯%

Network Prototype 2

Encode each element of the input sequence into a vector.
For each time step, generate a query, compute an attention on this sequence.
Generate a linear combination of the input items using the computed attention
values as weights.
Pass this combination to the output RNN.

42 78 15 43

1 2 3 4 ...

Variation: Dot Product Attention

• Query q) = 𝐡)*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$

• Attention score att(q!, 𝐤%) = softmax(q! , 𝐤%) (over all j)
• Simplest similarity calculation (but works well in practice)
• Does not introduce new parameters

Variation: Dot Product Attention

• Query q) = 𝐡)*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$

• Attention score att(q!, 𝐤%) = softmax(q! , 𝐤%) (over all j)
• Simplest similarity calculation (but works well in practice)
• Does not introduce new parameters

Variation: Bilinear Attention

• Attention score att(q! ,𝐤%) = softmax(q!𝑻 W𝐤%) (over all 𝑗)
• Queries and keys do not have to be in the same space
• Introduces new parameters

• Query q) = 𝐡)*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$

Variation: Additive Attention

• Attention score att(q! ,𝐤%) = softmax(W𝒂
𝑻 tanh(W𝒒q! + W𝒌 𝐤%)) (over all j)

• Query q) = 𝐡)*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$

Variation: Scaled Dot Product Attention

• Attention score att(q! ,𝐤") = softmax q! # 𝐤"
$ (over all j)

• Use the dot product to calculate similarity for projected key value
representation

• Scaled by the sqrt of hidden size in order not to saturate the gradient of
softmax

• Query q) = MLPq(𝐡)*&()

• Key 𝐤% = MLPk(𝐡%#&$)

• Value 𝐯% = MLPv(𝐡%#&$)

RNN-based Attention is great.. but

• Sequential nature of RNNs make them impossible to fully parallelize
• Step-by-step computation relies on the output of the previous time-step
• Cannot leverage those hard-core GPUs

• They struggle with long-term dependencies
• What about LSTMs? Still can’t hold information across very long

sequences..
• In NLP tasks, the same word can mean very different things based on

context

Maybe Attention is All You Need

https://arxiv.org/pdf/1706.03762.pdf

Transformer Nets
● Revolutionary machine-translation

(sequence to sequence) architecture
from Google

● Forget about RNNs, capture
dependencies across the sequences
using attention

● This lets the encoder and decoder see
the entire sequence at once

● Also allows more parallelism than
RNNs

Multi-Head Attention
• Attention can be interpreted as a way of computing

the relevance of a set of values, based on some
keys and queries.

• Attention is applied multiple times to capture more
complex input dependencies

• Each attention ‘head’ has unique weights
• Each ‘head’ can focus on different parts of the input

sequence (and probably serves different purposes)

Encoder

● Contains multiple ‘blocks’ (~6 blocks)
● Residual connections between the multi-head attention

blocks
● Positional encodings explicitly encode the relative

and absolute positions of the inputs as vectors
● These encodings are then added to the input

embeddings
● Without them the output for “I like 11-785 more than

10-707” would be identical to the output for “I like 10-707
more than 11-785”

Decoder

● Very similar to the encoder
● ‘Masked’ Multi-Head Attention block to hide

future output values during training
● The query from the decoder is used with the

keys/values from the encoder
● Final output probabilities are computed using

a projection layer followed by a softmax

Big Picture

● Input sequence is used to compute the
keys and values in the encoder

● Masked-attention blocks in the decoder
transform the output sequence until the
current time-step into the queries

● Multi-head attention in the decoder
combines the keys, queries and values

● The result is projected into output
probabilities for the current time step

More detailed explanation

http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/

