Reinforcement Learning

11-785, Spring 2020 Defining MDPs, Planning

The story of Flider and Spy

 Flider the spider is at the far corner of the room, and Spy the fly is sleeping happily at the near corner

The story of Flider and Spy

- Flider only walks along edges
- She begins walking along one of the three edges at random

• When she arrives at the new corner, she randomly chooses one of the three edges and continues walking (she may even turn back)

1000

The story of Flider and Spy

• What is the life expectancy of Spy?

• Let T_i be the life expectancy if Flider is at the ith corner

Flider and Spy

- $1 + T_i$ is the life expectancy if Flider the Spider begins walking towards the ith corner
 - 1 minute to get to the corner plus the time taken to get from that corner to Spy the fly
- 8 Equations, 8 unknowns, trivial to solve

A little terminology

 Markov Process: Does not matter how you got here, only matters where you are

An interesting class of problems

- Is a move good?
 - You will not know until the end of the game

An interesting class of problems

- Is an investment plan good?
 - You will not know for a while

An interesting class of problems

- Dol
 - Change lane left?
 - Change lane right?
 - Accelerate?
 - Decelerate?

Reward-based problems

- And many others
- Common theme: These are control problems where
 - Your actions beget rewards
 - Win the game
 - Make money
 - Get home sooner
 - But not deterministically
 - A world out there that is not predictable
- From experience of *belated* rewards, you must learn to act rationally

- Agent operates in an environment
 - Agent may be you..
 - Environment is the game, the market, the road..

• Agent takes actions which affect the environment

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way
- Which affects the agent's situation

- The agent also receives rewards..
 - Which may be apparent immediately
 - Or not apparent for a very long time

How must the agent behave to maximize its rewards

Lets formalize the system

- At each time *t* the agent:
 - Makes an observation O_t of the environment
 - Receives a reward R_t
 - Performs an action A_t

From the perspective of the Agent

- What the agent perceives..
- The following History:
- $H_t = O_0, R_0, A_0, O_1, R_1, A_1, \dots, O_t, R_t$
- The total history at any time is the sequence of observations, rewards and actions
- We need to model this sequence such that at any time t, the best A_t | H_t can be chosen
 - The Strategy that maximizes total reward $R_0 + R_1 + \cdots + R_T$

Lets formalize the system

- At each time *t* the agent:
 - Makes an observation O_t of the environment
 - Receives a reward R_t
 - Performs an action A_t
 - At each time *t* the environment:
 - Receives an action A_t
 - Emits a reward R_{t+1}

. Changes and produces an observation O_{t+1}

 0_{t+1}

 R_{t+1}

Can define an environment "state"

- Fully captures the "status" of the system
 - E.g., in an automobile: [position, velocity, acceleration]
 - In traffic: the position, velocity, acceleration of *every* vehicle on the road
 - In Chess: the state of the board + whose turn it is next

A brief trip to Nostalgia..

- Glider, Flider's brother, never turns around during his wanderings
 - On arriving at any corner, he chooses one of the two "forward" paths randomly.
 - The future possibilities depend on the edge he arrived from
 - Is he Markovian?

Glider is a Markov dude!

- Any causal system can be viewed as Markov, with appropriately defined state
 - The *Information state* S_t may differ from the *apparent* state s_t
 - Defining $S_t = s_1, s_2, \dots, s_t$
 - $P(S_{t+1}|S_0, S_1, \dots, S_t) = P(S_{t+1}|S_t)$

Markov property

• Assumption: The *information state* of the environment is Markov P(S = | S = S) = P(S = | S)

 $P(S_{t+1}|S_0, S_1, \dots, S_t) = P(S_{t+1}|S_t)$

The environment's future only depends on its present

To Maximize Reward

- The agent must *model* this environment process
 - Formulate its own model for the environment, which must ideally match the true values as closely as possible
 - Based only on what it observes
- Agent must formulate winning strategy based on model of environment

The Agent's Side of the Story

- Agent has an internal representation of the environment state
 - May not match the true one at all
- May be defined in any manner
 - Formally the agent state $S_t = f(H_t)$ is some function of the history
 - The closer the agent's model is to the true environment state, the better the agent will be able to strategize

Defining Agent State

• What is the outcome?

