Cascor: Three Perspectives on Error

Simplest Network

Cascor Goal

Cascor Training Goal

Add a hidden unit that reduces training error

• Creating a Hidden Unit

- Train a hidden unit to correlate with error
- Error is *information* on how to predict better

Adding a Hidden Unit

Example

•Cascor for classification •Output activation function: •logistic (sigmoid) $\sigma(z) = \frac{1}{1 + e^{-z}}$

•Loss function: •binary cross entropy $L(y_i, \hat{y}_i) = -\sum y_i \sigma(\hat{y}_i) + (1 - y_i)(1 - \sigma(\hat{y}_i))$ Example: Two Data Points

Data Point	Output Preactivation	Output Prediction	Label	Loss
#1	p1=5.0	σ(5.0)=0.99	1	-ln(0.99)=0.007
#2	p1=1.1	σ(1.1)=0.75	1	-ln(0.75)=0.29

This assumes no hidden unit added yet

•Three Perspectives on Error 1. (Traditional) "My prediction was bad"

Three Perspectives on Error 1. (Traditional) "My prediction was bad" 2. "My preactivation was bad"

Three Perspectives on Error

- 1. (Traditional) "My prediction was bad"
- 2. "My preactivation was bad"
- 3. "My loss was bad"

Three Perspectives on Error

- 1. (Traditional) "My prediction was bad"
- 2. "My preactivation was bad"
- 3. "My loss was bad"

•Can train hidden unit to correlate with any kind of error

- But maybe #2 makes the most sense
 - (since hidden unit adds to preactivation)

Adding a Hidden Unit

Practivation Error

If we train a hidden unit to correlate with the error in preactivation the hidden unit will add an amount close to the 'missing' preactivation

Practivation Error • If we train a hidden unit to correlate with the *error in preactivation*

• the hidden unit will add an amount close to the `missing' preactivation

•BUT

- Loss function is nonlinear
- Some incremental amounts of preactivation better for loss than others
- Correlate with preactivation's incremental loss improvement?