
Reinforcement Learning

11-785, Spring 2020
Defining MDPs, Planning
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Recap
• Markov Decision Processes model processes where agents 

interact with stochastic environments and received delayed 
rewards

• The entire model comprises a set of states, actions, a 
stochastic action-dependent set of state transition 
probabilities, a policy, and a discounting factor

• The values of states and state-action pairs can be computed 
using the Bellman expectation equations 
– These values depend on the policy

• Problem: Finding the best policy to maximize returns
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Planning with an MDP

• Problem:  
– Given: an MDP 

– Find: Optimal policy 

• Can either
– Value-based Solution: Find optimal value (or action 

value) function, and derive policy from it,  OR

– Policy-based Solution: Find optimal policy directly
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Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy
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Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy
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Preliminaries
• How do we represent the value function?
• Table:

– Value function
• గ

• For a process with discrete states, must store/compute 
unique values

– Action value functions
• గ

• For a process with discrete states and discrete actions, must 
store/compute unique values

• Later we will see how to represent these when the 
number of states/actions is too large or continuous
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The Bellman Expectation Equation for 
the value function

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

௔
௔∈𝒜

– ௦ᇱ,௦ ௦ᇱ,௦ 
௔

௔∈𝒜
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The Bellman Expectation Equation for 
the value function

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

௔
௔∈𝒜

– ௦,௦ᇱ ௦,௦ᇱ
௔

௦ᇱ௔∈𝒜
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Solving the MDP

• Given the expected rewards at every state, the 
transition probability matrix, the discount factor 
and the policy:

• Easy for processes with a small number of states

• Matrix inversion O(N3); intractable for large state 
spaces
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What about the action value 
function?

• The Bellman expectation equation for action 
value function

Even worse!!
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So how do we solve these

• The equations are too large, how do we solve 
them?

• First, a little lesson – from middle school…
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What they never taught you in school

• Consider the following equation:

• Where 

• Trivial solution:   

• But my CPU does not permit division.. 
– How do I solve this?
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What they never taught you in school

• Must solve the following without division

– where 

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any 
• Proof??
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What they never taught you in school

• Must solve the following without division

– where 

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any 
• Proof?? Hint: 
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What they never taught you in school

• Consider any vector equation

– Where all Eigen values 
• And some extra criteria…

– The square submatrix of corresponding to non-zero 
entries of is full rank

– The square submatrix of corresponding to zero entries of 
is an identity matrix

• The following iteration solves the problem:
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Eigen values of a probability matrix

• For any Markov transition probability matrix 
, all Eigenvalues have magnitude less than or 

equal to 1
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Solving for the value function

• This can be solved by following iteration starting from 
any initial vector
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Solving for the value function

• This can be solved by following iteration starting from 
any initial vector

• But how did that help if we need infinite iterations to 
converge?
– Solution: Stop when the changes becomes small

గ
(௞ାଵ)

గ
(௞ାଵ)
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Solving for the value function

• This can be solved by following iteration starting from 
any initial vector

• But how did that help if we need infinite iterations to 
converge?
– Solution: Stop when the changes becomes small

గ
(௞ାଵ)

గ
(௞ାଵ)
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Actual Implementation
• Initialize గ

(଴) for all states

• Update

గ
(௞ାଵ)

௦
௔

௦,௦ᇱ
௔

గ
(௞)

௦ᇱ௔∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update 
• Or incremental

– Sweep through all the states performing

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜
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Actual Implementation
• Initialize గ

(଴) for all states

• Update

గ
(௞ାଵ)

௦
௔

௦,௦ᇱ
௔

గ
(௞)

௦ᇱ௔∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update 
• Or incremental

– Sweep through all the states performing

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

This is an instance of dynamic programming:

dynamic programming (also known as dynamic optimization) is a method 
for solving a complex problem by breaking it down into a collection of 
simpler subproblems, solving each of those subproblems just once, and 
storing their solutions. The next time the same subproblem occurs, instead 
of recomputing its solution, one simply looks up the previously computed 
solution, thereby saving computation time at the expense of a (hopefully) 
modest expenditure in storage space. (Each of the subproblem solutions is 
indexed in some way, typically based on the values of its input parameters, 
so as to facilitate its lookup.) (from wikipedia) 21



