Neural Networks Learning the network: Backprop part 2 11-785, Spring 2020 Lecture 4

Computing the gradient

Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
- Set:

$$-D_0 = D$$
, is the width of the 0th (input) layer
 $-y_j^{(0)} = x_j$, $j = 1 \dots D$; $y_0^{(k=1\dots N)} = x_0 = 1$

• For layer
$$k = 1 \dots N$$

- For $j = 1 \dots D_k$ D_k is the size of the kth layer
• $z_j^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_i^{(k-1)}$
• $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$

• Output:

$$-Y = y_j^{(N)}, j = 1..D_N$$

- Have assumed so far that
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 - 2. Outputs of neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable

Special Case 1. Vector activations

 Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations

y^(k-1) y^(k)

Scalar activation: Modifying a z_i only changes corresponding y_i

 $y_i^{(k)} = f\left(z_i^{(k)}\right)$

Vector activation: Modifying a z_i potentially changes all, $y_1 \dots y_M$

$$\begin{bmatrix} y_{1}^{(k)} \\ y_{2}^{(k)} \\ \vdots \\ y_{M}^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_{1}^{(k)} \\ z_{2}^{(k)} \\ \vdots \\ z_{D}^{(k)} \end{bmatrix}$$
⁸

"Influence" diagram

Scalar activation: Each z_i influences one y_i Vector activation: Each z_i influences all, $y_1 \dots y_M$

The number of outputs

- Note: The number of outputs (y^(k)) need not be the same as the number of inputs (z^(k))
 - May be more or fewer

Scalar Activation: Derivative rule

 In the case of *scalar* activation functions, the derivative of the error w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

• For *vector* activations the derivative of the error w.r.t. to any input is a sum of partial derivatives

- Regardless of the number of outputs $y_i^{(k)}$

 $y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_i^{(k)}\right)}$

$$y_{i}^{(k)} = \frac{exp\left(z_{i}^{(k)}\right)}{\sum_{j} exp\left(z_{j}^{(k)}\right)}$$
$$\frac{\partial Div}{\partial z_{i}^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_{j}^{(k)}} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}$$

- For future reference
- δ_{ij} is the Kronecker delta: $\delta_{ij} = 1$ if i = j, 0 if $i \neq j_{16}$

Special cases

- Examples of vector activations and other special cases on slides
 - Please look up
 - Will appear in quiz!

Vector Activations

- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax), etc.

Special Case 2: Multiplicative networks

- Some types of networks have *multiplicative* combination
 In contrast to the *additive* combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative Networks

Forward:

$$o_i^{(k)} = y_j^{(k-1)} y_l^{(k-1)}$$

Backward:
$$\frac{\partial Div}{\partial o_i^{(k)}} = \sum_i w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$

$$\frac{\partial Div}{\partial y_j^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} \frac{\partial Div}{\partial o_i^{(k)}} = y_l^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

$$\frac{\partial Div}{\partial y_l^{(k-1)}} = y_j^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

• Some types of networks have *multiplicative* combination

Multiplicative combination as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation

Multiplicative combination: Can be viewed as a case of vector activations

A layer of multiplicative combination is a special case of vector activation ٠

Backward Pass for softmax output layer d

- Output layer (N) :
 - $For i = 1 \dots D_N$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

- $\frac{\partial Div}{\partial z_i^{(N)}} = \sum_j \frac{\partial Div(Y,d)}{\partial y_j^{(N)}} y_i^{(N)} \left(\delta_{ij} y_j^{(N)}\right)$
- For layer $k = N 1 \ downto \ 0$

- For
$$i = 1 \dots D_k$$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = f'_k \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$$

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \text{ for } j = 1 \dots D_{k+1}$$

Special Case 3: Non-differentiable activations

- Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 - And its variants: leaky RELU, randomized leaky RELU
 - E.g. The "max" function
- Must use "subgradients" where available
 - Or "secants"

The subgradient

- A subgradient of a function f(x) at a point x_0 is any vector v such that $(f(x) - f(x_0)) \ge v^T (x - x_0)$
 - Any direction such that moving in that direction increases the function
- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_0 , the subgradient is the gradient
 - The gradient is not always the subgradient though

Subgradients and the RELU

- Can use any subgradient
 - At the differentiable points on the curve, this is the same as the gradient
 - Typically, will use the equation given

Subgradients and the Max

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

- Multiple outputs, each selecting the max of a different subset of inputs
 - Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

