
Reinforcement Learning

11-785, Spring 2020
Defining MDPs, Planning

1

Recap
• Markov Decision Processes model processes where agents

interact with stochastic environments and received delayed
rewards

• The entire model comprises a set of states, actions, a
stochastic action-dependent set of state transition
probabilities, a policy, and a discounting factor

• The values of states and state-action pairs can be computed
using the Bellman expectation equations
– These values depend on the policy

• Problem: Finding the best policy to maximize returns
2

Planning with an MDP

• Problem:
– Given: an MDP

– Find: Optimal policy

• Can either
– Value-based Solution: Find optimal value (or action

value) function, and derive policy from it, OR

– Policy-based Solution: Find optimal policy directly

3

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

4

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

5

Preliminaries
• How do we represent the value function?
• Table:

– Value function
• గ

• For a process with discrete states, must store/compute
unique values

– Action value functions
• గ

• For a process with discrete states and discrete actions, must
store/compute unique values

• Later we will see how to represent these when the
number of states/actions is too large or continuous

6

The Bellman Expectation Equation for
the value function

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

௔
௔∈𝒜

– ௦ᇱ,௦ ௦ᇱ,௦
௔

௔∈𝒜

7

The Bellman Expectation Equation for
the value function

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

௔
௔∈𝒜

– ௦,௦ᇱ ௦,௦ᇱ
௔

௦ᇱ௔∈𝒜

8

Solving the MDP

• Given the expected rewards at every state, the
transition probability matrix, the discount factor
and the policy:

• Easy for processes with a small number of states

• Matrix inversion O(N3); intractable for large state
spaces

9

What about the action value
function?

• The Bellman expectation equation for action
value function

Even worse!!
10

So how do we solve these

• The equations are too large, how do we solve
them?

• First, a little lesson – from middle school…

11

What they never taught you in school

• Consider the following equation:

• Where

• Trivial solution:

• But my CPU does not permit division..
– How do I solve this?

12

What they never taught you in school

• Must solve the following without division

– where

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any
• Proof??

13

What they never taught you in school

• Must solve the following without division

– where

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any
• Proof?? Hint:

14

What they never taught you in school

• Consider any vector equation

– Where all Eigen values
• And some extra criteria…

– The square submatrix of corresponding to non-zero
entries of is full rank

– The square submatrix of corresponding to zero entries of
is an identity matrix

• The following iteration solves the problem:

15

Eigen values of a probability matrix

• For any Markov transition probability matrix
, all Eigenvalues have magnitude less than or

equal to 1

16

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

17

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

• But how did that help if we need infinite iterations to
converge?
– Solution: Stop when the changes becomes small

గ
(௞ାଵ)

గ
(௞ାଵ)

18

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

• But how did that help if we need infinite iterations to
converge?
– Solution: Stop when the changes becomes small

గ
(௞ାଵ)

గ
(௞ାଵ)

19

Actual Implementation
• Initialize గ

(଴) for all states

• Update

గ
(௞ାଵ)

௦
௔

௦,௦ᇱ
௔

గ
(௞)

௦ᇱ௔∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update
• Or incremental

– Sweep through all the states performing

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

20

Actual Implementation
• Initialize గ

(଴) for all states

• Update

గ
(௞ାଵ)

௦
௔

௦,௦ᇱ
௔

గ
(௞)

௦ᇱ௔∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(௞ାଵ)

– Update
• Or incremental

– Sweep through all the states performing

గ ௦
௔

௦,௦ᇱ
௔

గ

௦ᇱ௔∈𝒜

This is an instance of dynamic programming:

dynamic programming (also known as dynamic optimization) is a method
for solving a complex problem by breaking it down into a collection of
simpler subproblems, solving each of those subproblems just once, and
storing their solutions. The next time the same subproblem occurs, instead
of recomputing its solution, one simply looks up the previously computed
solution, thereby saving computation time at the expense of a (hopefully)
modest expenditure in storage space. (Each of the subproblem solutions is
indexed in some way, typically based on the values of its input parameters,
so as to facilitate its lookup.) (from wikipedia) 21

An Example

• All squares, except shaded square have reward -1,
shaded square has reward 0

• Policy: Random – can step in any of the four directions
with equal probability
– If you run into a wall, you just return to the square

