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Different kinds of AI (in 
practice)
1. AI that maximizes performance

– e.g., diagnosing disease – learns and applies knowledge humans might not 
typically learn/apply – “who cares if it does it like humans or not”

2. AI that is meant to simulate (to better understand) cognitive or biological processes
– e.g., PDP – specifically constructed so as to reveal aspects of how biological 

systems learn/reason/etc. – understanding at the neural or cognitive levels (or 
both)

3. AI that performs well and helps understand cognitive or biological processes
– e.g., Deep learning models (cf. Yamins/DiCarlo) – “representational learning”

4. AI that is specifically designed to predict human performance/preference
– e.g., Google/Netflix/etc. – only useful if it predicts what humans actually do or 

want



A Bit More on Deep Learning

• Typically relies on supervised learning – 1,000,000’s of labeled inputs
• Labels are a metric of human performance – so long as the network learns the 

correct input->label mapping, it will perform “well” by this metric
• However, the network can’t do better than the labels
• Features might exist in the input that would improve performance, but 

unless those features are sometimes correctly labeled, the model won’t 
learn that feature to output mapping

• The network can reduce misses, but it can’t discover new mappings unless there 
are existing further correlations between input->labels in the trained data

• So Deep Neural Networks tend to be very good at the kinds of AI that predicts 
human performance (#4) and that maximize performance (#1), but the jury is 
still out on AI that performs well and helps us understand biological intelligence 
(#3); might also be used for simulation of biological intelligence (#2)



Some Numbers (ack)

• Retinal input (~108 photoreceptors) undergoes a 100:1 data 
compression, so that only 106 samples are transmitted by the optic 
nerve to the LGN

• From LGN to V1, there is almost a 400:1 data expansion, followed 
by some data compression from V1 to V4

• From this point onwards, along the ventral cortical stream, the 
number of samples increases once again, with at least ~109

neurons in so-called “higher-level” visual areas
• Neurophysiology of V1->V4 suggests a feature hierarchy, but even 

V1 is subject to the influence of feedback circuits – there are ~2x 
feedback connections as feedforward connections in human visual 
cortex

• Entire human brain is about ~1011 neurons with ~1015 synapses



The problem



Ways of collecting brain data

■ Brain Parts List - Define all the types of neurons in the brain

■ Connectome - Determine the connection matrix of the brain 

■ Brain Activity Map - Record the activity of all neurons at msec
precision (“functional”)

– Record from individual neurons
– Record aggregate responses from 1,000,000’s of neurons

■ Behavior Prediction/Analysis - Build predictive models of complex 
networks or complex behavior

■ Potential Connections to a variety of other data sources, including 
genomics, proteomics, behavioral economics



Neuroimaging Challenges

■ Expensive

■ Lack of power – both in number of observations (1000’s at 
best) and number of individuals (100’s at best)

■ Variation – aligning structural or functional brain maps across 
different individuals

■ Analysis – high-dimensional data sets with unknown structure

■ Tradeoffs between spatial and temporal resolution and 
invasiveness



Tradeoffs in neuroimaging

WANT TO BE HERE

WE ARE HERE



Background

■ There is a long-standing, underlying assumption that vision is 
compositional

– “High-level” representations (e.g., objects) are comprised of 
separable parts (“building blocks”)

– Parts can be recombined to represent different things
– Parts are the consequence of a progressive hierarchy of increasing 

complex features comprised of combinations of simpler features

■ Visual neuroscience has often focused on the nature of such features
– Both intermediate (e.g., V4) and higher-level (e.g., IT)
– Toilet brushes
– Image reduction
– Genetic algorithms



Tanaka (2003) used an image reduction method to isolate 
“critical features” (physiology)



Woloszyn and Sheinberg (2012)

Furthermore, note that the best familiar stimulus elicited a robust
firing rate that reached a peak level of around 100 Hz in every
neuron, suggesting that we were able to find highly effective
stimuli for activating these neurons. The increased firing rates
of putative excitatory cells to top-ranked familiar stimuli
compared to top-ranked novel stimuli translated directly into

increased selectivity (sparseness) for the familiar stimulus set
(Figures 2A–2E, right column).
The bottom two rows (Figures 2F and 2G) correspond to

putative inhibitory cells. Putative inhibitory cells nearly always
showed a greater response to the best novel compared to the
best familiar stimulus, an effect that appeared after the initial
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Figure 2. Example Neuronal Responses to Familiar and Novel Stimuli
(A–E) Five representative putative excitatory cells. (F and G) Two representative putative inhibitory cells. In all rows the column on the far left shows both the mean

spike waveform of each cell and the cluster to which the waveformwas assigned (blue, broad spike; red, narrow spike). In the middle-five columns are plotted the

spike density functions (SDFs, spike times convolved with a Gaussian kernel with s = 20 ms) for the top five stimuli from the familiar set (black) and the top five

stimuli from the novel set (green). These rankings were determined not on the basis of the peak value of the SDF but rather from the spike counts in the interval

