
Training Neural Networks:
Optimizers and Regularizers

Intro to Deep Learning, Spring 2020

1

Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and
actual output of net for a given input

Output of net in
response to input

Desired output
in response to input

2

Quick Recap: Training networks by
gradient descent

Solved through
gradient descent as

Computed using
backpropagation

3

Quick recap: Problem with gradient
descent

• The loss is a function of many weights (and biases)
– Has different eccentricities w.r.t different weights

• A fixed step size for all weights in the network can result in
the convergence of one weight, while causing a divergence
of another

ଶ

ଵ

ଶ

ଵ

4

Recap: Derivative-inspired algorithms

• Algorithms that obtain separate updates for each
dimension
– Use derivative information for trends, but do not follow

them absolutely

• Rprop
• Quick prop

• Can be more effective than gradient descent, but lose
the dependence among components
– And thus some efficiency

5

Recap: momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

6

Recap: Incremental methods
• Batch methods that consider all training points before making an update

to the parameters can be terribly inefficient

• Online methods that present training instances incrementally make
quicker updates
– “Stochastic Gradient Descent” updates parameters after each instance
– “Mini batch descent” updates them after batches of instances
– Both of them have greater variance than batch methods
– Potentially leading to worse minima

• Both batch and online methods are critically dependent on proper choice
of learning rates (or learning rate schedules) for convergence to good
optima

7

Training and minibatches

• Convergence depends on learning rate
– Simple technique: fix learning rate until the error

plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

– Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the
estimation

8

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

9

Recall: Momentum

• The momentum method

• Updates using a running average of the gradient

10

Momentum and incremental updates

• The momentum method

• Incremental SGD and mini-batch gradients tend to have
high variance

• Momentum smooths out the variations
– Smoother and faster convergence

11

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ; ,

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝛻ௐೖ

𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

Δ𝑊 = 𝛽Δ𝑊 − 𝜂(𝛻ௐೖ
𝐿𝑜𝑠𝑠)்

𝑊 = 𝑊 + ∆𝑊

• Until has converged
12

Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

• This also applies directly to incremental update methods
– The accelerated gradient smooths out the variance in the

gradients

13

Nestorov’s Accelerated Gradient

• Nestorov’s method
 ()

14

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ; 𝑗 = 0, ∆𝑊 = 0

• Do:
– Randomly permute 𝑋ଵ, 𝑑ଵ , 𝑋ଶ, 𝑑ଶ ,…, 𝑋், 𝑑்

– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝑊 = 𝑊 + 𝛽Δ𝑊

– 𝛻ௐೖ
𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊 = 𝑊 − 𝜂𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

Δ𝑊 = 𝛽Δ𝑊 − 𝜂𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

• Until has converged

15

Still higher-order methods
• Momentum and Nestorov’s method improve

convergence by normalizing the mean (first moment)
of the derivatives

• More recent methods take this one step further by also
considering their second moments
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

• All roughly equivalent in performance
16

Smoothing the trajectory

• Simple gradient and momentum methods still demonstrate oscillatory
behavior in some directions
– Depends on magic step size parameters

• Observation: Steps in “oscillatory” directions show large total movement
– In the example, total motion in the vertical direction is much greater than in

the horizontal direction

• Improvement: Dampen step size in directions with high motion
– Second order term 17

1 2
3

4
5

Step X component Y component

1 1 +2.5

2 1 -3

3 3 +2.5

4 1 -2

5 2 1.5

Normalizing steps by second moment

• In recent past
– Total movement in Y component of updates is high
– Movement in X components is lower

• Current update, modify usual gradient-based update:
– Scale down Y component
– Scale up X component
– According to their variation (and not just their average)

• A variety of algorithms have been proposed on this premise
– We will see a popular example

18

RMS Prop
• Notation:

– Updates are by parameter

– Sum derivative of divergence w.r.t any individual parameter is
shown as ௪

– The squared derivative is ௪
ଶ

௪
ଶ

• Short-hand notation represents the squared derivative, not the
second derivative