• Find the value of being in each square

Example from Sutton

22

The Gridworld Example

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

23

The Gridworld Example

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!
24

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

25

Revisit the gridworld

Example from Sutton

26

Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

27

Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!
28

Finding an optimal policy

• Start with any policy, e.g. random policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Compute action value function :

(ೖ) (ೖ)

– Find the greedy policy

(ೖ)

29

Finding an optimal policy: Compact

• Start with any policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

30

Finding an optimal policy: Shorthand

• Start with any policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value

31

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes
32

Generalized Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use any algorithm to find the value function (ೖ)

– Use any algorithm to find an update policy

(ೖ)

Such that

• Guaranteed to converge to the optimal policy

33

Generalized Policy Iteration

• Start with any policy

• Guaranteed to converge to the optimal policy

Evaluation (anyhow)

Improvement (anyhow)

34

Optimality theorem

• All states will hit their optimal value together

• Theorem:
A policy has optimal value

in any state if and only if for every state
reachable from ,

35

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes
36

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

37

Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!
38

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
௞ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Do we even need the prediction DP to converge?

39

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

(ೖ)

– Find the greedy policy

(ೖ)

• This will provably converge to the optimal policy

40

Optimal policy estimation

• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value

function (ೖ)

– Find the greedy policy

(ೖ)

41

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖ

௦ᇱ௔∈𝒜

– Find the greedy policy

௞ାଵ

௔
௦
௔

௦,௦ᇱ
௔

గ(ೖ)

௦ᇱ

42

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖ

௦ᇱ௔∈𝒜

– Find the greedy policy

௞ାଵ

௔
௦
௔

௦,௦ᇱ
௔

గ(ೖ)

௦ᇱ

BUG

43

Reordering and writing carefully
• Start with any initial value function గ బ

• Iterate (… convergence):
– Find the greedy policy

௞
௔ᇱ

௦
௔ᇱ

௦,௦ᇱ
௔ᇱ

గ(ೖషభ)

௦ᇱ

– Use iterations of prediction DP to find the value function గ(ೖ)

గ ೖ
௞

௦
௔

௦,௦ᇱ
௔

గ ೖషభ

௦ᇱ௔∈𝒜

44

Merging
• Start with any initial value function గ బ

• Iterate (… convergence):
– Update the value function

గ ೖ
௔

௦
௔

௦,௦ᇱ
௔

గ ೖషభ

௦ᇱ

• Note: no explicit policy estimation
– Directly learns value
– The subscript is a misnomer

45

Value Iteration
• Start with any initial value function ∗

(଴)

• Iterate (… convergence):
– Update the value function

∗
(௞)

௔
௦
௔

௦,௦ᇱ
௔

∗
(௞ିଵ)

௦ᇱ

• Note: no explicit policy estimation
• Directly learning optimal value function
• Guaranteed to give you optimal value function at convergence

– But intermediate value function estimates may not represent any
policy

46

Value iteration

• Each state simply inherits the cost of its best
neighbour state
– Cost of neighbor is the value of the neighbour plus

cost of getting there

47

Value Iteration Example

• Target: Find the shortest path
• Every step costs -1 48

Practical Issues

• Updates can be batch mode

– Explicitly compute from for all states
– Set k = k+1

• Or asynchronous
– Compute in place while we sweep over states
–

49

Recap

• Learned about prediction
– Estimating value function given MDP and policy

• Learned Policy iteration
– Iterate prediction and policy estimation

• Learned about Value iteration
– Directly estimate optimal value function

50

Alternate strategy

• Worked with Value function
– For N states, estimates N terms

• Could alternately work with action-value
function
– For M actions, must estimate MN terms

• Much more expensive
• But more useful in some scenarios

51

Next Up

• We’ve worked so far with planning
– Someone gave us the MDP

• Next: Reinforcement Learning
– MDP unknown..

52

Problem so far

• Given all details of the MDP
– Compute optimal value function
– Compute optimal action value

function
– Compute optimal policy

• This is the problem of planning

• Problem: In real life, nobody gives
you the MDP
– How do we plan???