75–200 ms after stimulus onset, which is shown as a light-gray bar abutting the time axis. The insets in these graphs show the actual familiar and novel images

eliciting the response. The column on the far right shows each neuron’s entire distribution of mean firing rates, sorted according to rank. Again, the mean firing

rates were computed from the spike counts in the interval 75–200 ms after stimulus onset, and the rankings were done independently for the familiar and novel

sets. The numbers in the top right of the rank plots show the magnitude of the sparseness metric that was used to quantify single-cell selectivity.
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Experience-Dependent Changes in IT Neurons
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Frustrating Progress

■ Few, if any, studies have made much progress in illuminating the building 
blocks of vision

– Some progress at the level of V4?
– Almost no progress at the level of IT – Typical account of neural 

selectivity is in terms of:
■ Reified categories – face patches – functional selectivity of neurons 

or neural regions is defined in terms of the category for which it 
seems most preferential
– Ignores the relatively gentle similarity gradient
– Ignores the failure to conduct an adequate search of the space

■ Features that do not seem to support generalization/composition
– Fail on ocular inspection and any computational predictions
– Again ignores the failure to conduct an adequate search of the 

space



What to do?

■ Collect much more data – across millions of different images and 
millions of neurons

■ Better search algorithms based on real-time feedback

■ Run simulations of a vision system
– Align task(s) with biological vision systems
– Align architecture with biological vision systems
– Must be high performing (or what is the point?)
– Explore the functional features that emerge from the 

simulation
■ Not much progress on this front until recently…CNNs/Deep 

Networks



Stupid CNN Tricks

• Hierarchical correspondence

• Visualization of “neurons”

[Digression – is visualization a good 
metric for evaluating models?]



HCNNs are good candidates for models of 
the ventral visual pathway

Yamins & DiCarlo



Goal-Driven Networks as 
Neural Models

• whatever parameters are used, a neural network will have to be 
effective at solving the behavioral tasks the sensory system 
supports to be a correct model of a given sensory system

• so… advances in computer vision, etc. that have led to high-
performing systems – that solve behavioral tasks nearly as 
effectively as we do – could be correct models of neural 
mechanisms

• conversely, models that are ineffective at a given task are 
unlikely to ever do a good job at characterizing neural 
mechanisms



Approach

• Optimize network parameters for performance on a reasonable, 
ecologically—valid task

• Fix network parameters and compare the network to neural 
data

• Easier than “pure neural fitting” b/c collecting millions of 
human-labeled images is easier than obtaining comparable 
neural data



Key Questions

• Do such top-down goals – tasks – constrain biological 
structure?

• Will performance optimization be sufficient to cause 
intermediate units in the network to behave like neurons?



“Neural-like” models via 
performance optimization 

classifiers on the IT neural population (Fig. 2B, green bars) and
the V4 neural population (n= 128, hatched green bars). To ex-
pose a key axis of recognition difficulty, we computed perfor-
mance results at three levels of object view variation, from low
(fixed orientation, size, and position) to high (180° rotations on
all axes, 2.5× dilation, and full-frame translations; Fig. S1A). As
a behavioral reference point, we also measured human perfor-
mance on these tasks using web-based crowdsourcing methods
(black bars). A crucial observation is that at all levels of variation,
the IT population tracks human performance levels, consistent with
known results about IT’s high category decoding abilities (11, 12).
The V4 population matches IT and human performance at low
levels of variation, but performance drops quickly at higher varia-
tion levels. (This V4-to-IT performance gap remains nearly as large
even for images with no object translation variation, showing that
the performance gap is not due just to IT’s larger receptive fields.)
As a computational reference, we used the same procedure to

