Epilogue: The New Connectionism

When perceptron-like machines came on the scene, we found that
in order to understand their capabilities we needed some new
ideas. It was not enough simply to examine the machines them-
selves or the procedures used to make them learn. Instead, we had
to find new ways to understand the problems they would be asked
to solve. This is why our book turned out to be concerned less with
perceptrons per se than with concepts that could help us see the
relation between patterns and the types of parallel-machine ar-
chitectures that might or might not be able to recognize them.

Why was it so important to develop theories about parallel ma-
chines? One reason was that the emergence of serial computers
quickly led to a very respectable body of useful ideas about
algorithms and algorithmic languages, many of them based on a
half-century’s previous theories about logic and effective computa-
bility. But similarly powerful ideas about parallel computation did
not develop nearly so rapidly—partly because massively parallel
hardware did not become available until much later and partly
because much less knowledge that might be relevant had been ac-
cumulated in the mathematical past. Today, however, it is feasible
either to simulate or to actually assemble huge and complex ar-
rangements of interacting elements. Consequently, theories about
parallel computation have now become of immediate and intense
concern to workers in physics, engineering, management, and
many other disciplines—and especially to workers involved with
brain science, psychology, and artificial intelligence.

Perhaps this is why the past few years have seen new and heated
discussions of network machines as part of an intellectually aggres-
sive movement to establish a paradigm for artificial intelligence and
cognitive modeling. Indeed, this growth of activity and interest has
been so swift that people talk about a ‘‘connectionist revolution.”
The purpose of this epilogue, added in 1988, is to help present-day
students to use the ideas presented in Perceptrons to put the new
results into perspective and to formulate more clearly the research
questions suggested by them. To do this succinctly, we adopt the
strategy of focusing on one particular example of modern connec-
tionist writing. Recently, David Rumelhart, James McClelland,
and fourteen collaborators published a two-volume work that has
become something of a connectionist manifesto: Parallel Distrib-
uted Processing (MIT Press, 1986). We shall take this work (hence-

[248] Epilogue

forth referred to as PDP) as our connectionist text. What we say
about this particular text will not, of course, apply literally to other
writings on this subject, but thoughtful readers will seize the gen-
eral point through the particular case. In most of this epilogue we
shall discuss the examples in PDP from inside the connectionist
perspective, in order to flag certain problems that we do not expect
to be solvable within the framework of any single, homogeneous
machine. At the end, however, we shall consider the same prob-
lems from the perspective of the overview we call ‘‘society of
mind,”” a conceptual framework that makes it much more feasible
to exploit collections of specialized accomplishments.

PDP describes Perceptrons as pessimistic about the prospects for
connectionist machinery:

‘e

. . . even though multilayer linear threshold networks are poten-
tially much more powerful . . . it was the limitations on what per-
ceptrons could possibly learn that led to Minsky and Papert’s
(1969) pessimistic evaluation of the perceptron. Unfortunately,
that evaluation has incorrectly tainted more interesting and power-
ful networks of linear threshold and other nonlinear units. As we
shall see, the limitations of the one-step perceptrons in no way
apply to the more complex networks.”” (vol. 1, p. 65)

We scarcely recognize ourselves in this description, and we recom-
mend rereading the remarks in section 0.3 about romanticism and
rigor. We reiterate our belief that the romantic claims have been
less wrong than the pompous criticisms. But we also reiterate that
the discipline can grow only when it makes a parallel effort to
critically evaluate its apparent accomplishments. Our own work in
Perceptrons is based on the interaction between an enthusiastic
pursuit of models of new phenomena and a rigorous search for
ways to understand the limitations of these models.

In any case, such citations have given our book the reputation of
being mainly concerned with what perceptrons cannot do, and of
having concluded with a qualitative evaluation that the subject was
not important. Certainly, some chapters prove that various impor-
tant predicates have perceptron coefficients that grow unmanage-
ably large. But many chapters show that other predicates can be
surprisingly tractable. It is no more apt to describe our mathemat-
ical theorems as pessimistic than it would be to say the same about

Epilogue [249]

deducing the conservation of momentum from the laws of mechan-
ics. Theorems are theorems, and the history of science amply dem-
onstrates how discovering limiting principles can lead to deeper
understanding. But this happens only when those principles are
taken seriously, so we exhort contemporary connectionist re-
searchers to consider our results seriously as sources of research
questions instead of maintaining that they ‘‘in no way apply.”’