Defining Agent State

- Different definitions of state result in different predictions
- *True* environment state not really known
 - Would greatly improve prediction if known

The World as we model It

Where the spider can go next only depends on where she is

• Definition of Markov property:

- The state of the system has a Markov property if the future only depends on the present $P(S_{t+1}|S_0, S_1, \dots, S_t) = P(S_{t+1}|S_t)$

• States can be *defined* to have this property

A Markov Process

- A Markov *process* is a random process where the future is only determined by the present
 - Memoryless
- Is fully defined by the set of states S, and the *state* transition probabilities $P(s_i | s_j)$
 - Formally, the tuple $M = \langle S, \mathcal{P} \rangle$.
 - -S is the (possibly finite) set of states
 - \mathcal{P} is the complete set of transition probabilities P(s | s')
 - Note P(s | s') stands for $P(S_{t+1} = s | S_t = s')$ at any time t
 - Will use the shorthand $P_{s,s'}$

The transition probability

• For processes with a discrete, finite set of states, is generally arranged as *transition probability matrix*

$$\mathcal{P} = \begin{bmatrix} P_{S_1,S_1} & P_{S_2,S_1} & \cdots & P_{S_N,S_1} \\ P_{S_1,S_2} & P_{S_2,S_2} & \cdots & P_{S_N,S_2} \\ \vdots & \vdots & \ddots & \vdots \\ P_{S_1,S_N} & P_{S_2,S_N} & \cdots & P_{S_N,S_N} \end{bmatrix}$$

• More generally (for continuous-state processes, e.g. the state of an automobile), it is modelled as a parametric distribution

$$P_{s,s'} = f(s; \theta_{s'})$$

A Markov Reward Process

- A Markov *Reward* Process (MRP) is a Markov Process where states give you rewards
- At each state s, upon arriving at that state, you obtain a reward r, drawn from a distribution P(r|s)

Markov Reward Process

Reward: Upon arriving at any corner, the spider may catch a fly from the swarm hovering there

Rewards are corner specific and probabilistic: Different corners have different sized swarms with flies of different sizes. The spider only has a probability of catching a fly, but may not always catch one.

• Flider and the Markov reward process!

Markov Reward Process

- Formally, a Markov Reward Process is the tuple $M = \langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - $-\mathcal{S}$ is the (possibly finite) set of states
 - $-\mathcal{P}$ is the complete set of transition probabilities $P_{S,S'}$
 - \mathcal{R} is a *reward* function, consisting of the distributions P(r|s)
 - Or alternately, the expected value $R_s = E[r|s]$
 - $-\gamma \in [0,1]$ is a *discount* factor

Markov Reward Process

- Formally, a Markov Reward Process is the tuple $\mathbf{M} = \langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - $-\mathcal{S}$ is the (possibly finite) set of states
 - $-\mathcal{P}$ is the complete set of transition probabilities $P_{s,s'}$
 - \mathcal{R} is a *reward* function, consisting of the distributions P(r|s)
 - Or alternately, the **expected** value $R_s = E[r|s]$

 $\gamma \in [0,1]$ is a discount factor What on earth is this?

Rewards and **Expected** rewards

- One step *expected* reward: *R*₁
 - Will this be greater if the spider heads to corner 2 or to corner 3?
Rewards and Expected Rewards

Note: Distinction between *expected* reward and *sample* reward Sample reward is what we actually get. Will represent by r *Expected* reward is what we may *expect* to get. Will represent by R

- One step *expected* reward: R_1
 - Will this greater if the spider heads to corner 2 or to corner 3?

Where should the spider be?

- Flider has the option of landing on corner 1, 2 or 3 before she begins wandering the room
 - Which is the better corner to land on?

Where should the spider be?

Where can she expect to get more food in the long term?

- Flider has the option of landing on corner 1, 2 or 3 before she begins wandering the room
 - Which is the better corner to land on?

- Assume she is allowed to "practice" once from each corner
 - To plan her future strategy

- Must use her "practice" turn to assign a "value" to each of the corners
 - Guess how much food she would get in the long term from that corner

- Starting from 3, she gets r₁, r₂, r₃....
- Is r₁ + r₂ + r₃ ... a realistic representation of what she'd get if she did it again?

Flider practices

r₁ is somewhat realistic – it is obtained from corner 3

r₂: she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she'll go to the same corner in the next run (less representative)

r₃: she had 9 possible corners to choose from in 2 steps. r₃ is even less representative of future runs

And so on...

- Starting from 3, she gets r₁, r₂, r₃....
- Is r₁ + r₂ + r₃ ... a realistic representation of what she'd get if she did it again?