– The mean squared derivative is a running estimate of the
average squared derivative. We will show this as ௪

ଶ

• Modified update rule: We want to
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives

19

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

ାଵ
௪
ଶ

 ௪

20

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

ାଵ
௪
ଶ

 ௪

21
Note similarity to RPROP
The magnitude of the derivative is being normalized out

RMS Prop (updates are for each
weight of each layer)

• Do:
– Randomly shuffle inputs to change their order
– Initialize: ; for all weights in all layers, ௪

ଶ

– For all (incrementing in blocks of inputs)
• For all weights in all layers initialize 𝜕௪𝐷 = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute

» Output 𝒀(𝑿𝒕ା𝒃)

» Compute gradient 𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

» Compute 𝜕௪𝐷 +=
ଵ

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

• update:
𝑬 𝝏𝒘

𝟐 𝑫
𝒌

= 𝜸𝑬 𝝏𝒘
𝟐 𝑫

𝒌ି𝟏
+ 𝟏 − 𝜸 𝝏𝒘

𝟐 𝑫
𝒌

𝒘𝒌ା𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐 𝑫 𝒌 + 𝝐

𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until ଵ ଶ has converged
22

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the

current gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

– Considers both first and second moments

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each

parameter
– Scale update of the parameter by the inverse of the root mean squared

derivative

 ିଵ ௪

 ିଵ ௪
ଶ

ାଵ

23

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the

current gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each

parameter
– Scale update of the parameter by the inverse of the root mean squared

derivative

 ିଵ ௪

 ିଵ ௪
ଶ

ାଵ

24

Ensures that the
and terms do

not dominate in
early

iterations

Other variants of the same theme

• Many:
– Adagrad
– AdaDelta
– ADAM
– AdaMax
– …

• Generally no explicit learning rate schedule to optimize
– But come with other hyper parameters to be optimized
– Typical params:

• RMSProp: ,
• ADAM: , ,

25

Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

26

Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

27

Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

28

Story so far

• Gradient descent can be sped up by incremental
updates
– Convergence is guaranteed under most conditions

• Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

– Mini-batch updates: update after batches. Can be more
efficient than SGD

• Convergence can be improved using smoothed updates
– RMSprop and more advanced techniques

29

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

30

Tricks of the trade..

• To make the network converge better
– The Divergence
– Dropout
– Batch normalization
– Other tricks

• Gradient clipping
• Data augmentation
• Other hacks..

31

Training Neural Nets by Gradient Descent:
The Divergence

• The convergence of the gradient descent
depends on the divergence
– Ideally, must have a shape that results in a

significant gradient in the right direction outside
the optimum
• To “guide” the algorithm to the right solution

32

Total training loss:

Desiderata for a good divergence

• Must be smooth and not have many poor local optima
• Low slopes far from the optimum == bad

– Initial estimates far from the optimum will take forever to
converge

• High slopes near the optimum == bad
– Steep gradients

33

Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization
– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during
optimization
– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum
– But not too shallow: ideally quadratic in nature

34

Choices for divergence

• Most common choices: The L2 divergence and
the KL divergence 35

Desired output: Desired output:

L2

KL

ଶ

1 2 3 4 0

Softmax

ଶ

L2 or KL?

• The L2 divergence has long been favored in most
applications

• It is particularly appropriate when attempting to
perform regression
– Numeric prediction

• The KL divergence is better when the intent is
classification
– The output is a probability vector

36

L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as
function of weights
– Setup: 2-dimensional input
– 100 training examples randomly generated

37

L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as
function of weights
– Setup: 2-dimensional input
– 100 training examples randomly generated

38

NOTE: L2 divergence is not convex while KL is convex

However, L2 also has a unique global minimum

A note on derivatives

• Note: For L2 divergence the derivative w.r.t.
the pre-activation of the output layer is:

• We literally “propagate” the error
backward
– Which is why the method is sometimes called

“error backpropagation”

39

Story so far

• Gradient descent can be sped up by
incremental updates

• Convergence can be improved using
smoothed updates

• The choice of divergence affects both the
learned network and results

40

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can affect training badly
41