evaluate a variety of published ventral stream models targeting
several levels of the ventral hierarchy. To control for low-level
confounds, we tested the (trivial) pixel model, as well as SIFT,
a simple baseline computer vision model (30). We also evaluated
a V1-like Gabor-based model (25), a V2-like conjunction-of-
Gabors model (31), and HMAX (17, 28), a model targeted at
explaining higher ventral cortex and that has receptive field sizes

similar to those observed in IT. The HMAX model can be trained
in a domain-specific fashion, and to give it the best chance of
success, we performed this training using the benchmark images
themselves (see SI Text for more information on the comparison
models). Like V4, the control models that we tested approach IT
and human performance levels in the low-variation condition, but
in the high-variation condition, all of them fail to match the per-
formance of IT units by a large margin. It is not surprising that V1
and V2 models are not nearly as effective as IT, but it is instructive
to note that the task is sufficiently difficult that the HMAX model
performs less well than the V4 population sample, even when
pretrained directly on the test dataset.

Constructing a High-Performing Model. Although simple three-
layer hierarchical CNNs can be effective at low-variation object
recognition tasks, recent work has shown that they may be lim-
ited in their performance capacity for higher-variation tasks (9).
For this reason, we extended our model class to contain com-
binations (e.g., mixtures) of deeper CNN networks (Fig. S2B),
which correspond intuitively to architecturally specialized sub-
regions like those observed in the ventral visual stream (13, 32).
To address the significant computational challenge of finding es-
pecially high-performing architectures within this large space of
possible networks, we used hierarchical modular optimization
(HMO). The HMO procedure embodies a conceptually simple
hypothesis for how high-performing combinations of functionally
specialized hierarchical architectures can be efficiently discov-
ered and hierarchically combined, without needing to prespecify
the subtasks ahead of time. Algorithmically, HMO is analogous
to an adaptive boosting procedure (33) interleaved with hyper-
parameter optimization (see SI Text and Fig. S2C).
As a pretraining step, we applied the HMO selection pro-

cedure on a screening task (Fig. S1B). Like the testing set, the
screening set contained images of objects placed on randomly
selected backgrounds, but used entirely different objects in to-
tally nonoverlapping semantic categories, with none of the same
backgrounds and widely divergent lighting conditions and noise
levels. Like any two samples of naturalistic images, the screening
and testing images have high-level commonalities but quite dif-
ferent semantic content. For this reason, performance increases
that transfer between them are likely to also transfer to other
naturalistic image sets. Via this pretraining, the HMO procedure
identified a four-layer CNN with 1,250 top-level outputs (Figs.
S2B and S5), which we will refer to as the HMO model.
Using the same classifier training protocol as with the neural

data and control models, we then tested the HMO model to
determine whether its performance transferred from the screening
to the testing image set. In fact, the HMO model matched the
object recognition performance of the IT neural sample (Fig. 2B,
red bars), even when faced with large amounts of variation—
a hallmark of human object recognition ability (1). These per-
formance results are robust to the number of training examples
and number of sampled model neurons, across a variety of distinct
recognition tasks (Figs. S6 and S7).

Predicting Neural Responses in Individual IT Neural Sites. Given that
the HMO model had plausible performance characteristics, we
then measured its IT predictivity, both for the top layer and each
of the three intermediate layers (Fig. 3, red lines/bars). We found
that each successive layer predicted IT units increasingly well,
demonstrating that the trend identified in Fig. 1A continues to
hold in higher performance regimes and across a wide range of
model complexities (Fig. 1B). Qualitatively examining the spe-
cific predictions for individual images, the model layers show
that category selectivity and tolerance to more drastic image
transformations emerges gradually along the hierarchy (Fig. 3A,
top four rows). At lower layers, model units predict IT responses
only at a limited range of object poses and positions. At higher
layers, variation tolerance grows while category selectivity develops,
suggesting that as more explicit “untangled” object recognition
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Fig. 2. Neural-like models via performance optimization. (A) We (1) used
high-throughput computational methods to optimize the parameters of
a hierarchical CNN with linear-nonlinear (LN) layers for performance on a
challenging invariant object recognition task. Using new test images distinct
from those used to optimize the model, we then (2) compared output of each
of the model’s layers to IT neural responses and the output of intermediate
layers to V4 neural responses. To obtain neural data for comparison, we used
chronically implanted multielectrode arrays to record the responses of mul-
tiunit sites in IT and V4, obtaining the mean visually evoked response of each
of 296 neural sites to ∼6,000 complex images. (B) Object categorization
performance results on the test images for eight-way object categorization at
three increasing levels of object view variation (y axis units are 8-way cate-
gorization percent-correct, chance is 12.5%). IT (green bars) and V4 (hatched
green bars) neural responses, and computational models (gray and red bars)
were collected on the same image set and used to train support vector ma-
chine (SVM) linear classifiers from which population performance accuracy
was evaluated. Error bars are computed over train/test image splits. Human
subject responses on the same tasks were collected via psychophysics experi-
ments (black bars); error bars are due to intersubject variation.
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Model Performance/IT-
Predictivity Correlation