Backward Pass: Recap

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

• $\frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$
• $\frac{\partial Di}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} OR \sum_{j} \frac{\partial Div}{\partial y_j^{(N)}} \frac{\partial y_j^{(N)}}{\partial z_i^{(N)}} \text{ (vector activation)}$
• For layer $k = N - 1 \ downto \ 0$
- For $i = 1 \dots D_k$
• $\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$
• $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} OR \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \text{ (vector activation)}$
• $\frac{\partial Di}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \text{ for } j = 1 \dots D_{k+1}$

Overall Approach

- For each data instance
 - Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation
 - Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual loss is the sum of the divergence over all training instances

$$\mathbf{Loss} = \frac{1}{|\{X\}|} \sum_{X} Div(Y(X), d(X))$$

• Actual gradient is the sum or average of the derivatives computed for each training instance

$$\nabla_{W} \mathbf{Loss} = \frac{1}{|\{X\}|} \sum_{X} \nabla_{W} Div(Y(X), d(X)) \quad W \leftarrow W - \eta \nabla_{W} \mathbf{Loss}^{\mathrm{T}}$$

Training by BackProp

- Initialize weights $W^{(k)}$ for all layers $k = 1 \dots K$
- Do:

- Initialize Loss = 0; For all i, j, k, initialize $\frac{dLos}{dw_{i,i}^{(k)}} = 0$

- For all t = 1:T (Loop over training instances)
 - Forward pass: Compute
 - Output Y_t
 - Loss += $Div(Y_t, d_t)$
 - Backward pass: For all *i*, *j*, *k*:

- Compute
$$\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

- Compute $\frac{dLos}{dw_{i,j}^{(k)}} + = \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$

- For all *i*, *j*, *k*, update:

$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dLoss}{dw_{i,j}^{(k)}}$$

• Until *Loss* has converged

Vector formulation

- For layered networks it is generally simpler to think of the process in terms of vector operations
 - Simpler arithmetic
 - Fast matrix libraries make operations *much* faster
- We can restate the entire process in vector terms
 - On slides, please read
 - This is what is *actually* used in any real system
 - Will appear in quiz

Vector formulation

- Arrange all inputs to the network in a vector **x**
- Arrange the *inputs* to neurons of the kth layer as a vector \mathbf{z}_k
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_{k}
- Arrange the weights to any layer as a matrix W_k
 - Similarly with biases

Vector formulation

• The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \qquad \mathbf{y}_k = f_k(\mathbf{z}_k)$$

The forward pass: Evaluating the network

- - •
 - •

X

$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$
38

$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$
³⁹

$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$
⁴⁰

$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$
⁴¹

The Complete computation

 $Y = f_N(W_N f_{N-1}(...f_2(W_2 f_1(W_1 x + b_1) + b_2)...) + b_N)$ ⁴²

Forward pass: Initialize

 $\mathbf{y}_0 = \mathbf{x}$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
 $\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$
Output $\mathbf{Y} = \mathbf{y}_N$

The Forward Pass

- Set $\mathbf{y}_0 = \mathbf{x}$
- Recursion through layers:

– For layer k = 1 to N:

$$\mathbf{z}_{k} = \mathbf{W}_{k}\mathbf{y}_{k-1} + \mathbf{b}_{k}$$
$$\mathbf{y}_{k} = \mathbf{f}_{k}(\mathbf{z}_{k})$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$

The network is a nested function

 $Y = f_N(\mathbf{W}_N f_{N-1}(...f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)...) + \mathbf{b}_N)$

• The error for any **x** is also a nested function

 $Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N), d)$

Calculus recap 2: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a *Jacobian*
- It is the matrix of partial derivatives given below

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f\left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)$$

Using vector notation

$$\mathbf{y} = f(\mathbf{z})$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \cdots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \cdots & \frac{\partial y_2}{\partial z_D} \\ \cdots & \cdots & \ddots & \cdots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \cdots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

Check:
$$\Delta \mathbf{y} = J_{\mathbf{y}}(\mathbf{z})\Delta \mathbf{z}$$

Jacobians can describe the derivatives of neural activations w.r.t their input

$$I_{y}(\mathbf{z}) = \begin{bmatrix} \frac{dy_{1}}{dz_{1}} & 0 & \cdots & 0 \\ 0 & \frac{dy_{2}}{dz_{2}} & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & \frac{dy_{D}}{dz_{D}} \end{bmatrix}$$