What Perceptrons Can’t Do

To put our results into perspective, let us recall the situation in the
early 1960s: Many people were impressed by the fact that initially
unstructured networks composed of very simple devices could be
made to perform many interesting tasks—by processes that could
be seen as remarkably like some forms of learning.

A different fact seemed to have impressed only a few people: While
those networks did well on certain tasks and failed on certain
other tasks, there was no theory to explain what made the differ-
ence—particularly when they seemed to work well on small (‘‘toy’’)
probiems but broke down with larger problems of the same kind.

Our goal was to develop analytic tools to give us better ideas about
what made the difference. But finding a comprehensive theory of
parallel computation seemed infeasible, because the subject was
simply too general. What we had to do was sharpen our ideas by
working with some subclass of parallel machines that would be
sufficiently powerful to perform significant computations, that
would also share at least some of the features that made such
networks attractive to those who sought a deeper understanding of
the brain, and that would also be mathematically simple enough to
permit theoretical analysis. This why we used the abstract defini-
tion of perceptron given in this book. The perceptron seemed pow-
erful enough in function, suggestive enough in architecture, and
simple enough in its mathematical definition, yet understanding
the range and character of its capabilities presented challenging
puzzles.

Our prime example of such a puzzle was the recognition of
connectedness. It took us many months of work to capture in a
formal proof our strong intuition that perceptrons were unable to

[250] Epilogue

represent that predicate. Perhaps the most instructive aspect of
that whole process was that we were guided by a flawed intuition to
the proof that perceptrons cannot recognize the connectivity in any
general or practical sense. We had assumed that perceptrons could
not even detect the connectivity of hole-free blobs—because, as
we supposed, no local forms of evidence like those in figure 5.7
could correlate with the correct decision. Yet, as we saw in subsec-
tion 5.8.1, if a figure is known to have no holes, then a low-order
perceptron can decide on its connectivity; this we had not initially
believed to be possible. It is hard to imagine better evidence to
show how artificial it is to separate ‘‘negative’’ from ‘‘positive’’
results in this kind of investigation. To explain how this experience
affected us, we must abstract what we learned from it.

First we learned to reformulate questions like “‘Can perceptrons
perform a certain task?’’ Strictly speaking, it is misleading to say
that perceptrons cannot recognize connectedness, since for any
particular size of retina we can make a perceptron that will recog-
nize any predicate by providing it with enough ¢s of sufficiently
high order. What we did show was that the general predicate re-
quires perceptrons of unbounded order. More generally, we
learned to replace globally qualitative questions about what per-
ceptrons cannot do with questions in the spirit of what is now
called computational complexity. Many of our results are of the
form M =f(R), where R is a measure of the size of the problem and
M is the magnitude of some parameter of a perceptron (such as the
order of its predicates, how many of them might be required, the
information content of the coefficients, or the number of cycles
needed for learning to converge). The study of such relationships
gave us a better sense of what is likely to go wrong when one tries
to enlarge the scale of a perceptron-like computation. In serial
computing it was already well known that certain algorithms de-
pending on search processes would require numbers of steps of
computation that increased exponentially with the size of the prob-
lem. Much less was known about such matters in the case of paral-
lel machines.

The second lesson was that in order to understand what percep-
trons can do we would have to develop some theories of ‘‘problem
domains’’ and not simply a ‘‘theory of perceptrons.’’ In previous

Epilogue [251]

work on networks, from McCulloch and Pitts to Rosenblatt, even
the best theorists had tried to formulate general-purpose theories
about the kinds of networks they were interested in. Rosenblatt’s
convergence theorem is an example of how such investigations can
fead to powerful results. But something qualitatively different was
needed to explain why perceptrons could recognize the connect-
edness of hole-free figures yet be unable to recognize con-
nectedness in general. For this we needed a bridge between a the-
ory about the computing device and a theory about the content of
the computation. The reason why our group-invariance theorem
was so useful here was that it had one foot on the geometric side
and one on the computational side.