Flider practices

 r_1 is somewhat realistic – it is obtained from corner 3

r₂: she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she'll go to the same corner in the next run (less representative)

 r_3 : she had 9 possible corners to choose from in 2 steps. r_3 is even less representative of future runs

And so on...

A better guess for how good it is to land at "3": $r_1 + a_1r_2 + a_2r_3 + a_3r_4 + \cdots$ Where $0 \le a_i \le 1$ (you "trust" the readings from farther in the future less)

 Is r₁ + r₂ + r₃ ... a realistic representation of what she'd get if she did it again?

Flider practices

 r_1 is somewhat realistic – it is obtained from corner 3

r₂: she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she'll go to the same corner in the next run (less representative)

 r_3 : she had 9 possible corners to choose from in 2 steps. r_3 is even less representative of future runs

And so on...

A better guess for how good it is to land at "3": $r_1 + a_1r_2 + a_2r_3 + a_3r_4 + \cdots$ Where $0 \le a_i \le 1$ (you "trust" the readings from farther in the future less)

• A "mathematically good" choice: $a_i = \gamma^i$ where $0 \le \gamma \le 1$ hat

she'd get if she did it again?

The discounted return

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- The return is the total future reward all the way to the end
- But each future step is slightly less "believable" and is hence discounted
 - We trust our own observations of the future less and less
 - The future is a fuzzy place
- The discount factor γ is our belief in the predictability of the future
 - $-\gamma = 0$: The future is totally unpredictable, only trust what you see immediately ahead of you (myopic)
 - $-\gamma = 1$: The future is clear; consider all of it (far sighted)
- Part of the Markov Reward Process model

- Our spider goes wandering.. $r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, ...$
- Are these *sample rewards* or *expected rewards*?

• Our spider goes wandering..

$$r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \dots$$

- We decide the discounting factor $\gamma = 1$
 - Really trusting the future
- What is the return G_t at t = 1?

• Our spider goes wandering..

$$r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \dots$$

- We decide the discounting factor $\gamma = 1$
 - Really trusting the future
- What is the return G_t at t = 1?
- What is the return G_t at t = 7?

• Our spider goes wandering..

$$r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \dots$$

- We decide the discounting factor $\gamma = 1$
 - Really trusting the future
- What is the return G_t at t = 1?
- What is the return G_t at t = 7?
- Are these *sample* returns or *expected* returns?

Returns

- Discounted sample returns G_t by themselves carry a fuzzy meaning
 - Why should we discount something we already observed?
- However, they make sense as *samples* of the possible future when you are at any state
 - If you are at any state, what is the *expected* return $E[G_t]$

Introducing the "Value" function

- The "Value" of a state is the expected total discounted return, starting from that state $V_s = E[G|S = s]$
- This is not a function of time
 - i.e. it doesn't matter when you arrive at s, the expected return from that point on is V_s

The spider again

- The spider gains a reward of value 1 if she consumes the fly
- The spider has infinite patience
- What is the value of starting at each corner?

The spider again

- Regardless of which corner the spider starts at, she will eventually, randomly, nab the fly
- The expected return from any corner is 1!
- The value of being at any corner is 1 for all corners

The hungry spider

- The spider is hungry
- She gets a negative reward of -1 for every minute spent finding food
- What is the expected return if she starts at c₁

The hungry spider

- Posing the problem: There is a total reward/penalty associated with each corner
 - -1 if the corner has no fly
 - Will definitely spend at least one more minute hunting
 - 1 at the corner that has the fly (satisfied!)
- Thus $r_{c_x} = -1$ for $c_1 \dots c_7$
- $r_{c_8} = 1$
- Note: We could also assign costs/rewards to edges in addition to nodes, if we want more detail, but won't do so for our lectures

The hungry spider

 $V_{c_1} = -1 + \frac{1}{3}V_{c_2} + \frac{1}{3}V_{c_3} + \frac{1}{3}V_{c_4}$ $V_{c_2} = -1 + \frac{1}{3}V_{c_1} + \frac{1}{3}V_{c_7} + \frac{1}{3}V_{c_8}$ \vdots $V_{c_8} = 1$

- A familiar solution
- Assuming $\gamma = 1$
 - A natural fit in this problem

A familiar solution

The Bellman Expectation Equation

• The value function of a state is the *expected discounted return*, when the process begins at that state

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$
$$V_s = E[G|S = s]$$

• The Bellman Expectation Equation:

$$V_{s} = R_{s} + \gamma \sum_{s'} P_{s',s} V_{s'}$$

Why discounted return?

