
Neural Networks
Learning the network: Backprop

11-785, Spring 2020
Lecture 4

1



Recap: The MLP can represent any 
function

• The MLP can be constructed to represent anything
• But how do we construct it?

– I.e. how do we determine the weights (and biases) of the network to 
best represent a target function
• Assuming that the architecture of the network is given 2



Recap: How to learn the function

• By minimizing expected error
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Recap: Sampling the function

• is unknown, so sample it
– Basically, get input-output pairs for a number of samples of 

input 

– Good sampling: the samples of will be drawn from 

• Estimate function from the samples
4
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The Empirical risk

• The empirical estimate of the expected error is the average error over the samples

 

்

ୀଵ

• This approximation is an unbiased estimate of the expected divergence that we 
actually want to estimate
– We can hope that minimizing the empirical loss will minimize the true loss
– Caveat:  This hope is generally not based on anything but, well, hope.. 5
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Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:   

– Empirical average error on all training data:

 

 



• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 6



Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:   

– Empirical average error on all training data:

 

 



• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 7

This is an instance of 
function minimization
(optimization)



• A CRASH COURSE ON FUNCTION 
OPTIMIZATION
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The problem of optimization

• General problem of 
optimization: find 
the value of x where 
f(x) is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum
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Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum? 
10
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Turning Points
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• Both maxima and minima have zero derivative

• Both are turning points



Derivatives of a curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)



Derivative of the derivative of the 
curve
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• Both maxima and minima are turning points
• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and 
+ve at minima!

xf(x)

f ’(x)
f ’’(x)



Soln: Finding the minimum or 
maximum of a function

• Find the value at which = 0:    Solve

• The solution ௦ is a turning point
• Check the double derivative at ௦ : compute

ᇱᇱ
௦

௦

• If ᇱᇱ
௦ is positive ௦ is a minimum, otherwise it is a maximum

14

x

f(x)



A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables

15

Critical points

Derivative is 0

maximum

minimum

Inflection point



A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables..
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What about functions of multiple 
variables?

• The optimum point is still  “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic 
amount will not change the value of the function
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Gradient
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Gradient
vector 

𝑇

The gradient is the direction of fastest increase of the function



Gradient
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Gradient
vector 

𝑇

Moving in this 
direction increases 

fastest



Gradient
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Gradient
vector 

𝑇

Moving in this 
direction increases 

fastest


𝑇

Moving in this 
direction decreases 

fastest



Gradient
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Gradient here
is 0

Gradient here
is 0



Properties of Gradient: 2

• The gradient vector 
𝑇 is perpendicular to the level curve
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The Hessian
• The Hessian of a function is 

given by the second derivative 

23
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Finding the minimum of a scalar 
function of a multi-variate input

• The optimum point is a turning point – the 
gradient will be 0
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Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the derivative (or gradient) 
equals to zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that
– Hessian is positive definite (eigenvalues positive)  -> to 

identify local minima 
– Hessian is negative definite (eigenvalues negative) -> to 

identify local maxima

25
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
26
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Iterative solutions

• Iterative solutions
– Start from an initial guess  for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be

27
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The Approach of Gradient Descent

• Iterative solution:  
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A positive derivative moving left decreases error
– A negative derivative moving right decreases error

– Shift point in this direction
28



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• If ᇱ  is positive:
𝑥ାଵ = 𝑥 − 𝑠𝑡𝑒𝑝

• Else
𝑥ାଵ = 𝑥 + 𝑠𝑡𝑒𝑝
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The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• Identical to previous algorithm
30



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• is the “step size”
31



Gradient descent/ascent (multivariate) 

• The gradient descent/ascent method to find the 
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the 

gradient

– To find a minimum move exactly opposite the 
direction of the gradient

• Many solutions to choosing step size 
32



Gradient descent convergence criteria 

• The gradient descent algorithm converges 
when one of the following criteria is satisfied

• Or

33

f (xk+1)- f (xk ) <e1
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Overall Gradient Descent Algorithm

• Initialize: 




• do





• while 
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Convergence of Gradient Descent
• For appropriate step 

size, for convex (bowl-
shaped) functions 
gradient descent will 
always find the 
minimum.

• For non-convex 
functions it will find a 
local minimum or an 
inflection point

35



• Returning to our problem..

36



Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization

37



Preliminaries

• Before we proceed: the problem setup

38



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

39

What are these input-output pairs?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

40

What are these input-output pairs?

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

41

What are these input-output pairs?

What is f() and 
what are its 
parameters W?

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

42

What is f() and 
what are its 
parameters W?