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”
– Which may occur in each layer of the networkg badly

42

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can be large!
– All covariate shifts can affect training badly

43

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

44

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

45

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

46

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

47

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

48

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches
– Then move the entire collection to the appropriate location

49

Batch normalization

• Batch normalization is a covariate adjustment unit that happens
after the weighted addition of inputs but before the application of
activation
– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+

50

Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+

ଵ

ଶ

ே

ேିଵ

Batch normalization

Covariate shift to
standard position

Shift to right
position

Neuron-specific terms

51

Batch mean

Batch standard deviatiation

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

ୀଵ

ଶ

ଶ

ୀଵ

52

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+

ଵ

ଶ

ே

ேିଵ

ଶ

Minibatch size Minibatch mean

Batch normalization

Minibatch standard deviation

ୀଵ

ଶ

ଶ

ୀଵ

53

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+

ଵ

ଶ

ே

ேିଵ

ଶ

Normalize minibatch to
zero-mean unit variance

Shift to right
position

Batch normalization

ୀଵ

ଶ

ଶ

ୀଵ

54

A better picture for batch norm

+

ଵ

ଶ

ே

ேିଵ

Batch normalization

+

ଵ

ଶ

ே

ேିଵ

+

55

A note on derivatives
• In conventional learning, we attempt to compute the

derivative of the divergence for individual training instances
w.r.t. parameters

• This is based on the following relations

• If we use Batch Norm, the above relation gets a little
complicated

56

A note on derivatives
• The outputs are now functions of and

which are functions of the entire minibatch

• The Divergence for each depends on all the
within the minibatch

• Specifically, within each layer, we get the
relationship in the following slide

57

Batchnorm is a vector function over
the minibatch

• Batch normalization is really a vector function applied over all the inputs from a
minibatch
– Every 𝑧 affects every �̂�

– Shown on the next slide

• To compute the derivative of the divergence w.r.t any , we must consider all

in the batch
58

ଵ

ଶ

ଵ

ଶ

Batchnorm

• The complete dependency figure for Batchnorm
• Note : inputs and outputs are different instances in a minibatch

– The diagram represents BN occurring at a single neuron

• You can use vector function differentiation rules to compute the derivatives
– But the equations in the following slides summarize them for you
– The actual derivation uses the simplified diagram shown in the next slide, but you could do it

directly off the figure above and arrive at the same answers
59

ଵ

ଶ

ଵ

ଶଶ

Batch norm

Batchnorm

• Simplified diagram for a single input in a
minibatch

60

Influence diagram

ଶ

ஷ

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

ୀଵ

ଶ

ଶ

ୀଵ
61

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

Parameters to be
learned

ୀଵ

ଶ

ଶ

ୀଵ
62

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

Parameters to be
learned

ୀଵ

ଶ

ଶ

ୀଵ
63

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

ୀଵ

ଶ

ଶ

ୀଵ
64

• Final step of backprop: compute

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

ଶ

Batch normalization

ୀଵ

ଶ

ଶ

ୀଵ
65

, ,
ଶ

ଶ

ଶ

Batch normalization:
Backpropagation

ଶ

Influence diagram

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ஷ

ଶ

ଶ

ଶ

ଶ

Batch normalization:
Backpropagation

ଶ

Influence diagram

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ଶ

ଶ ିଷ
ଶൗ

ୀଵ

ଶ

ஷ

ଶ

ଶ

Batch normalization:
Backpropagation

ଶ

Influence diagram

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ଶ

ଶ ିଷ
ଶൗ

ୀଵ

ଶ

ଶ

ଶ

ଶ

ୀଵ

ஷ

Batch normalization:
Backpropagation

ଶ

Influence diagram

ଶ

ଶ

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ஷ

Batch normalization:
Backpropagation

ଶ

Influence diagram

ଶ

ଶ

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ୀଵ
ଶ

ଶ

ୀଵ

ଶ

ଶ

ୀଵ

ଶ

ஷ

Second term
goes to 0

Batch normalization:
Backpropagation

ଶ

Influence diagram

ଶ

ଶ

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ଶ

ୀଵ

ଶ

ଶ

ୀଵ

ଶ

ஷ

Batch normalization:
Backpropagation

ଶ

Influence diagram

ଶ

ଶ

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ଶ

ஷ

ଶ

ୀଵ

Batch normalization:
Backpropagation

ଶ

Influence diagram

ଶ

ଶ

Dotted lines show
dependence through
other s because
Divergence is computed
over a minibatch