- In processes with infinite horizon, which can go on for ever, the total undiscounted return will be infinite for every path $\sum_{k=0}^{\infty} r_{t+k+1}$ will be infinite for every path
 - For finite horizon processes, a discount factor $\gamma = 1$ is good. It lets us talk in terms of actual total return
 - For infinite horizon processes, discounting $\gamma < 1$ is required for meaningful mathematical analysis : $\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$

The Bellman Expectation Equation

$$V_{s} = R_{s} + \gamma \sum_{s'} P_{s',s} V_{s'}$$

$$\begin{bmatrix} V_{s_{1}} \\ V_{s_{2}} \\ \vdots \\ V_{s_{N}} \end{bmatrix} = \begin{bmatrix} R_{s_{1}} \\ R_{s_{2}} \\ \vdots \\ R_{s_{N}} \end{bmatrix} + \gamma \begin{bmatrix} P_{s_{1},s_{1}} & P_{s_{2},s_{1}} & \cdots & P_{s_{N},s_{1}} \\ P_{s_{1},s_{2}} & P_{s_{2},s_{2}} & \cdots & P_{s_{N},s_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ P_{s_{1},s_{N}} & P_{s_{2},s_{N}} & \cdots & P_{s_{N},s_{N}} \end{bmatrix} \begin{bmatrix} V_{s_{1}} \\ V_{s_{2}} \\ \vdots \\ V_{s_{N}} \end{bmatrix}$$

$$\mathcal{V} = \mathcal{R} + \gamma \mathcal{P} \mathcal{V}$$

Bellman expectation equation in matrix form

The Bellman Expectation Equation

$\mathcal{V} = \mathcal{R} + \gamma \mathcal{P} \mathcal{V}$

- Given the MRP $M = \langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - I.e. the expected rewards at every state, and the transition probability matrix,
 - the value functions for all states can be easily computed through matrix inversion

$$\mathcal{V} = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Finding the values of states is a key problem in planning and reinforcement learning
- Unfortunately, for very large state spaces, the above matrix inversion is not tractable
 - Also not invertible for small state spaces if $\gamma = 1$
 - Inversion cannot be used to find \mathcal{V} even when it is finite (e.g. our fly problem), if $\gamma = 1$
- Much of what we will deal with is how to tackle this problem

Moving on..

• Up next ... Markov *Decision* Processes

MDP

- We have assumed so far that the agent behaves randomly
 - The agent has no *agency*
 - Let's make the agent more intelligent..

A more realistic problem

- The spider actively chooses which way to move
 - The agent *takes action*
 - Ideally, it would move in the general direction of the fly
- However, each time the spider moves, the fly jumps up and settles at another corner
 - The agent's action changes the environment!

Redefining the problem

Full set of possible actions

- Each time the spider moves in any direction, the fly randomly jumps
- The fly arrives at a new state but ..
 - The state it arrives in depends on where the fly jumped
 - Which depends on which direction the Spider moved
- The spider's action *modifies the state transition probabilities!!*

- Each time the spider moves in any direction, the fly randomly jumps
- The fly arrives at a new state but ..
 - The state it arrives in depends on where the fly jumped
 - Which depends on which direction the Spider moved
- The spider's action *modifies the state transition probabilities!!*

- Each time the spider moves in any direction, the fly randomly jumps
- The fly arrives at a new state but ..
 - The state it arrives in depends on where the fly jumped
 - Which depends on which direction the Spider moved
- The spider's action *modifies the state transition probabilities!!*

Trick Question: Redefining the States

- There are, in fact, only four states, not eight
 - Manhattan distance between fly and spider = $0 (s_0)$
 - Distance between fly and spider = $1 (s_1)$
 - Distance between fly and spider = $2 (s_2)$
 - Distance between fly and spider = $3 (s_3)$
- Can, in fact, redefine the MRP entirely in terms of these 4 states
- There are two actions a+ and a-
- Need an idea of the behavior of the fly

The Fly Markov Reward Process

- There are, in fact, only four states, not eight
 - Manhattan distance between fly and spider = $0 (s_0)$
 - Distance between fly and spider = $1 (s_1)$
 - Distance between fly and spider = $2 (s_2)$
 - Distance between fly and spider = $3 (s_3)$
- Can, in fact, redefine the MRP entirely in terms of these 4 states

The Markov Decision Process: Defining Actions

- Two types of actions:
 - $-a_+$: Increases distance to fly by 1
 - $-a_{-}$: Decreases distance to fly by 1

The Fly Markov Decision Process

- The behavior of the fly:
 - If the spider is moving away from it, it does nothing
 - If the spider is moving *towards* it, it randomly hops to a different adjacent corner
 - 2/3 of the time, it increases the distance to the fly by 1
 - 1/3 of the time, it *decreases* the distance to the fly by 1
The Fly Markov Decision Process

73

Redefining the problem

Full set of possible actions

• Each time the spider moves in any direction, the fly randomly jumps **Note**: This is a simile for many problems in life, e.g. driving, stock market, advertising, etc.