Results
Invariant Object Recognition Performance Strongly Correlates with IT
Neural Predictivity. We first measured IT neural responses on a
benchmark testing image set that exposes key performance
characteristics of visual representations (24). This image set
consists of 5,760 images of photorealistic 3D objects drawn from
eight natural categories (animals, boats, cars, chairs, faces, fruits,
planes, and tables) and contains high levels of the object posi-
tion, scale, and pose variation that make recognition difficult for
artificial vision systems, but to which humans are robustly tol-
erant (1, 25). The objects are placed on cluttered natural scenes
that are randomly selected to ensure background content is un-
correlated with object identity (Fig. S1A).
Using multiple electrode arrays, we collected responses from

168 IT neurons to each image. We then used high-throughput
computational methods to evaluate thousands of candidate
neural network models on these same images, measuring object
categorization performance as well as IT neural predictivity
for each model (Fig. 1A; each point represents a distinct model).
To measure categorization performance, we trained support
vector machine (SVM) linear classifiers on model output layer
units (11) and computed cross-validated testing accuracy for
these trained classifiers. To assess models’ neural predictivity, we
used a standard linear regression methodology (10, 26, 27): for
each target IT neural site, we identified a synthetic neuron
composed of a linear weighting of model outputs that would best
match that site on fixed sample images and then tested re-
sponse predictions against actual neural site’s output on novel
images (Materials and Methods and SI Text).
Models were drawn from a large parameter space of con-

volutional neural networks (CNNs) expressing an inclusive ver-
sion of the hierarchical processing concept (17, 18, 20, 28). CNNs
approximate the general retinotopic organization of the ventral
stream via spatial convolution, with computations in any one
region of the visual field identical to those elsewhere. Each
convolutional layer is composed of simple and neuronally plau-
sible basic operations, including linear filtering, thresholding,
pooling, and normalization (Fig. S2A). These layers are stacked
hierarchically to construct deep neural networks.
Each model is specified by a set of 57 parameters controlling

the number of layers and parameters at each layer, fan-in and
fan-out, activation thresholds, pooling exponents, and local
receptive field sizes at each layer. Network depth ranged from
one to three layers, and filter weights for each layer were chosen
randomly from bounded uniform distributions whose bounds were
model parameters (SI Text). These models are consistent with
the Hierarchical Linear-Nonlinear (HLN) hypothesis that higher
level neurons (e.g., IT) output a linear weighting of inputs from

intermediate-level (e.g., V4) neurons followed by simple addi-
tional nonlinearities (14, 16, 29).
Models were selected for evaluation by one of three proce-

dures: (i) random sampling of the uniform distribution over
parameter space (Fig. 1A; n = 2,016, green dots); (ii) opti-
mization for performance on the high-variation eight-way cate-
gorization task (n = 2,043, blue dots); and (iii) optimization
directly for IT neural predictivity (n = 1,876, orange dots; also
see SI Text and Fig. S3). In each case, we observed significant
variation in both performance and IT predictivity across the
parameter range. Thus, although the HLN hypothesis is consis-
tent with a broad spectrum of particular neural network archi-
tectures, specific parameter choices have a large effect on a given
model’s recognition performance and neural predictivity.
Performance was significantly correlated with neural pre-

dictivity in all three selection regimes. Models that performed
better on the categorization task were also more likely to pro-
duce outputs more closely aligned to IT neural responses. Al-
though the class of HLN-consistent architectures contains many
neurally inconsistent architectures with low IT predictivity, per-
formance provides a meaningful way to a priori rule out many
of those inconsistent models. No individual model parameters
correlated nearly as strongly with IT predictivity as performance
(Fig. S4), indicating that the performance/IT predictivity corre-
lation cannot be explained by simpler mechanistic considerations
(e.g., receptive field size of the top layer).
Critically, directed optimization for performance significantly

increased the correlation with IT predictivity compared with the
random selection regime (r= 0:78 vs. r= 0:55), even though
neural data were not used in the optimization. Moreover, when
optimizing for performance, the best-performing models pre-
dicted neural output as well as those models directly selected for
neural predictivity, although the reverse is not true. Together,
these results imply that, although the IT predictivity metric is
a complex function of the model parameter landscape, performance
optimization is an efficient means to identify regions in parameter
space containing IT-like models.