An Example

• All squares, except shaded square have reward -1,  
shaded square has reward 0

• Policy:  Random – can step in any of the four directions 
with equal probability
– If you run into a wall, you just return to the square

• Find the value of being in each square

Example from Sutton
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The Gridworld Example

• Actual iterations use random policy
• Right column shows greedy policy according to current value function
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The Gridworld Example

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!
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Value-based Planning

• “Value”-based solution

• Breakdown: 
– Prediction:  Given any policy find value function 

– Control:  Find the optimal policy
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Revisit the gridworld

Example from Sutton
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Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function
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Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!
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Finding an optimal policy

• Start with any policy, e.g. random policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Compute action value function :

(ೖ) (ೖ)

– Find the greedy policy

(ೖ)
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Finding an optimal policy: Compact

• Start with any policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)
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Finding an optimal policy: Shorthand

• Start with any policy 
• Iterate ( … convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value
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Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes
32



Generalized Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use any algorithm to find the value function (ೖ)

– Use any algorithm to find an update policy

(ೖ)

Such that 

• Guaranteed to converge to the optimal policy
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Generalized Policy Iteration

• Start with any policy 

• Guaranteed to converge to the optimal policy

Evaluation (anyhow)

Improvement (anyhow)
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Optimality theorem

• All states will hit their optimal value together

• Theorem:
A policy has optimal value

in any state if and only if for every state 
reachable from ,  
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Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes
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Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration
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Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random 

policy converges!
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Policy Iteration
• Start with any policy 

• Iterate ( … convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy 
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Do we even need the prediction DP to converge?
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Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 

(ೖ)

– Find the greedy policy

(ೖ)

• This will provably converge to the optimal policy 
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Optimal policy estimation

• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value 

function (ೖ)

– Find the greedy policy

(ೖ)
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Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 

గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖ

௦ᇱ௔∈𝒜

– Find the greedy policy

௞ାଵ

௔
௦
௔

௦,௦ᇱ
௔

గ(ೖ)

௦ᇱ
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Optimal policy estimation
• Start with any policy 

• Iterate ( … convergence):
– Use iterations of prediction DP to find the value function 

గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖ

௦ᇱ௔∈𝒜

– Find the greedy policy

௞ାଵ

௔
௦
௔

௦,௦ᇱ
௔

గ(ೖ)

௦ᇱ

BUG
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Reordering and writing carefully
• Start with any initial value function గ బ

• Iterate ( … convergence):
– Find the greedy policy

௞
௔ᇱ

௦
௔ᇱ

௦,௦ᇱ
௔ᇱ

గ(ೖషభ)

௦ᇱ

– Use iterations of prediction DP to find the value function గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖషభ

௦ᇱ௔∈𝒜
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Merging
• Start with any initial value function గ బ

• Iterate ( … convergence):
– Update the value function

గ ೖ
௔

௦
௔

௦,௦ᇱ
௔

గ ೖషభ

௦ᇱ

• Note: no explicit policy estimation
– Directly learns value
– The subscript is a misnomer
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Value Iteration
• Start with any initial value function ∗

(଴)

• Iterate ( … convergence):
– Update the value function

∗
(௞)

௔
௦
௔

௦,௦ᇱ
௔

∗
(௞ିଵ)

௦ᇱ

• Note: no explicit policy estimation
• Directly learning optimal value function
• Guaranteed to give you optimal value function at convergence

– But intermediate value function estimates may not represent any 
policy
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Value iteration

• Each state simply inherits the cost of its best 
neighbour state
– Cost of neighbor is the value of the neighbour plus 

cost of getting there
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Value Iteration Example

• Target: Find the shortest path
• Every step costs -1 48



Practical Issues

• Updates can be batch mode

– Explicitly compute from for all states
– Set k = k+1

• Or asynchronous
– Compute in place while we sweep over states
–

49



Recap

• Learned about prediction 
– Estimating value function given MDP and policy

• Learned Policy iteration
– Iterate prediction and policy estimation

• Learned about Value iteration
– Directly estimate optimal value function
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Alternate strategy

• Worked with Value function
– For N states, estimates N terms

• Could alternately work with action-value 
function
– For M actions, must estimate MN terms

• Much more expensive
• But more useful in some scenarios
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Next Up

• We’ve worked so far with planning
– Someone gave us the MDP

• Next:  Reinforcement Learning
– MDP unknown..
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Problem so far

• Given all details of the MDP
– Compute optimal value function
– Compute optimal action value 

function
– Compute optimal policy

• This is the problem of planning

• Problem: In real life, nobody gives 
you the MDP
– How do we plan???



Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Model-Free Methods
• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying 
MDP?
– Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
– Model-free control

• Assumption: We can identify the states, know the actions, and measure 
rewards, but have no knowledge of the system dynamics
– The key knowledge required to “solve” for the best policy
– A reasonable assumption in many discrete-state scenarios
– Can be generalized to other scenarios with infinite or unknowable state



Model-Free Assumption

• Can see the fly
• Know the distance to the fly
• Know possible actions (get closer/farther)
• But have no idea of how the fly will respond

– Will it move, and if so, to what corner



Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Model-Free Assumption

• Can see the fly and distance to the fly
• But have no idea of how the fly will respond to actions

– Will it move, and if so, to what corner

• But will always try to reduce distance to fly (have a known, fixed, policy)
• What is the value of being a distance D from the fly?



Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD



Monte-Carlo learning to learn the 
value of a policy 

• Just “let the system run” while following the policy and 
learn the value of different states

• Procedure: Record several episodes of the following
– Take actions according to policy 
– Note states visited and rewards obtained as a result
– Record entire sequence:

– ଵ ଵ ଶ ଶ ଶ ଷ ்

– Assumption:  Each “episode” ends at some time

• Estimate value functions based on observations by counting



Monte-Carlo Value Estimation

• Objective:  Estimate value function for every 
state ,  given recordings of the kind:

• Recall, the value function is the expected return:

• To estimate this, we replace the statistical expectation 
by the empirical average 



A bit of notation

• We actually record many episodes
–

భ

–
మ

– …
– Different episodes may be different lengths



Counting Returns

• For each episode, we count the returns at all 
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ



Counting Returns

• For each episode, we count the returns at all 
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ



Counting Returns

• For each episode, we count the returns at all 
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ



Estimating the Value of a State

• To estimate the value of any state, identify the 
instances of that state in the episodes:
–

భ

• Compute the average return from those 
instances

…



Estimating the Value of a State
• For every state 

– Initialize: Count ,  Total return 
– For every episode 

• For every time ௘

– Compute ௧

– If ௧

»

» గ గ ௧

–

• Can be done more efficiently..



Online Version
• For all Initialize: Count ,  Total return 

• For every episode 
– For every time 

• Compute ௧

• ௧ ௧

• tot గ ௧ గ ௧ ௧

– For every state : 

• Updating values at the end of each episode
• Can be done more efficiently..



Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in 
which all states have been visited a sufficiently 
large number of times, we will obtain good 
estimates of the value functions of all states

• Easily extended to evaluating action value 
functions



Estimating the Action Value function

• To estimate the value of any state-action pair, 
identify the instances of that state-action pair 
in the episodes:
–

• Compute the average return from those 
instances

…



Online Version
• For all Initialize: Count ,  Total value 

• For every episode 
– For every time 

• Compute 

•

• tot

– For every : 

• Updating values at the end of each episode



Monte Carlo: Good and Bad

• Good: 
– Will eventually get to the right answer
– Unbiased estimate

• Bad:
– Cannot update anything until the end of an episode

• Which may last for ever

– High variance!  Each return adds many random values
– Slow to converge



Online methods for estimating the 
value of a policy:  Temporal 

Difference Leaning (TD)

• Idea: Update your value estimates after every 
observation

– Do not actually wait until the end of the episode

Update for S1 Update for S2 Update for S3



Incremental Update of Averages

• Given a sequence a running estimate of 
their average can be computed as

• This can be rewritten as:

• And further refined to



Incremental Update of Averages
• Given a sequence a running estimate of their 

average can be computed as

• Or more generally as

• The latter is particularly useful for non-stationary 
environments

• For stationary environments must shrink with iterations, 
but not too fast
– ௞

ଶ
௞ ௞௞ ௞



Incremental Updates

• Example of running average of a uniform 
random variable

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ



Incremental Updates

• Correct equation is unbiased and converges to true value
• Equation with is biased (early estimates can be expected 

to be wrong) but converges to true value

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ



Updating Value Function 
Incrementally

• Actual update

• is the total number of visits to state s across all 
episodes

• is the discounted return at the time instant of the i-th
visit to state 



Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute ௧



Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute ௧

Problem



TD solution

• But

• We can approximate by the expected 
return at the next state 

Problem



Counting Returns
• For each episode, we count the returns at all times:

– ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Return at time t
– ଵ ଶ ଷ

்ିଶ
்

– ଶ ଷ ସ
்ିଷ

்

–

– ௧ ௧ାଵ ௧ାଶ
்ି௧ିଶ

்

• Can rewrite as
– ଵ ଶ ଶ

• Or
– ଵ ଶ ଷ

ଶ
ଷ

–

– ௧ ௧ାଵ
௜

௧ାଵା௜
ே
௜ୀଵ

ேାଵ
௧ାଵାே



TD solution

• But

• We can approximate by the expected return at 
the next state 

• We don’t know the real value of but we can 
“bootstrap” it by its current estimate

Problem



TD(1) true online update

• Where

• Giving us
–



TD(1) true online update

• Where

• is the TD error
– The error between an (estimated) observation of  

and the current estimate 



TD(1) true online update
• For all Initialize: 

• For every episode 
– For every time 

• గ ௧ గ ௧ ௧ାଵ గ ௧ାଵ గ ௧

• There’s a “lookahead” of one state, to know 
which state the process arrives at at the next time

• But is otherwise online, with continuous updates



TD(1)
• Updates continuously – improve estimates as soon as you 

observe a state (and its successor)

• Can work even with infinitely long processes that never 
terminate

• Guaranteed to converge to the true values eventually
– Although initial values will be biased as seen before
– Is actually lower variance than MC!!

• Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
– Particularly when TD is allowed to loop over all learning 

episodes



TD vs MC

• What are and 
– Using MC
– Using TD(1), where you are allowed to repeatedly go over 

the data



TD – look ahead further?

• TD(1) has a look ahead of 1 time step

• But we can look ahead further out
–

–

–



TD(N) with lookahead

• Where

• is the TD error with N step lookahead

•



Lookahead is good

• Good: The further you look ahead, the better your 
estimates get

• Problems:
– But you also get more variance
– At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates
– A lag between observation and estimate

• So how much lookahead must you use



Looking Into The Future

• How much various TDs look into the future
• Which do we use?



Solution: Why choose?

• Each lookahead provides an estimate of Gt

• Why not just combine the lot with discounting?



TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight
– Weights sum to 1.0



Something magical just happened

• TD(l) looks into the 
infinite future
– I.e. we must have all 

the rewards of the 
future to compute our 
updates

– How does that help?



The contribution of future rewards to 
the present update

• All future rewards contribute to the update of 
the value of the current state

TIME

2 2

3 3

4 4

5 5

6 6

Rt+1

Rt+2

Rt+3

Rt+4

Rt+5

Rt+6

Rt+7

St

is from the discounting
is from the look-ahead weight



St+1

St+2

St+3

St+4

St+5

St+6

St+7

The contribution of current reward to 
past states

• All current reward contributes to the update 
of the value of all past states!

TIME

2 2

3 3

4 4

5 5

6 6

Rt



TD(l) backward view

• The Eligibility trace:
– Keeps track of total weight for any state

• Which may have occurred at multiple times in the past

TIME

Rt

Add these weights to compute contribution
to red state..

2 2

3 3

4 4

5 5

6 6



TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the 
present time



TD(l)

• At every time, update the value of every state 
according to its eligibility trace

• Any state that was visited will be updated
– Those that were not will not be, though



The magic of TD(l)

• Managed to get the effect of inifinite lookahead, by 
performing infinite lookbehind
– Or at least look behind to the beginning

• Every reward updates the value of all states leading to the 
reward!
– E.g., in a chess game, if we win, we want to increase the value of 

all game states we visited, not just the final move
– But early states/moves must gain much less than later moves

• When this is exactly equivalent to MC



Story so far

• Want to compute the values of all states, 
given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal 
difference solutions
– TD is quicker to update, and in many situations 

the better solution
– TD(l) actually emulates an infinite lookahead

• But we must choose good values of a and l



Optimal Policy: Control

• We learned how to estimate the state value 
functions for an MDP whose transition 
probabilities are unknown for a given policy

• How do we find the optimal policy?