The agents actions modifies how the environment behaves

- Which depends on which direction the spider moved
- The spider's action *modifies the state transition probabilities!!*

The Markov Decision Process

- A Markov Decision Process is a Markov Reward Process, where the agent has the ability to decide its actions!
 - We will represent individual actions as a
 - We will represent the action at time t as A_t
- The agent's actions affect the environment's behavior
 - The transitions made by the environment are functions of the action
 - The rewards returned are functions of the action

The Markov Decision Process

- Formally, a Markov Decision Process is the tuple $M = \langle S, P, A, R, \gamma \rangle$
 - -S is a (possibly finite) set of states : $S = \{s\}$
 - $-\mathcal{A}$ is a (possibly finite) set of *actions* : $\mathcal{A} = \{a\}$
 - \mathcal{P} is the set of *action conditioned* transition probabilities $P_{s,s'}^a = P(S_{t+1} = s | S_t = s', A_t = a)$
 - \mathcal{R} is an action conditioned reward function $R_s^a = E[r|S = s, A = a]$

 $-\gamma \in [0,1]$ is a *discount* factor

Introducing: Policy

• The *policy* is the probability distribution over actions that the agent may take at any state $\pi(a|s) = P(A_t = a|S_t = s)$

- What are the preferred actions of the spider at any state
- The policy may be deterministic, i.e. $\pi(a|s) = 1 \text{ for } a = a_s; \quad 0 \text{ for } a \neq a_s$

– where a_s is the preferred action in state s

An example of a policy

- Assuming the fly does not move
 - This example is not a particularly good policy for the spider

An example of a policy

Full set of possible actions

• What are the (action dependent) transition probabilities of the states here?

An example of a policy

• What are the (action dependent) transition probabilities of the states here?

- Assuming the fly does not move
 - This is a different *optimal* policy
 - What are the transition probabilities here?

The value function of an MDP

• The *expected return* from any state depends on the policy you follow

The Fly MDP: Policy 1

The Fly MDP: Policy 2 (optimal)

The Fly MDP: Stochastic Policy

The Fly MDP: Stochastic Policy

The state value function of an MDP

- The *expected return* from any state depends on the policy you follow
- We will index the value of any state by the policy to indicate this

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s') \right)$$

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example, more generally it will be

The action value function of an MDP

- There are different value equations associated with different actions
- So we can actually associate value to *state action pairs*
- **Note:** The LHS in the equation is the action-specific value at the source state, but the RHS is the overall value of the target states

The *action value* function of an MDP

• The *expected return* from any state under a given policy, when you follow a specific action

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s')$$

Bellman Expectation Equation for Action Value Functions of an MDP

All together now

• The Bellman expectation equation for state value function

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s') \right)$$

• For action value function

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s')$$

• Giving you (obviously)

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s,a)$$

• And

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in \mathcal{A}} \pi(a|s') q_{\pi}(s',a')$$

The Bellman Expectation Equations

• The Bellman expectation equation for state value function

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s') \right)$$

• The Bellman expectation equation for action value function

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in \mathcal{A}} \pi(a|s') q_{\pi}(s',a')$$

"Computing" the MDP

- Finding the state and/or action value functions for the MDP:
 - Given complete MDP (all transition probabilities $P_{s,s'}^a$, expected rewards R_s^a , and discount γ)
 - and a policy π
 - find all value terms $v_{\pi}(s)$ and/or $q_{\pi}(s, a)$
- The Bellman expectation equations are simultaneous equations that can be solved for the value functions
 - Although this will be computationally intractable for very large state spaces

Computing the MDP

 $\mathcal{V}_{\pi} = \mathcal{R}_{\pi} + \gamma \mathcal{P}_{\pi} \mathcal{V}_{\pi}$

 Given the expected rewards at every state, the transition probability matrix, the discount factor and the policy:

$$\mathcal{V}_{\pi} = (\mathbf{I} - \gamma \mathcal{P}_{\pi})^{-1} \mathcal{R}_{\pi}$$