IT Cortex as a Neural Performance Target. Fig. 1A suggests a next
step toward improved encoding models of higher ventral cortex:
drive models further to the right along the x axis—if the corre-
lation holds, the models will also climb on the y axis. Ideally, this
would involve identifying hierarchical neural networks that per-
form at or near human object recognition performance levels
and validating them using rigorous tests against neural data
(Fig. 2A). However, the difficulty of meeting the performance
challenge itself can be seen in Fig. 2B. To obtain neural refer-
ence points on categorization performance, we trained linear
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IT Neural Predictions

features are generated at each stage, the representations be-
come increasingly IT-like (9).
Critically, we found that the top layer of the high-performing

HMO model achieves high predictivity for individual IT neural
sites, predicting 48:5± 1:3% of the explainable IT neuronal
variance (Fig. 3 B and C). This represents a nearly 100% im-
provement over the best comparison models and is comparable
to the prediction accuracy of state-of-the-art models of lower-
level ventral areas such as V1 on complex stimuli (10). In com-
parison, although the HMAX model was better at predicting IT
responses than baseline V1 or SIFT, it was not significantly
different from the V2-like model.
To control for how much neural predictivity should be

expected from any algorithm with high categorization perfor-
mance, we assessed semantic ideal observers (34), including
a hypothetical model that has perfect access to all category
labels. The ideal observers do predict IT units above chance level
(Fig. 3C, left two bars), consistent with the observation that IT
neurons are partially categorical. However, the ideal observers
are significantly less predictive than the HMO model, showing
that high IT predictivity does not automatically follow from
category selectivity and that there is significant noncategorical
structure in IT responses attributable to intrinsic aspects of hi-
erarchical network structure (Fig. 3A, last row). These results
suggest that high categorization performance and the hierar-
chical model architecture class work in concert to produce IT-
like populations, and neither of these constraints is sufficient on
its own to do so.

Population Representation Similarity. Characterizing the IT neural
representation at the population level may be equally important
for understanding object visual representation as individual IT
neural sites. The representation dissimilarity matrix (RDM) is a

convenient tool comparing two representations on a common
stimulus set in a task-independent manner (4, 35). Each entry in
the RDM corresponds to one stimulus pair, with high/low values
indicating that the population as a whole treats the pair stimuli
as very different/similar. Taken over the whole stimulus set, the
RDM characterizes the layout of the images in the high-
dimensional neural population space. When images are ordered
by category, the RDM for the measured IT neural population
(Fig. 4A) exhibits clear block-diagonal structure—associated
with IT’s exceptionally high categorization performance—as well
as off-diagonal structure that characterizes the IT neural repre-
sentation more finely than any single performance metric (Fig.
4A and Fig. S8). We found that the neural population predicted
by the output layer of the HMOmodel had very high similarity to
the actual IT population structure, close to the split-half noise
ceiling of the IT population (Fig. 4B). This implies that much of
the residual variance unexplained at the single-site level may not
be relevant for object recognition in the IT population level code.
We also performed two stronger tests of generalization: (i)

object-level generalization, in which the regressor training set
contained images of only 32 object exemplars (four in each of
eight categories), with RDMs assessed only on the remaining 32
objects, and (ii) category-level generalization, in which the re-
gressor sample set contained images of only half the categories
but RDMs were assessed only on images of the other categories
(see Figs. S8 and S9). We found that the prediction generalizes
robustly, capturing the IT population’s layout for images of
completely novel objects and categories (Fig. 4 B and C and
Fig. S8).

