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What we could do with RNN so far

• “Many-to-One” Architecture
• (HW3P1) Sequence Classification: sequence -> label

• Streaming “Many-to-Many” Architecture
• (HW3P2) speech frame sequence -> phoneme sequence

• Order-correspondence
• Each output corresponds to a small segment of input sequence



How about these tasks?

Text → Translation of that text

Image → A caption describing the image

Document, Question → Answer selected from the document



“Generative” Architecture

• The output sequence can only be built after seeing the entire input sequence
• The output is itself a sequence, generated from the input sequence



Decoder = Conditional Generator
In Math:

𝑃 𝑦! x", … , x# , 𝑦", … , 𝑦!$")

Each item in the output sequence must be conditioned on:
• The entire input sequence
• All the past output items

In Deep Learning:

The decoder must have access to:
• Some kind of encoding of the entire input sequence
• The past states of the decoder



How to encode the input sequence
Recall the “many-to-many” Architecture (HW3P2):

Trained with downstream task



How to encode the input sequence
Now remove the output targets:
Hidden states only encode information about the history of inputs
Ideally the last hidden state is an encoding of the entire input sequence  
Let’s consider the last hidden state first



How to inform the decoder of the input encoding

• Pass the last hidden state of the input sequence at:
• the first time step (to be forgotten later?)
• every time step

• Pass a more flexible input encoding at every time step
• How flexible? Determined by the current decoder state



Network Prototype 1

Produce an encoding of the entire input.

Repeatedly pass the encoding to the output network.



Problems?

• Using one fixed vector to encode an entire sequence, hoping that the  
last hidden state could compress all the information

• Hard to train. Input encoding vector is overloaded with information, 
and earlier inputs tends to get forgotten

• Hard for the decoder to focus. Each time it’s seeing the same thing



How to inform the decoder of the input encoding

• Pass the last hidden state of the input sequence at:
• the first time step (to be forgotten later?)
• every time step

• Pass a more flexible input encoding at every time step
• How flexible? Decided by the current decoder state



Let the decoder decide the input encoding

Intuition:
At each time step, the decoder focuses on a specific segment of the input
sequence to produce the current output

Formulation:
• Compute a time-varying input encoding that focuses on the part of input 

that matters to the current time step in the output
• Therefore, this input encoding should be a function of:

• The decoder hidden state at the current time step
• The encoder hidden states at each input time step



General Attention Mechanism

• Construct a query q! from the decoder state 𝐡 !"#$
• Represents the decoder’s interest

• Construct a key 𝐤% from the encoder state 𝐡%&'(

• Calculate an attention score 𝐚𝐭𝐭(q!, 𝐤%)
• Tells how much at output time step 𝑖 the decoder should focus on the 𝑗-th

input item
• Construct a value 𝐯% from the encoder state 𝐡%#&$

• Then construct the encoding by computing a weighted sum of values using 
attention scores as weights:
• ∑%'() 𝐚𝐭𝐭(q!, 𝐤% ) 𝐯%



Network Prototype 2

Encode each element of the input sequence into a vector.
For each time step, generate a query, compute an attention on this sequence. 
Generate a linear combination of the input items using the computed attention 
values as weights. 
Pass this combination to the output RNN.
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Variation: Dot Product Attention

• Query q) = 𝐡 )*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$

• Attention score att(q!, 𝐤% ) = softmax(q! , 𝐤% )   (over all j)
• Simplest similarity calculation (but works well in practice)
• Does not introduce new parameters
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Variation: Bilinear Attention

• Attention score att(q! ,𝐤% ) = softmax(q!𝑻 W𝐤%)   (over all 𝑗)
• Queries and keys do not have to be in the same space
• Introduces new parameters

• Query q) = 𝐡 )*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$



Variation: Additive Attention

• Attention score att(q! ,𝐤% ) = softmax(W𝒂
𝑻 tanh(W𝒒q! + W𝒌 𝐤% ) ) (over all j)

• Query q) = 𝐡 )*&(

• Key 𝐤% = 𝐡%#&$

• Value 𝐯% = 𝐡%#&$



Variation: Scaled Dot Product Attention

• Attention score att(q! ,𝐤" ) = softmax q! # 𝐤"
$ (over all j)

• Use the dot product to calculate similarity for projected key value  
representation

• Scaled by the sqrt of hidden size in order not to saturate the gradient of
softmax

• Query q) = MLPq(𝐡)*&()

• Key 𝐤% = MLPk(𝐡%#&$)

• Value 𝐯% = MLPv(𝐡%#&$)



RNN-based Attention is great.. but

• Sequential nature of RNNs make them impossible to fully parallelize
• Step-by-step computation relies on the output of the previous time-step
• Cannot leverage those hard-core GPUs

• They struggle with long-term dependencies
• What about LSTMs? Still can’t hold information across very long  

sequences..
• In NLP tasks, the same word can mean very different things based on  

context



Maybe Attention is All You Need

https://arxiv.org/pdf/1706.03762.pdf


Transformer Nets
● Revolutionary machine-translation  

(sequence to sequence) architecture  
from Google

● Forget about RNNs, capture  
dependencies across the sequences  
using attention

● This lets the encoder and decoder see  
the entire sequence at once

● Also allows more parallelism than 
RNNs



Multi-Head Attention
• Attention can be interpreted as a way of computing  

the relevance of a set of values, based on some  
keys and queries.

• Attention is applied multiple times to capture more  
complex input dependencies

• Each attention ‘head’ has unique weights
• Each ‘head’ can focus on different parts of the input 

sequence (and probably serves different purposes)



Encoder

● Contains multiple ‘blocks’ (~6 blocks)
● Residual connections between the multi-head attention

blocks
● Positional encodings explicitly encode the relative  

and absolute positions of the inputs as vectors
● These encodings are then added to the input  

embeddings
● Without them the output for “I like 11-785 more than

10-707” would be identical to the output for “I like 10-707
more than 11-785”



Decoder

● Very similar to the encoder
● ‘Masked’ Multi-Head Attention block to hide

future output values during training
● The query from the decoder is used with the  

keys/values from the encoder
● Final output probabilities are computed using  

a projection layer followed by a softmax



Big Picture

● Input sequence is used to compute the
keys and values in the encoder

● Masked-attention blocks in the decoder
transform the output sequence until the  
current time-step into the queries

● Multi-head attention in the decoder  
combines the keys, queries and values

● The result is projected into output
probabilities for the current time step



More detailed explanation

http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/