Matrix inversion O(N³); intractable for large state spaces

Optimal Policies

- Different policies can result in different value functions
- What is the *optimal* policy?
- The optimal policy is the policy that will maximize the expected total discounted reward at every state:
 E[G_t|S_t = s]

$$= E\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \left| S_t = s \right]\right]$$

Optimal Policies

- Different policies can result in different value functions
- What is the *optimal* policy?
- The optimal policy is the policy that will maximize the expected total discounted reward at every state:
 E[G_t|S_t = s]

$$= E\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \left| S_t = s\right]\right]$$

- Recall: why do we consider the *discounted* return, rather than the actual return $\sum_{k=0}^{\infty} r_{t+k+1}$?

Policy Ordering Definition

• A policy π is "better" than a policy π' if the value function under π is greater than or equal to the value function under π' at all states

$$\pi \ge \pi' \implies v_{\pi}(s) \ge v_{\pi'}(s) \forall s$$

• Under the better policy, you will expect better overall outcome no matter what the current state

The optimal policy theorem

• **Theorem**: For any MDP there exists an optimal policy π_* that is better than or equal to every other policy:

 $\pi_* \geq \pi \quad \forall \pi$

- **Corollary**: If there are *multiple* optimal policies $\pi_{opt1}, \pi_{opt2}, ...$ all of them achieve the same value function $v_{\pi_{opt1}}(s) = v_*(s) \quad \forall s$
- All optimal policies achieve the same action value function

$$q_{\pi_{opti}}(s,a) = q_*(s,a) \quad \forall s,a$$

How to find the optimal policy

• For the optimal policy:

$$\pi_*(a|s) = \begin{cases} 1 \ for \ \operatorname{argmax} q_*(s,a') \\ 0 \ otherwise \end{cases}$$

- Easy to prove
 - For any other policy π , $q_{\pi}(s, a) \leq q_{*}(s, a)$
- Knowing the optimal action value function
 q_{*}(s, a) ∀s, a is sufficient to find the optimal policy

The optimal value function

$$\pi_*(a|s) = \begin{cases} 1 \ for \ \arg\max q_*(s,a') \\ a' \\ 0 \ otherwise \end{cases}$$

• Which gives us

$$v_*(s) = \max_a q_*(s,a)$$

Pictorially

$$v_*(s) = \max_a q_*(s,a)$$

 Blank circles are states, filled dots are stateaction pairs

The optimal value function

$$\pi_{*}(a|s) = \begin{cases} 1 \ for \ \operatorname{argmax} q_{*}(s,a') \\ 0 \ otherwise \end{cases}$$

• Which gives us

$$v_*(s) = \max_a q_*(s,a)$$

• But, for the optimal policy we also have

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

$$v_*(s) = \max_a q_*(s, a)$$
$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

104

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

$$v_*(s') = \max_{a'} q_*(s', a')$$

$$q_{*}(s,a) = R_{s}^{a} + \gamma \sum_{s'} P_{s,s'}^{a} \max_{a'} q_{*}(s',a')$$

Bellman Optimality Equations

Optimal value function equation

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

Optimal action value equation

$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \max_{a'} q_*(s', a')$$

Optimality Relationships

- Given the MDP: $\langle S, \mathcal{P}, \mathcal{A}, \mathcal{R}, \gamma \rangle$
- Given the optimal action value functions, the optimal value function can be found

$$v_*(s) = \max_a q_*(s, a)$$

• Given the optimal value function, the optimal action value function can be found

$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

• Given the optimal action value function, the optimal policy can be found

$$\pi_*(a|s) = \begin{cases} 1 \ for \ \operatorname{argmax} q_*(s,a') \\ a' \\ 0 \ otherwise \end{cases}$$
"Solving" the MDP

- Solving the MDP equates to finding the optimal policy $\pi_*(a|s)$
- Which is equivalent to finding the optimal value function $v_*(s)$
- Or finding the optimal action value function $q_*(s, a)$
- Various solutions will estimate one or the other
 - Value based solutions solve for $v_*(s)$ and $q_*(s, a)$ and derive the optimal policy from them
 - Policy based solutions directly estimate $\pi_*(a|s)$

Solving the Bellman Optimality Equation

- No closed form solutions
- Solutions are iterative
- Given the MDP (Planning):
 - Value iterations
 - Policy iterations
- Not given the MDP (Reinforcement Learning):
 - Q-learning
 - SARSA..

QUESTIONS before we dive?