Predicting Responses in V4 from Intermediate Model Layers. Cortical
area V4 is the dominant cortical input to IT, and the neural
representation in V4 is known to be significantly less categorical
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sponse (black trace) vs. model predictions (colored
trace) for three individual IT neural sites. The x axis
in each plot shows 1,600 test images sorted first by
category identity and then by variation amount,
with more drastic image transformations toward the
right within each category block. The y axis repre-
sents the prediction/response magnitude of the
neural site for each test image (those not used to fit
the model). Two of the units show selectivity for
specific classes of objects, namely chairs (Left) and
faces (Center), whereas the third (Right) exhibits
a wider variety of image preferences. The four top
rows show neural predictions using the visual fea-
ture set (i.e., units sampled) from each of the four
layers of the HMO model, whereas the lower rows
show the those of control models. (B) Distributions
of model explained variance percentage, over the
population of all measured IT sites (n = 168). Yellow
dotted line indicates distribution median. (C)
Comparison of IT neural explained variance per-
centage for various models. Bar height shows me-
dian explained variance, taken over all predicted IT
units. Error bars are computed over image splits.
Colored bars are those shown in A and B, whereas
gray bars are additional comparisons.
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Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s TA, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.

Khaligh-Razavi & Kriegeskorte



Do deep networks and humans 
perform this sort of task in the 
same way?
Two important differences:

1. People learn from fewer examples

2. People learn “richer” representations
§ Decomposable into parts
§ Learn a concept that can be flexibly applied

• Generate new examples
• Parse an object into parts and their relations
• Generalize to new instances of the overall class



Duh. The particular model being tested did not have 
general world knowledge/context – it only was intended to 
perform captioning using simple object and scene labeling 
(~semantics)



Ponce et al.

A) Used pre-trained deep 
generative network (Dosovitskiy
and Brox, 2016)

B) Random textures

C) Animals fixated while images 
were presented

D) Neuronal responses were used 
to select top 10 images from prior 
generation plus 30 new, generated 
codes

250 generations



Evolution of preferred units 
for the network
■ Validation of the method within the artificial 

neural network
– Models of biological neurons?

■ “Super Stimuli” for units within the network
– Most evolved images activated artificial 

units more strongly than all of 1.4+ 
million images in ImageNet

■ Network can recover the preferred
stimuli of units constructed to have a
single preferred image 

Layer 1

fc8

four
layers,

100 random
units



Evolution of preferred stimuli 
by one biological neuron (PIT)

(A) Mean response to synthetic (black) and reference 
(green) images for every generation (spikes per s ± SEM).

(B) Last-generation images evolved during three 
independent evolution experiments; the leftmost image 
corresponds to the evolution in (A); the other two 
evolutions were carried out on the same single unit on 
different days. Left half of each image is the contralateral 
visual field for this recording site. Average of the top 5 
images from the final generation. 

(C) The top 10 images from this image set for this neuron.

(D) The worst 10 images from this image set for this 
neuron.

(E) The selectivity of this neuron to different image 
categories (2,550 natural images plus selected synthetic 
images). Early = best image from each of the first 10 
generations; Late = last 10. Average over 10–12 
repeated presentations.



Evolution of preferred stimuli 
in other neurons

46 evolution experiments on single- and 
multi-unit sites in IT on six different monkeys

Synthetic images consistently evolved to 
become increasingly effective stimuli; firing 
rate change (A)

Neurons’ maximum responses to natural 
versus evolved images were significantly 
different (B)

Histogram of response magnitudes for PIT 
cell Ri-10 to the top synthetic image in each 
of the 210 generations and responses to 
each of the 2,550 natural images (C)

(D) One of the instances where natural 
images evoked stronger responses than did 
synthetic images



Evolution of preferred stimuli 
in other neurons

Each pair of 
images shows the 

last-generation 
synthetic images 

from two 
independent 

experiments for a 
single recording 

site.

To the right are the 
top 10 images for 

each neuron from a 
natural image set. 



Neural population control via deep image synthesis 
Bashivan, Kar, & DiCarlo (2019)

Although there are an extremely large number
of possible neural activity states that an experi-
menter might ask a controller method to try to
achieve, we restricted our experiments to the V4
spiking activity 70 to 170 ms after retinal power
input (the time frame where the ANNmodels are
presumed to bemost accurate), andwe have thus
far tested two control settings: stretch control
and one-hot-population control (see below). To
test and quantify the goodness of control, we ap-
plied patterns of luminous power specified by the
synthesized controller images to the retinae of the
animal subjects while we recorded the responses
of the same V4 neural sites (see methods).
Each experimental manipulation of the pat-

tern of luminous power on the retinae is col-
loquially referred to as “presentation of an
image.”However, here we state the precisemani-
pulation of applied power that is under experi-