ଶ

ଶ

ஷ

Batch normalization:
Backpropagation

+

ୀଵ

ଵ

ଶ

ே

ேିଵ

ଶ

ଶ

ୀଵ

ଶ

Batch normalization

ଶ

ଶ ିଷ
ଶൗ

ୀଵ

ଶ

ୀଵ

ଶ

ଶ

74

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ
Batch normalization

ଶ

ଶ

The rest of backprop continues from డ௩

డ௭ 75

ଶ

ଶ ିଷ
ଶൗ

ୀଵ

ଶ

ୀଵ

Batch normalization: Inference

• On test data, BN requires 𝜇 and 𝜎
ଶ.

• We will use the average over all training minibatches

𝜇ே =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
 𝜇(𝑏𝑎𝑡𝑐ℎ)

௧

𝜎ே
ଶ =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
 𝜎

ଶ(𝑏𝑎𝑡𝑐ℎ)

௧

• Note: these are neuron-specific
– 𝜇(𝑏𝑎𝑡𝑐ℎ) and 𝜎

ଶ(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+

ଶ

ே

ேିଵ

 ே

ே
ଶ

Batch normalization

76

Batch normalization

• Batch normalization may only be applied to some layers
– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance
– Anecdotal evidence that BN eliminates the need for dropout
– To get maximum benefit from BN, learning rates must be increased

and learning rate decay can be faster
• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+

77

Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy, JMLR
2015

78

Story so far

• Gradient descent can be sped up by incremental
updates

• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned
network and results

• Covariate shift between training and test may cause
problems and may be handled by batch normalization

79

The problem of data
underspecification

• The figures shown to illustrate the learning
problem so far were fake news..

80

Learning the network

• We attempt to learn an entire function from just
a few snapshots of it

81

General approach to training

• Define an error between the actual network output for
any parameter value and the desired output
– Error typically defined as the sum of the squared error over

individual training instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

ଶ

82

Overfitting

• Problem: Network may just learn the values at
the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs
83

Data under-specification

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

84

Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

85

Find the function!

Need “smoothing” constraints

• Need additional constraints that will “fill in”
the missing regions acceptably
– Generalization

86

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth
– The “overfit” model has fast changes

x

y

87

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances

instead

x

y

88

The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances

instead

x

y

89

Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes
in output

90

The individual perceptron

• Using a sigmoid activation
– As increases, the response becomes steeper

91

Smoothness through weight
manipulation

x

y

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large

• Constraining the weights to be low will force slower
perceptrons and smoother output response

92

Smoothness through weight
manipulation

x

y

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large

• Constraining the weights to be low will force slower
perceptrons and smoother output response

93

Objective function for neural
networks

• Conventional training: minimize the total loss:

Desired output of network:

Error on i-th training input:

ଵ ଶ

Batch training loss:

94

భ మ ಼

Smoothness through weight
constraints

• Regularized training: minimize the loss while also minimizing the
weights

• is the regularization parameter whose value depends on how
important it is for us to want to minimize the weights

• Increasing assigns greater importance to shrinking the weights
– Make greater error on training data, to obtain a more acceptable network

95

భ మ ಼

Regularizing the weights

ଵ ଶ ௧ ௧

௧

 ଶ
ଶ

• Batch mode:

 ௐೖ ௧ ௧
𝑇

௧

• SGD:
 ௐೖ ௧ ௧

𝑇

• Minibatch:

 ௐೖ ఛ ఛ
𝑇

௧ାିଵ

ఛୀ௧

• Update rule:

96

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊 = ∆𝑊 + 𝛻ௐೖ
𝐷𝑖𝑣 𝑌௧, 𝑑௧

𝑇

• Update
– For every layer k:

𝑊 = 𝑊 − 𝜂 ∆𝑊 + 𝜆𝑊

• Until has converged 97

Smoothness through network
structure

• MLPs naturally impose constraints

• MLPs are universal approximators
– Arbitrarily increasing size can give

you arbitrarily wiggly functions
– The function will remain ill-defined

on the majority of the space

• For a given number of parameters deeper networks impose
more smoothness than shallow ones
– Each layer works on the already smooth surface output by the

previous layer

98

• Typical results (varies with initialization)
• 1000 training points – orders of magnitude more than you

usually get
• All the training tricks known to mankind 99

Even when we get it all right

But depth and training data help

• Deeper networks seem to learn better, for the same
number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more conventional
classification models

• Similar functions not learnable using more usual
pattern-recognition models!! 100

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

Regularization..

• Other techniques have been proposed to
improve the smoothness of the learned
function
– L1 regularization of network activations
– Regularizing with added noise..

• Possibly the most influential method has been
“dropout”

101

Story so far

• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network
and results

• Covariate shift between training and test may cause
problems and may be handled by batch normalization

• Data underspecification can result in overfitted models and
must be handled by regularization and more constrained
(generally deeper) network architectures

102

A brief detour.. Bagging

• Popular method proposed by Leo Breiman:
– Sample training data and train several different classifiers
– Classify test instance with entire ensemble of classifiers
– Vote across classifiers for final decision
– Empirically shown to improve significantly over training a single

classifier from combined data

• Returning to our problem….
103

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a

Input

Output

104

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a
– Also turn off inputs similarly

Input

Output

X1 Y1

105

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli

random number generator with success probability 1-a

Input

Output

X1 Y1

106

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli

random number generator with success probability 1-a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3

107

Dropout

• During training: Backpropagation is effectively performed only over the remaining
network
– The effective network is different for different inputs
– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input

108

Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks
– Obtained by choosing different subsets of nodes
– Dropout samples over all 2N possible networks
– Effectively learns a network that averages over all possible

networks
• Bagging

Input

Output
X1 Y1

Input

Output
X2 Y2

Output
X3 Y3

Input

Output

X1 Y1

109

Dropout as a mechanism to increase
pattern density

• Dropout forces the neurons to
learn “rich” and redundant
patterns

• E.g. without dropout, a non-
compressive layer may just
“clone” its input to its output
– Transferring the task of learning

to the rest of the network
upstream

• Dropout forces the neurons to
learn denser patterns
– With redundancy

110

The forward pass
• Input: dimensional vector

• Set:
– , is the width of the 0th (input) layer

–
()

 ;
(ୀଵ…ே)

• For layer
– For

• 𝑧
()

= ∑ 𝑤,
()

𝑦
(ିଵ)

+
ேೖ
ୀ 𝑏

()

• 𝑦
()

= 𝑓 𝑧
()

• If (𝑘 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) :
– 𝑚𝑎𝑠𝑘 𝑘, 𝑗 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝛼

– If 𝑚𝑎𝑠𝑘 𝑘, 𝑗 == 0

» 𝑦
()

= 0

• Output:

–
(ே)

ே

111

Backward Pass
• Output layer (N) :

–
డ௩

డ

డ௩(,ௗ)

డ௬

(ಿ)

–
డ௩

డ௭

(ೖ)

ᇱ

() డ௩

డ௬

(ೖ)

• For layer
– For

• If (not dropout layer OR)

–
డ௩

డ௬

(ೖ) = ∑ 𝑤

ାଵ

డ௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗)

–
డ௩

డ௭

(ೖ) = 𝑓

ᇱ 𝑧
() డ௩

డ௬

(ೖ)

–
డ௩

డ௪
ೕ
(ೖశభ) = 𝑦

 డ௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗) for 𝑗 = 1 … 𝐷ାଵ

• Else

–
డ௩

డ௭

(ೖ) = 0

112

What each neuron computes

• Each neuron actually has the following activation:

()

()

(ିଵ)

()

– Where is a Bernoulli variable that takes a value 1 with probability a

• may be switched on or off for individual sub networks, but over
the ensemble, the expected output of the neuron is

() a

()

(ିଵ)

()

• During test time, we will use the expected output of the neuron
– Which corresponds to the bagged average output
– Consists of simply scaling the output of each neuron by a

113

Dropout during test: implementation

• Instead of multiplying every output by , multiply
all weights by

Input

Output

X1 Y1

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑧
()

= 𝑤
()

𝑦
(ିଵ)

+

𝑏
()

 = 𝑤
()a𝜎 𝑧

(ିଵ)
+

𝑏
()

 = a𝑤
()

𝜎 𝑧
(ିଵ)

+

𝑏
()

114

𝒊
(𝒌) a 𝒊

(𝒌)

Dropout : alternate implementation

• Alternately, during training, replace the activation
of all neurons in the network by a
– This does not affect the dropout procedure itself

– We will use as the activation during testing, and not
modify the weights

Input

Output

X1 Y1

115

The forward pass (testing)
• Input: dimensional vector

• Set:
– 𝐷 = 𝐷, is the width of the 0th (input) layer

– 𝑦
()

= 𝑥, 𝑗 = 1 … 𝐷; 𝑦
(ୀଵ…ே)

= 𝑥 = 1

• For layer
– For 𝑗 = 1 … 𝐷

• 𝑧
()

= ∑ 𝑤,
()

𝑦
(ିଵ)

+
ேೖ
ୀ 𝑏

()

• 𝑦
()

= 𝑓 𝑧
()

• If (𝑘 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) :

» 𝑦
()

= 𝑦
()

/𝛼

– Else

» 𝑦
()

= 0

• Output:

– 𝑌 = 𝑦
(ே)

, 𝑗 = 1. . 𝐷ே

116

Dropout: Typical results

• From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout
– 2-4 hidden layers with 1024-2048 units 117

Variations on dropout

• Zoneout: For RNNs
– Randomly chosen units remain unchanged across a time transition

• Dropconnect
– Drop individual connections, instead of nodes

• Shakeout
– Scale up the weights of randomly selected weights

• 𝑤 → 𝛼 𝑤 + 1 − 𝛼 𝑐

– Fix remaining weights to a negative constant
• 𝑤 → −𝑐

• Whiteout
– Add or multiply weight-dependent Gaussian noise to the signal on

each connection

118

Story so far
• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network and
results

• Covariate shift between training and test may cause problems and
may be handled by batch normalization

• Data underspecification can result in overfitted models and must be
handled by regularization and more constrained (generally deeper)
network architectures

• “Dropout” is a stochastic data/model erasure method that
sometimes forces the network to learn more robust models

119

Other heuristics: Early stopping

• Continued training can result in over fitting to
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to

terminate training when performance on validation
set degrades significantly

error

epochs

training

validation

120

Additional heuristics: Gradient
clipping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

121

Loss

w

Additional heuristics: Data
Augmentation

• Available training data will often be small
• “Extend” it by distorting examples in a variety of

ways to generate synthetic labelled examples
– E.g. rotation, stretching, adding noise, other distortion

122

Other tricks

• Normalize the input:
– Apply covariate shift to entire training data to make it 0

mean, unit variance
– Equivalent of batch norm on input

• A variety of other tricks are applied
– Initialization techniques

• Typically initialized randomly
• Key point: neurons with identical connections that are identically

initialized will never diverge

– Practice makes man perfect

123

Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data
– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.)
• Choose optimization algorithm

– E.g. Adagrad

• Perform a grid search for hyper parameters (learning rate, regularization
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required

124

In closing

• Have outlined the process of training neural
networks
– Some history
– A variety of algorithms
– Gradient-descent based techniques
– Regularization for generalization
– Algorithms for convergence
– Heuristics

• Practice makes perfect..

125