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without
knowing the underlying MDP?
– Model-free control

Model-Free Methods
• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying
MDP?
– Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
– Model-free control

• Assumption: We can identify the states, know the actions, and measure
rewards, but have no knowledge of the system dynamics
– The key knowledge required to “solve” for the best policy
– A reasonable assumption in many discrete-state scenarios
– Can be generalized to other scenarios with infinite or unknowable state

Model-Free Assumption

• Can see the fly
• Know the distance to the fly
• Know possible actions (get closer/farther)
• But have no idea of how the fly will respond

– Will it move, and if so, to what corner

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without
knowing the underlying MDP?
– Model-free control

Model-Free Assumption

• Can see the fly and distance to the fly
• But have no idea of how the fly will respond to actions

– Will it move, and if so, to what corner

• But will always try to reduce distance to fly (have a known, fixed, policy)
• What is the value of being a distance D from the fly?

Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD

Monte-Carlo learning to learn the
value of a policy

• Just “let the system run” while following the policy and
learn the value of different states

• Procedure: Record several episodes of the following
– Take actions according to policy
– Note states visited and rewards obtained as a result
– Record entire sequence:

– ଵ ଵ ଶ ଶ ଶ ଷ ்

– Assumption: Each “episode” ends at some time

• Estimate value functions based on observations by counting

Monte-Carlo Value Estimation

• Objective: Estimate value function for every
state , given recordings of the kind:

• Recall, the value function is the expected return:

• To estimate this, we replace the statistical expectation
by the empirical average

A bit of notation

• We actually record many episodes
–

భ

–
మ

– …
– Different episodes may be different lengths

Counting Returns

• For each episode, we count the returns at all
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ

Counting Returns

• For each episode, we count the returns at all
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ

Counting Returns

• For each episode, we count the returns at all
times:
–

భ

• Return at time t
– భ

భ

– భ
భ

–

– భ
భ

Estimating the Value of a State

• To estimate the value of any state, identify the
instances of that state in the episodes:
–

భ

• Compute the average return from those
instances

…

Estimating the Value of a State
• For every state

– Initialize: Count , Total return
– For every episode

• For every time ௘

– Compute ௧

– If ௧

»

» గ గ ௧

–

• Can be done more efficiently..

Online Version
• For all Initialize: Count , Total return

• For every episode
– For every time

• Compute ௧

• ௧ ௧

• tot గ ௧ గ ௧ ௧

– For every state :

• Updating values at the end of each episode
• Can be done more efficiently..

Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in
which all states have been visited a sufficiently
large number of times, we will obtain good
estimates of the value functions of all states

• Easily extended to evaluating action value
functions

Estimating the Action Value function

• To estimate the value of any state-action pair,
identify the instances of that state-action pair
in the episodes:
–

• Compute the average return from those
instances

…

Online Version
• For all Initialize: Count , Total value

• For every episode
– For every time

• Compute

•

• tot

– For every :

• Updating values at the end of each episode

Monte Carlo: Good and Bad

• Good:
– Will eventually get to the right answer
– Unbiased estimate

• Bad:
– Cannot update anything until the end of an episode

• Which may last for ever

– High variance! Each return adds many random values
– Slow to converge

Online methods for estimating the
value of a policy: Temporal

Difference Leaning (TD)

• Idea: Update your value estimates after every
observation

– Do not actually wait until the end of the episode

Update for S1 Update for S2 Update for S3

Incremental Update of Averages

• Given a sequence a running estimate of
their average can be computed as

• This can be rewritten as:

• And further refined to

Incremental Update of Averages
• Given a sequence a running estimate of their

average can be computed as

• Or more generally as

• The latter is particularly useful for non-stationary
environments

• For stationary environments must shrink with iterations,
but not too fast
– ௞

ଶ
௞ ௞௞ ௞

Incremental Updates

• Example of running average of a uniform
random variable

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ

Incremental Updates

• Correct equation is unbiased and converges to true value
• Equation with is biased (early estimates can be expected

to be wrong) but converges to true value

௞ ௞ିଵ ௞ ௞ିଵ

௞ ௞ିଵ ௞ ௞ିଵ

Updating Value Function
Incrementally

• Actual update

• is the total number of visits to state s across all
episodes

• is the discounted return at the time instant of the i-th
visit to state

Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute ௧

Online update
• Given any episode

• Update the value of each state visited

• Incremental version

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute ௧

Problem

TD solution

• But

• We can approximate by the expected
return at the next state

Problem

Counting Returns
• For each episode, we count the returns at all times:

– ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Return at time t
– ଵ ଶ ଷ

்ିଶ
்

– ଶ ଷ ସ
்ିଷ

்

–

– ௧ ௧ାଵ ௧ାଶ
்ି௧ିଶ

்

• Can rewrite as
– ଵ ଶ ଶ

• Or
– ଵ ଶ ଷ

ଶ
ଷ

–

– ௧ ௧ାଵ
௜

௧ାଵା௜
ே
௜ୀଵ

ேାଵ
௧ାଵାே

TD solution

• But

• We can approximate by the expected return at
the next state

• We don’t know the real value of but we can
“bootstrap” it by its current estimate

Problem

TD(1) true online update

• Where

• Giving us
–

TD(1) true online update

• Where

• is the TD error
– The error between an (estimated) observation of

and the current estimate

TD(1) true online update
• For all Initialize:

• For every episode
– For every time

• గ ௧ గ ௧ ௧ାଵ గ ௧ାଵ గ ௧

• There’s a “lookahead” of one state, to know
which state the process arrives at at the next time

• But is otherwise online, with continuous updates

TD(1)
• Updates continuously – improve estimates as soon as you

observe a state (and its successor)

• Can work even with infinitely long processes that never
terminate

• Guaranteed to converge to the true values eventually
– Although initial values will be biased as seen before
– Is actually lower variance than MC!!

• Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
– Particularly when TD is allowed to loop over all learning

episodes

TD vs MC

• What are and
– Using MC
– Using TD(1), where you are allowed to repeatedly go over

the data

TD – look ahead further?

• TD(1) has a look ahead of 1 time step

• But we can look ahead further out
–

–

–

TD(N) with lookahead

• Where

• is the TD error with N step lookahead

•

Lookahead is good

• Good: The further you look ahead, the better your
estimates get

• Problems:
– But you also get more variance
– At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates
– A lag between observation and estimate

• So how much lookahead must you use

Looking Into The Future

• How much various TDs look into the future
• Which do we use?

Solution: Why choose?

• Each lookahead provides an estimate of Gt

• Why not just combine the lot with discounting?

TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight
– Weights sum to 1.0

Something magical just happened

• TD(l) looks into the
infinite future
– I.e. we must have all

the rewards of the
future to compute our
updates

– How does that help?

The contribution of future rewards to
the present update

• All future rewards contribute to the update of
the value of the current state

TIME

2 2

3 3

4 4

5 5

6 6

Rt+1

Rt+2

Rt+3

Rt+4

Rt+5

Rt+6

Rt+7

St

is from the discounting
is from the look-ahead weight

St+1

St+2

St+3

St+4

St+5

St+6

St+7

The contribution of current reward to
past states

• All current reward contributes to the update
of the value of all past states!

TIME

2 2

3 3

4 4

5 5

6 6

Rt

TD(l) backward view

• The Eligibility trace:
– Keeps track of total weight for any state

• Which may have occurred at multiple times in the past

TIME

Rt

Add these weights to compute contribution
to red state..

2 2

3 3

4 4

5 5

6 6

TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the
present time

TD(l)

• At every time, update the value of every state
according to its eligibility trace

• Any state that was visited will be updated
– Those that were not will not be, though

The magic of TD(l)

• Managed to get the effect of inifinite lookahead, by
performing infinite lookbehind
– Or at least look behind to the beginning

• Every reward updates the value of all states leading to the
reward!
– E.g., in a chess game, if we win, we want to increase the value of

all game states we visited, not just the final move
– But early states/moves must gain much less than later moves

• When this is exactly equivalent to MC

Story so far

• Want to compute the values of all states,
given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal
difference solutions
– TD is quicker to update, and in many situations

the better solution
– TD(l) actually emulates an infinite lookahead

• But we must choose good values of a and l

Optimal Policy: Control

• We learned how to estimate the state value
functions for an MDP whose transition
probabilities are unknown for a given policy

• How do we find the optimal policy?