menter control and fully randomized with other
applied luminous power patterns (other images)
to emphasize that this is logically identical to
more direct energy application (e.g., optogenetic
experiments) in that the goodness of experi-
mental control is inferred from the correlation
between power manipulation and the neural re-
sponse in exactly the sameway in both cases [see
(11) for review]. The only difference between the
two approaches is the assumedmechanisms that
intervene between the experimentally controlled
power and the controlled dependent variable
(here, V4 spiking rate). These are steps that the
ANN model aims to approximate with stacked
synaptic sums, threshold nonlinearities, and nor-
malization circuits. In both the control cases pres-
ented here and the optogenetics control case,
these intervening steps are not fully known but
are approximated by a model of some type; that

is, neither experiment is “only correlational” be-
cause causality is inferred from experimenter-
delivered, experimenter-randomized application
of power to the system.
Because each experiment was performed over

separate days of recording (1 day to build all the
predictor models, 1 day to test control), only
neural sites that maintained both a high signal-
to-noise ratio and a consistent rank order of
responses to a standard set of 25 naturalistic
images across the two experimental days were
considered further (nM = 38, nN = 19, and nS = 19
for stretch experiments; nM = 38 and nS = 19 for
one-hot-population experiments; see methods).

Stretch control: Attempt to maximize
the activity of individual V4 neural sites

We first defined each V4 site’s “naturally ob-
served maximal firing rate” as that which was

Bashivan et al., Science 364, eaav9436 (2019) 3 May 2019 2 of 11
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Fig. 1. Overview of the synthesis procedure. (A) Schematic illustration of
the two tested control scenarios. Left: The controller algorithm synthesizes
novel images that it believes will maximally drive the firing rate of a target
neural site (stretch). In this case, the controller algorithm does not attempt to
regulate the activity of other measured neurons (e.g., they might also
increase as shown). Right: The controller algorithm synthesizes images that it
believes will maximally drive the firing rate of a target neural site while
suppressing the activity of other measured neural sites (one-hot population).
(B) Top: Responses of a single example V4 neural site to 640 naturalistic
images (averaged over ~40 repetitions for each image) are represented by
overlapping gray lines; black line at upper left denotes the image presentation
period. Bottom: Raster plots of highest and lowest neural responses to
naturalistic images, corresponding to the black and purple lines in the
top panel, respectively. The shaded area indicates the time window over

which the activity level of each V4 neural site is computed (i.e., one value
per image for each neural site). (C) The neural control experiments are
done in four steps: (1) Parameters of the neural network are optimized by
training on a large set of labeled natural images [Imagenet (35)] and then
held constant thereafter. (2) ANN “neurons” are mapped to each recorded
V4 neural site. The mapping function constitutes an image-computable
predictive model of the activity of each of these V4 sites. (3) The resulting
differentiable model is then used to synthesize “controller” images for either
single-site or population control. (4) The luminous power patterns specified
by these images are then applied by the experimenter to the subject’s retinae,
and the degree of control of the neural sites is measured. AIT, anterior
inferior temporal cortex; CIT, central inferior temporal cortex; PIT, posterior
inferior temporal cortex. (D) Classical receptive fields of neural sites in
monkey M (black), monkey N (red), and monkey S (blue; see methods).
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The neural control experiments are done in four steps.
(1) Parameters of the neural network are optimized by training on a large set of labeled natural 

images (Imagenet) and then held constant thereafter.
(2) ANN “neurons” are mapped to each recorded V4 neural site. The mapping function 

constitutes an image-computable predictive model of the activity of each of those V4 sites.
(3) The resulting differentiable model is then used to synthesize “controller” images for either 

single-site or population control.
(4) The luminous power patterns specified by these images are then applied by the 

experimenter to the subject’s retinae and the degree of control of the neural sites is 
measured. 



Why should computer scientists and brain 
scientists talk?

■ Theory – how do we understand the principles of computation 
in biological systems?

■ Implementation – how do we build intelligent machines?

■ Simulation – how do we understand emergent phenomena in 
complex systems?

■ Data – how do we uncover regularities in large-scale data?



Humans are falliable



Cautionary quotes

■ To substitute an ill-understood model of the world for the ill-
understood world is not progress. 
— P. J. Richerson and R. Boyd in The Latest on the Best, Dupré
(ed.) 

■ Tarr’s coda on this: 
To substitute a bad model of the world for the ill-understood 
world is also not progress.


