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Different kinds of Al (in
practice)

1. Al that maximizes performance
-  e.g., diagnosing disease - learns and applies knowledge humans might not
typically learn/apply - “who cares if it does it like humans or not”
2. Al that is meant to simulate (to better understand) cognitive or biological processes

- e.g., PDP - specifically constructed so as to reveal aspects of how biological
systems learn/reason/etc. — understanding at the neural or cognitive levels (or

both)
3. Al that performs well and helps understand cognitive or biological processes
- e.g., Deep learning models (cf. Yamins/DiCarlo) — “representational learning”

4. Al that is specifically designed to predict human performance/preference

- e.g., Google/Netflix/etc. - only useful if it predicts what humans actually do or
want



A Bit More on Deep Learning

e Typically relies on supervised learning — 1,000,000’s of labeled inputs

 Labels are a metric of human performance - so long as the network learns the
correct input->label mapping, it will perform “well” by this metric

*  However, the network can’t do better than the labels

*  Features might exist in the input that would improve performance, but
unless those features are sometimes correctly labeled, the model won’t
learn that feature to output mapping

* The network can reduce misses, but it can’t discover new mappings unless there
are existing further correlations between input->labels in the trained data

So Deep Neural Networks tend to be very good at the kinds of Al that predicts
human performance (#4) and that maximize performance (#1), but the jury is
still out on Al that performs well and helps us understand biological intelligence
(#3); might also be used for simulation of biological intelligence (#2)




Some Numbers (ack)

* Retinal input (~108 photoreceptors) undergoes a 100:1 data _
compression, so that only 10° samples are transmitted by the optic
nerve to the LGN

« From LGN to V1, there is almost a 400:1 data expansion, followed
by some data compression from V1 to V4

* From this point onwards, along the ventral cortical stream, the
number of samples increases once again, with at least ~10°
neurons in so-called “higher-level” visual areas

 Neurophysiology of V1->V4 suggests a feature hierarchy, but even
V1 is subject to the influence of feedback circuits - there are ~2x
feedback connections as feedforward connections in human visual
cortex

* Entire human brain is about ~10'* neurons with ~10% synapses
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Ways of collecting brain data

m Brain Parts List - Define all the types of neurons in the brain
m Connectome - Determine the connection matrix of the brain

m Brain Activity Map - Record the activity of all neurons at msec
precision (“functional”)
- Record from individual neurons
- Record aggregate responses from 1,000,000’s of neurons

m Behavior Prediction/Analysis - Build predictive models of complex
networks or complex behavior

m Potential Connections to a variety of other data sources, including
genomics, proteomics, behavioral economics




Neuroimaging Challenges

m Expensive

m Lack of power - both in number of observations (1000’s at
best) and number of individuals (100’s at best)

m Variation - aligning structural or functional brain maps across
different individuals

m Analysis - high-dimensional data sets with unknown structure

m Tradeoffs between spatial and temporal resolution and
invasiveness



Tradeoffs in neuroimaging
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Background

m Thereis a long-standing, underlying assumption that vision is
compositional

- “High-level” representations (e.g., objects) are comprised of
separable parts (“building blocks”)

— Parts can be recombined to represent different things

- Parts are the consequence of a progressive hierarchy of increasing
complex features comprised of combinations of simpler features

m Visual neuroscience has often focused on the nature of such features
- Both intermediate (e.g., V4) and higher-level (e.g., IT)
— Toilet brushes
- Image reduction
- Genetic algorithms




Tanaka (2003) used an image reduction method to isolate
“critical features” (physiology)
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Figure 1. Examples of reductive determination of optimal features for 12 TE cells. The images to the left of the arrows represent the original images of the most effective object
stimulus and those to the right of the arrows, the critical features determined by the reduction.



Woloszyn and Sheinberg (2012)
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Frustrating Progress

m Few, if any, studies have made much progress in illuminating the building
blocks of vision

- Some progress at the level of V47?

- Almost no progress at the level of IT - Typical account of neural
selectivity is in terms of:

m Reified categories - face patches - functional selectivity of neurons
or neural regions is defined in terms of the category for which it
seems most preferential

- Ignores the relatively gentle similarity gradient

- Ignores the failure to conduct an adequate search of the space
m Features that do not seem to support generalization/composition

- Fail on ocular inspection and any computational predictions

- Again ignores the failure to conduct an adequate search of the
space




What to do?

m Collect much more data - across millions of different images and
millions of neurons

m Better search algorithms based on real-time feedback

m Run simulations of a vision system
- Align task(s) with biological vision systems
- Align architecture with biological vision systems
- Must be high performing (or what is the point?)