Value vs. Action Value

• The solution we saw so far only computes the value functions of
states

• Not sufficient – to compute the optimal policy from value functions
alone, we will need extra information, namely transition
probabilities
– Which we do not have

• Instead, we can use the same method to compute action value
functions
– Optimal policy in any state : Choose the action that has the largest

optimal action value

Value vs. Action value

• Given only value functions, the optimal policy must be
estimated as:

ᇲ

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of model
parameters)

Problem of optimal control

• From a series of episodes of the kind:

• Find the optimal action value function
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy

from ongoing experience

Exploration vs. Exploitation
• Optimal policy search happens while gathering experience while

following a policy

• For fastest learning, we will follow an estimate of the optimal policy

• Risk: We run the risk of positive feedback
– Only learn to evaluate our current policy
– Will never learn about alternate policies that may turn out to be

better

• Solution: We will follow our current optimal policy of the time
– But choose a random action of the time
– The “epsilon-greedy” policy

GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy
• Start the process at the initial state, and follow an action according to initial policy

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat

GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy
• Start the process at the initial state, and follow an action according to initial policy

• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat

On-line version of GLIE: SARSA

• Replace with an estimate
• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1)  SARSA

SARSA
• Initialize for all
• Start at initial state
• Select an initial action
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧

SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l) estimate
• Maintain an eligibility trace for every state-action pair:

଴

௧ ௧ିଵ ௧ ௧

• Update every state-action pair visited so far

௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

௧ ௧

SARSA(l)

• For all initialize
• For each episode

– For all initialize
– Initialize ଵ ଵ

– For
• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ using policy obtained from

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧

• For all
– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)

On-policy vs. Off-policy
• SARSA assumes you’re following the same policy that you’re

learning
• Its possible to follow one policy, while learning from others

– E.g. learning by observation

• The policy for learning is the whatif policy

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

ଶ ଷ

• Modifies learning rule

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• to

௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• Q will actually represent the action value function of the
hypothetical policy

hypothetical

SARSA: Suboptimality
• SARSA: From any state-action , accept

reward , transition to next state ,
choose next action

• Use TD rules to update:

• Problem: which policy do we use to choose

SARSA: Suboptimality
• SARSA: From any state-action , accept

reward , transition to next state , choose
next action

• Problem: which policy do we use to choose
• If we choose the current judgment of the best

action at S’ we will become too greedy
– Never explore

• If we choose a sub-optimal policy to follow, we
will never find the best policy

Solution: Off-policy learning
• The policy for learning is the whatif policy

• Use the best action for St+1 as your hypothetical
off-policy action

• But actually follow an epsilon-greedy action
– The hypothetical action is guaranteed to be better

than the one you actually took

– But you still explore (non-greedy)

hypothetical

Q-Learning

• From any state-action pair
– Accept reward
– Transition to
– Find the best action for
– Use it to update
– But then actually perform an epsilon-greedy

action from

Q-Learning (TD(1) version)

• For all initialize
• For each episode

– Initialize
– For

• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ at ௧ାଵ using epsilon-greedy policy
obtained from

• Choose action ௧ାଵ at ௧ାଵ as ௧ାଵ
௔

௧ାଵ

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧ ௧ ௧

Q-Learning (TD(l) version)

• For all initialize
• For each episode

– For all initialize
– Initialize ଵ ଵ

– For
• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Choose action 𝐴௧ାଵ at 𝑆௧ାଵ using epsilon-greedy policy obtained from 𝑄

• Choose action 𝐴መ௧ାଵ at 𝑆௧ାଵ as 𝐴መ௧ାଵ = 𝑎𝑟𝑔max
௔

𝑄(𝑆௧ାଵ, 𝑎)

• 𝛿 = 𝑅௧ାଵ + 𝛾𝑄 𝑆௧ାଵ, 𝐴መ௧ାଵ − 𝑄(𝑆௧, 𝐴௧)

• 𝐸 𝑆௧, 𝐴௧ += 1

• For all 𝑠, 𝑎

– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)

What about the actual policy?

• Optimal greedy policy:

• Exploration policy

• Ideally should decrease with time

Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:

– Value function approximation
– Continuous state spaces
– Deep-Q learning
– Action replay
– Application to real problem..