- For Scalar activations
 - Number of outputs is identical to the number of inputs
- Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs
 - Not showing the superscript "(k)" in equations for brevity

Jacobians can describe the derivatives of neural activations w.r.t their input

$$y_i = f(z_i)$$

$$J_{y}(\mathbf{z}) = \begin{bmatrix} f'(z_{1}) & 0 & \cdots & 0 \\ 0 & f'(z_{2}) & \cdots & 0 \\ \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(z_{M}) \end{bmatrix}$$

• For scalar activations (shorthand notation):

- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations

- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs
 w.r.t individual inputs

Special case: Affine functions

- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of **z** w.r.t **y** is simply the matrix **W**

Vector derivatives: Chain rule

- We can define a chain rule for Jacobians
- For vector functions of vector inputs:

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule

- The chain rule can combine Jacobians and Gradients
- For *scalar* functions of vector inputs (*g*() is vector):

Note the order: The derivative of the outer function comes first

Special Case

Scalar functions of Affine functions

of a product of tensor terms that occur in the right order

In the following slides we will also be using the notation $\nabla_z Y$ to represent the Jacobian $J_Y(z)$ to explicitly illustrate the chain rule

In general $\nabla_a \mathbf{b}$ represents a derivative of \mathbf{b} w.r.t. \mathbf{a} and could be a the transposed gradient (for scalar \mathbf{b}) or a Jacobian (for vector \mathbf{b})

First compute the gradient of the divergence w.r.t. Y. The actual gradient depends on the divergence function.

$$\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div \cdot \nabla_{\mathbf{z}_N} \mathbf{Y}$$

Already computed New term

 $\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div J_{\mathbf{Y}}(\mathbf{z}_N)$ Already computed New term

Already computed New term

matrix for scalar activations

$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \mathbf{W}_{N-1}$$

 $\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$

 $\nabla_{\mathbf{W}_{1}}Div = \mathbf{x}\nabla_{\mathbf{z}_{1}}Div$ $\nabla_{\mathbf{b}_{1}}Div = \nabla_{\mathbf{z}_{1}}Div$

In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Backward recursion step:

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Backward recursion step: Note analogy to forward pass

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

For comparison: The Forward Pass

- Set **y**₀ = **x**
- For layer k = 1 to N :

- Forward recursion step:

$$\mathbf{z}_{k} = \mathbf{W}_{k}\mathbf{y}_{k-1} + \mathbf{b}_{k}$$
$$\mathbf{y}_{k} = \mathbf{f}_{k}(\mathbf{z}_{k})$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$

Neural network training algorithm

- Initialize all weights and biases $(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_N, \mathbf{b}_N)$
- Do:
 - Loss = 0
 - For all k, initialize $\nabla_{\mathbf{W}_k} Loss = 0$, $\nabla_{\mathbf{b}_k} Loss = 0$
 - For all t = 1:T # Loop through training instances
 - Forward pass : Compute
 - Output $Y(X_t)$
 - Divergence $Div(Y_t, d_t)$
 - Loss += $Div(Y_t, d_t)$
 - Backward pass: For all k compute:

$$- \nabla_{\mathbf{y}_k} Div = \nabla_{\mathbf{z}_k+1} Div \mathbf{W}_{k+1}$$

$$- \nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div J_{\mathbf{y}_k}(\mathbf{z}_k)$$

- $\nabla_{\mathbf{W}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t}) = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div; \nabla_{\mathbf{b}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t}) = \nabla_{\mathbf{z}_{k}} Div$
- $\nabla_{\mathbf{W}_k} Loss += \nabla_{\mathbf{W}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t); \quad \nabla_{\mathbf{b}_k} Loss += \nabla_{\mathbf{b}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$
- For all *k*, update:

$$\mathbf{W}_{k} = \mathbf{W}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Loss \right)^{T}; \qquad \mathbf{b}_{k} = \mathbf{b}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Loss \right)^{T}$$

• Until *Loss* has converged

Setting up for digit recognition

 $\begin{array}{c} \text{Training data} \\ (S, 0) & (2, 1) \\ (2, 1) & (4, 0) \\ (2, 1) & (2, 1) \end{array}$

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation

 $- Y \in (0,1)$

- d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters
Recognizing the digit

Training data

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence to learn network

Issues

- Convergence: How well does it learn
 - And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- *Etc.*.

Next up

• Convergence and generalization