— Explore the functional features that emerge from the
simulation

m Not much progress on this front until recently...CNNs/Deep
Networks
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HCNNs are good candidates for models of
the ventral visual pathway

Yamins § picarlo




Goal-Driven Networks as
Neural Models

whatever parameters are used, a neural network will have to be
effective at solving the behavioral tasks the sensory system
supports to be a correct model of a given sensory system

S0... advances in computer vision, etc. that have led to high-
performing systems - that solve behavioral tasks nearly as
effectively as we do - could be correct models of neural
mechanisms

conversely, models that are ineffective at a given task are
unlikely to ever do a good job at characterizing neural
mechanisms



Approach

 Optimize network parameters for performance on a reasonable,
ecologically—valid task

* Fix network parameters and compare the network to neural
data

 Easier than “pure neural fitting” b/c collecting millions of
human-labeled images is easier than obtaining comparable
neural data




Key Questions

* Do such top-down goals - tasks - constrain biological
structure?

 Will performance optimization be sufficient to cause
intermediate units in the network to behave like neurons?




“Neural-like” models via
erformance optimization

Behavioral Tasks
e.g. Trees vs non-Trees
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IT Neural Predictions
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Human fMRI

e Human V1-V3 Human IT
Human IT (fMRI) HCNN model
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Do deep networks and humans
perform this sort of task in the
same way?

Two important differences:

1. People learn from fewer examples

2. People learn “richer” representations
=  Decomposable into parts
= [earn a concept that can be flexibly applied
« (Generate new examples

 Parse an object into parts and their relations
. Generalize to new instances of the overall class




Duh. The particular model being tested did not have
general world knowledge/context - it only was intended to
perform captioning using simple object and scene labeling

(~semantics)

a woman riding a horse on a an airplane is parked on the a group of people standing on
dirt road tarmac at an airport top of a beach




Ponce et al.
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Evolution of preferred units

for the network

Validation of the method within the artificial
neural network

— Models of biological neurons?

“Super Stimuli” for units within the network

- Most evolved images activated artificial
units more strongly than all of 1.4+
million images in ImageNet

Network can recover the preferred
stimuli of units constructed to have a
srngle preferred |mage
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Evolution of preferred stimul
by one biological neuron (PIT)

(A) Mean response to synthetic (black) and reference
(green) images for every generation (spikes per s + SEM).

(B) Last-generation images evolved during three
independent evolution experiments; the leftmost image
corresponds to the evolution in (A); the other two
evolutions were carried out on the same single unit on
different days. Left half of each image is the contralateral
visual field for this recording site. Average of the top 5
images from the final generation.

(C) The top 10 images from this image set for this neuron.

(D) The worst 10 images from this image set for this
neuron.

(E) The selectivity of this neuron to different image
categories (2,550 natural images plus selected synthetic
images). Early = best image from each of the first 10
generations; Late = last 10. Average over 10-12
repeated presentations.
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Evolution of preferred stimul
in other neurons
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Evolution of preferred stimul
in other neurons

Evolved images Top 10 natural images EvoI edi images Top 10 natural images

Each pair of
images shows the
last-generation
synthetic images
from two
independent
experiments for a
single recording
site.
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To the right are the
top 10 images for
each neuron from a
natural image set.

Ge15 (PIT)  Ge-17 (PIT)  Gu-21 (PIT) _ Ge-7 (CIT)




Neural population control via deep image synthesis
Bashivan, Kar, & DiCarlo (2019)
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The neural control experiments are done in four steps.

(1) Parameters of the neural network are optimized by training on a large set of labeled natural
images (Imagenet) and then held constant thereafter.

(2) ANN “neurons” are mapped to each recorded V4 neural site. The mapping function
constitutes an image-computable predictive model of the activity of each of those V4 sites.

(8) The resulting differentiable model is then used to synthesize “controller” images for either
single-site or population control.

(4) The luminous power patterns specified by these images are then applied by the
experimenter to the subject’s retinae and the degree of control of the neural sites is
measured.



Why should computer scientists and brain
scientists talk?

m Theory - how do we understand the principles of computation
in biological systems?

m Implementation - how do we build intelligent machines?

m Simulation - how do we understand emergent phenomena in
complex systems?

m Data - how do we uncover regularities in large-scale data?



Humans are falliable




Cautionary quotes

m o substitute an ill-understood model of the world for the ill-
understood world is not progress.
— P. J. Richerson and R. Boyd in The Latest on the Best, Dupré
(ed.)

m larr’'s coda on this:
To substitute a bad model of the world for the ill-understood
world is also not progress.