Value vs. Action Value

• The solution we saw so far only computes the value functions of 
states

• Not sufficient – to compute the optimal policy from value functions 
alone, we will need extra information, namely transition 
probabilities
– Which we do not have

• Instead, we can use the same method to compute action value 
functions
– Optimal policy in any state : Choose the action that has the largest 

optimal action value



Value vs. Action value

• Given only value functions, the optimal policy must be 
estimated as:

ᇲ

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of model 
parameters)



Problem of optimal control

• From a series of episodes of the kind:

• Find the optimal action value function 
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy 

from ongoing experience



Exploration vs. Exploitation
• Optimal policy search happens while gathering experience while 

following a policy

• For fastest learning, we will follow an estimate of the optimal policy

• Risk:  We run the risk of positive feedback
– Only learn to evaluate our current policy
– Will never learn about alternate policies that may turn out to be 

better

• Solution: We will follow our current optimal policy of the time
– But choose a random action of the time
– The “epsilon-greedy” policy



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Start the process at the initial state, and follow an action according to initial policy 

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Start the process at the initial state, and follow an action according to initial policy 

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



On-line version of GLIE: SARSA

• Replace with an estimate
• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1)  SARSA



SARSA
• Initialize for all 
• Start at initial state 
• Select an initial action 
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update 

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧



SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l) estimate 
• Maintain an eligibility trace for every state-action pair:

଴

௧ ௧ିଵ ௧ ௧

• Update every state-action pair visited so far

௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

௧ ௧



SARSA(l)

• For all initialize 
• For each episode 

– For all initialize 
– Initialize ଵ ଵ

– For 
• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ using policy obtained from 

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧

• For all 
– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)



On-policy vs. Off-policy
• SARSA assumes you’re following the same policy that you’re 

learning
• Its possible to follow one policy, while learning from others

– E.g. learning by observation

• The policy for learning is the whatif policy

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

ଶ ଷ

• Modifies learning rule

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• to

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• Q will actually represent the action value function of the 
hypothetical policy

hypothetical



SARSA: Suboptimality
• SARSA:  From any state-action , accept 

reward , transition to next state , 
choose next action 

• Use TD rules to update:

• Problem: which policy do we use to choose 



SARSA: Suboptimality
• SARSA:  From any state-action , accept 

reward , transition to next state , choose 
next action 

• Problem: which policy do we use to choose 
• If we choose the current judgment of the best 

action at S’ we will become too greedy
– Never explore

• If we choose a sub-optimal policy to follow, we 
will never find the best policy



Solution: Off-policy learning
• The policy for learning is the whatif policy

• Use the best action for St+1 as your hypothetical 
off-policy action

• But actually follow an epsilon-greedy action
– The hypothetical action is guaranteed to be better 

than the one you actually took

– But you still explore (non-greedy)

hypothetical



Q-Learning

• From any state-action pair 
– Accept reward 
– Transition to 
– Find the best action for 
– Use it to update 
– But then actually perform an epsilon-greedy 

action from 



Q-Learning (TD(1) version)

• For all initialize 
• For each episode 

– Initialize 
– For 

• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ at ௧ାଵ using epsilon-greedy policy 
obtained from 

• Choose action ௧ାଵ at ௧ାଵ as ௧ାଵ
௔

௧ାଵ

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧ ௧ ௧



Q-Learning (TD(l) version)

• For all initialize 
• For each episode 

– For all initialize 
– Initialize ଵ ଵ

– For 
• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Choose action 𝐴௧ାଵ at 𝑆௧ାଵ using epsilon-greedy policy obtained from 𝑄

• Choose action 𝐴መ௧ାଵ at 𝑆௧ାଵ as 𝐴መ௧ାଵ = 𝑎𝑟𝑔max
௔

𝑄(𝑆௧ାଵ, 𝑎)

• 𝛿 = 𝑅௧ାଵ + 𝛾𝑄 𝑆௧ାଵ, 𝐴መ௧ାଵ − 𝑄(𝑆௧, 𝐴௧)

• 𝐸 𝑆௧, 𝐴௧ += 1

• For all 𝑠, 𝑎 

– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)



What about the actual policy?

• Optimal greedy policy:

• Exploration policy

• Ideally should decrease with time



Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:

– Value function approximation
– Continuous state spaces
– Deep-Q learning
– Action replay
– Application to real problem..