What is f()? Typical network

• Multi-layer perceptron

• A directed network with a set of inputs and 
outputs
– No loops

43

Input
units Output

units

Hidden units



Typical network

• We assume a “layered” network for simplicity
– Each “layer” of neurons only gets inputs from the earlier layer(s) 

and outputs signals only to later layer(s)
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer
– Intermediate layers are “hidden” layers 44

Input
Layer Output

Layer

Hidden Layers



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A differentiable activation function applied to an 

affine combination of the inputs

𝑦 = 𝑓  𝑤

 



𝑥 + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 45



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A differentiable activation function applied to an 

affine combination of the input

𝑦 = 𝑓  𝑤

 



𝑥 + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 46

We will assume this
unless otherwise
specified

Parameters are weights
 and bias 



Activations and their derivatives

• Some popular activation functions and their 
derivatives 47
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Vector Activations

• We can also have neurons that have multiple coupled 
outputs

– Function operates on set of inputs to produce set of 
outputs

– Modifying a single parameter in will affect all outputs
48
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Vector activation example: Softmax

• Example: Softmax vector activation

49
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Parameters are 
weights 
and bias



Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
50
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Parameters are 
weights 
and bias



Typical network

• In a layered network, each layer of 
perceptrons can be viewed as a single vector 
activation

51
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Layer Output
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Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as 
()

– Input to network: 
()



– Output of network:   
(ே)

• We will represent the weight of the connection between the i-th unit of 
the k-1th layer and the jth unit of the k-th layer as 

()

– The bias to the jth unit of the k-th layer is 
()

52
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

53

What are these input-output pairs?



Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

•  ଵ ଶ  is the nth input vector
•  ଵ ଶ  is the nth desired output
•  ଵ ଶ  is the nth vector of actual outputs of the 

network
• We will sometimes drop the first subscript when referring to a specific 

instance
54
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Representing the input

• Vectors of numbers 
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
55
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Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the 
desired output
• d = [d1 d2 .. dL] (vector of real values)

56
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Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

57



Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X 
may occur for both classes, but with different probabilities

• Is differentiable 58

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭



Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired 
output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two outputs, one representing the desired output, the other 
representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

• The output explicitly becomes a 2-output softmax

59



Multi-class output: One-hot 
representations

• Consider a network that must distinguish if an input is a cat, a dog, a 
camel, a hat, or a flower

• We can represent this set as the following vector:
[cat  dog  camel  hat flower]T

• For inputs of each of the five classes the desired output is:
cat:  [1 0 0 0 0] T

dog:   [0 1 0 0 0] T

camel:   [0 0 1 0 0] T

hat:   [0 0 0 1 0] T

flower:  [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output 
with four zeros and a single 1 at the position of that class

• This is a one hot vector

60



Multi-class networks

• For a multi-class classifier with N classes, the one-hot 
representation will have N binary target outputs ( )
– An N-dimensional binary vector

• The neural network’s output too must ideally be binary (N-1 zeros 
and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

61

Input
Layer Output

Layer

Hidden Layers



Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class 
classifier nets

 
()


(ିଵ)

 







 


• This can be viewed as the probability 
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Typical Problem Statement

• We are given a number of “training” data instances
• E.g. images of digits, along with information about 

which digit the image represents
• Tasks:

– Binary recognition:   Is this a “2” or not
– Multi-class recognition:  Which digit is this? Is this a digit in 

the first place?
63



Typical Problem statement: 
binary classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

64
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Typical Problem statement: 
multiclass classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

65
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

66

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

67

What is the 
divergence div()?
Note: For Loss(W) to be differentiable 
w.r.t W,  div() must be differentiable



Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
 

ଶ

 



– Squared Euclidean distance between true and desired output
– Note:  this is differentiable


 

 ଵ ଵ ଶ ଶ
68
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For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy 
between the probability distribution and the ideal output probability 

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

69
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For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy 
between the probability distribution and the ideal output probability 

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

70

KL Div

Note:  when the 
derivative is not 0

Even though 
(minimum) when y = d



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = −  𝑑 log 𝑦 = − log 𝑦

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦
… 0 0 71

KL Div()

d1d2 d3 d4

Div

If  , the slope is
negative w.r.t. 

Indicates increasing 

will reduce divergence



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = −  𝑑 log 𝑦 = − log 𝑦

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦
… 0 0 72

KL Div()

d1d2 d3 d4

Div
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For multi-class classification

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The cross-entropy remains:

 

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1 − (𝐾 − 1)𝜖

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

73
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Div



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

74

ALL TERMS HAVE BEEN DEFINED



Problem Setup
• Given a training set of input-output pairs 

• The error on the ith instance is 
–

• The loss

• Minimize w.r.t 
75



Recap: Gradient Descent Algorithm

• Initialize: 
–

–

• do 
–  
–

• while 

11-755/18-797 76

To minimize any function f(x) w.r.t x



Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t. 
• Initialize: 

–

–

• do
– For every component 

• 
ାଵ


  డ

డ௫

–

• while 
11-755/18-797 77

Explicitly stating it by component



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights and biases 
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
78

Total training Loss:

Assuming the bias is also
represented as a weight



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights 

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
79

Total training Loss:



The derivative

• Computing the derivative

80

Total derivative:

Total training Loss:



Training by gradient descent

• Initialize all weights 
()

• Do:

– For all ,  initialize ௗ௦௦

ௗ௪
,ೕ
(ೖ)

– For all 
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute  ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

–
ௗ௦௦

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

– For every layer for all :

𝑤,
()

= 𝑤,
()

−
𝜂

𝑇

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤,
()

• Until has converged
81



The derivative

• So we must first figure out how to compute the 
derivative of divergences of individual training 
inputs

82

Total derivative:

Total training Loss:



Calculus Refresher: Basic rules of 
calculus

83

For any differentiable function

with derivative 
ௗ௬

ௗ௫

the following must hold for sufficiently small 

For any differentiable function
ଵ ଶ ெ

with partial derivatives 
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

Both by the
definition



Calculus Refresher: Chain rule

84

Check – we can confirm that :

For any nested function



Calculus Refresher: Distributed Chain 
rule

85

Check:
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Calculus Refresher: Distributed Chain 
rule
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Check:
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Distributed Chain Rule: Influence 
Diagram

• affects through each of 

87
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Distributed Chain Rule: Influence 
Diagram

• Small perturbations in cause small 
perturbations in each of each of 
which individually additively perturbs 88
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Returning to our problem

• How to compute 

89



A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons 

and inputs
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the weighted sum of inputs from the 
activation
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights and activations shown
• The overall function is differentiable w.r.t every weight, bias 

and input
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Computing the derivative for a single 
input

• Aim: compute derivative of w.r.t. each of the 
weights

• But first, lets label all our variables and activation functions
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Each yellow ellipse
represents a perceptron
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Computing the derivative for a single 
input
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Computing the gradient

• What is: 

95



Computing the gradient
• What is: 

,ೕ
(ೖ)

• Note: computation of the derivative requires intermediate 
and final output values of the network in response to the 
input
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BP: Scalar Formulation

• The network again
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Expanding it out
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ேିଵ
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y(N-1)z(N-1)
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() and 

() -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases
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Expanding it out
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Expanding it out
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Forward Computation

ITERATE FOR  k =  1:N for j = 1:layer-width
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Forward “Pass”
• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ೖషభ

ୀ

• 
()

 
()

• Output:

–
108

Dk is the size of the kth layer
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Computing derivatives

We have computed all these intermediate values in the 
forward computation

We must remember them – we will need them to compute 
the derivatives
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Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output 
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine 
combination z(N) using the chain rule
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer 
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer 

Then continue with the chain rule to compute (ಿషభ) the derivative of the 
divergence w.r.t. the output of the N-1th layer
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Computing derivatives

We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown
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Backward Gradient Computation

• Lets actually see the math..

122
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Computing derivatives
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Computing derivatives

The derivative w.r.t the actual output of the 
network is simply the derivative w.r.t to the 
output of the final layer of the network
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Computing derivatives
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Computing derivatives

Already computed
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Computing derivatives
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Computing derivatives

ே
ᇱ

ଵ
(ே)

Derivative of 
activation function

Computed in forward
pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives
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ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

Computed in forward pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே) ଵ

(ேିଵ)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே) 

(ேିଵ)


(ே)

For the bias term 
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)


(ே)

ଵ
(ேିଵ)

 

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)


(ே)

ଵ
(ேିଵ)

 

 
(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)


(ே)

ଵ
(ேିଵ)

 

 
(ே)

ଵ
(ே)

Because


(ே)

ଵ
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ) ଵ

(ே)

 

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ேିଵ) 

(ே)

 

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown


(ேିଵ) ேିଵ

ᇱ

(ேିଵ)


(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଵ) 

(ேିଶ)


(ேିଵ)

For the bias term 
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) 

(ேିଵ)

 

 
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) ேିଶ

ᇱ

(ேିଶ)


(ேିଶ)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ) 

(ଶ)

 

 
(ଶ)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ


(ଵ) ଵ

ᇱ

(ଵ)


(ଵ)



y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ


(ଵ) 

()


(ଵ)



Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient 
w.r.t  network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)


() 

ᇱ

()


()


() 

(ାଵ)

 

 
(ାଵ)


(ାଵ) 

()


(ାଵ)

Div(Y,d)



(ே)

Figure assumes, but does not show
the “1” bias nodes


(ே) 

ᇱ

(ே)


(ே)



Backward Pass
• Output layer (N) :

– For ே

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ) 


డ

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ௩

డ௭

(ೖశభ)    for ାଵ
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Backward Pass
• Output layer (N) :

– For ே

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ) 


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ௩

డ௭

(ೖశభ)    for ାଵ
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Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination 
of next layer

Backward equivalent of activation

Very analogous to the forward pass:



Backward Pass
• Output layer (N) :

– For 

• 
డ௩(,ௗ)

డ௬

(ಿ)

• 
(ே)


డ௬

(ಿ)

డ௭

(ಿ)

• For layer 
– For 

• 
()


(ାଵ) 

 
(ାଵ)

• 
()


()


ᇱ


()

•
డ௩

డ௪
ೕ
(ೖశభ) 

()

(ାଵ)for ାଵ
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Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination 
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Using notation డ௩(,ௗ)

డ௬
etc (overdot represents derivative of w.r.t variable)



For comparison: the forward pass 
again

• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ேೖ

ୀ

• 
()

 
()

• Output:

–
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Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect 

computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Will not dwell on the topic in class, but explained in slides
– Will appear in quiz.  Please read the slides
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