Our study of the perceptron was an attempt to understand general
principles through the study of a special case. Even today, we still
know very little, in general, about how the costs of parallel compu-
tation are affected by increases in the scale of problems. Only the
cases we understand can serve as bases for conjectures about what
will happen in other situations. Thus, until there is evidence to the
contrary, we are inclined to project the significance of our results
to other networks related to perceptrons. In the past few years,
many experiments have demonstrated that various new types of
learning machines, composed of multiple layers of perceptron-like
elements, can be made to solve many kinds of small-scale prob-
lems. Some of those experimenters believe that these perfor-
mances can be economically extended to larger problems without
encountering the limitations we have shown to apply to single-
layer perceptrons. Shortly, we shall take a closer look at some of
those results and see that much of what we learned about simple
perceptrons will still remain quite pertinent. It certainly is true that
most of the theorems in this book are explicitly about machines
with a single layer of adjustable connection weights. But this does
not imply (as many modern connectionists assume) that our con-
clusions don’t apply to multilayered machines. To be sure, those
proofs no longer apply unchanged, because their antecedent condi-
tions have changed. But the phenomena they describe will often
still persist. One must examine them, case by case. For example,
all our conclusions about order-limited predicates (see section 0.7)
continue to apply to networks with multiple layers, because the
order of any unit in a given layer is bounded by the product of the

[2521 Epilogue

OUTPUT

Figure 1 Symmetry using order-2 disjunction.

orders of the units in earlier layers. Since many of our arguments
about order constrain the representations of group-invariant predi-
cates, we suspect that many of those conclusions, too, will apply to
multilayer nets. For example, multilayer networks will be no more
able to recognize connectedness than are perceptrons. (This is not
to say that multilayer networks do not have advantages. For ex-
ample, the product rule can yield logarithmic reductions in the
orders and numbers of units required to compute certain high-order
predicates. Furthermore, units that are arranged in loops can
be of effectively unbounded order; hence, some such networks
will be able to recognize connectedness by using internal serial
processing.)

Thus, in some cases our conclusions will remain provably true and
in some cases they will be clearly false. In the middle there are
many results that we still think may hold, but we do not know
any formal proofs. In the next section we shall show how some
of the experiments reported in PDP lend credence to some such
conjectures.

Recognizing Symmetry

In this section we contrast two different networks, both of which
recognize symmetrical patterns defined on a six-point linear retina.
To be precise, we would like to recognize the predicate X is sym-
metric about the midpoint of R. Figure 1 shows a simple way to
represent this is as a perceptron that uses R ¢ units, each of order
2. Each one of them will locally detect a deviation from symmetry

Epilogue [253]

OUTPUT

/'@\ 6.89
. Ao
-9.44 Y9.44
% %32 .3.18 347 36 ;D\‘\ 347
\ 4. 2 1.1 /‘f -6.33 6.32 s.azf\-s.:u

-12.56 12.56 12.52 -12.51

Actual coefficients from PDP experiment

Figure 2 Symmetry using order-R stratification.

at two particular retinal points. Figure 2 shows the results of an
experiment from PDP. It depicts a network that represents
YsymmeTRY 1N quite a different way. Amazingly, this network uses
only two ¢ functions—albeit ones of order R.

The weights displayed in figure 2 were produced by a learning
procedure that we shall describe shortly. For the moment, we want
to focus not on the learning problem but on the character of the
coefficients. We share the sense of excitement the PDP experi-
menters must have experienced as their machine converged to this
strange solution, in which this predicate seems to be portrayed as
having a more holistic character than would be suggested by its
conjunctively local representation. However, one must ask certain
questions before celebrating this as a significant discovery. In PDP
it is recognized that the lower-level coefficients appear to be grow-
ing exponentially, yet no alarm is expressed about this. In fact,
anyone who reads section 7.3 should recognize such a network as
employing precisely the type of computational structure that we
called stratification. Also, in the case of network 2, the learning
procedure required 1,208 cycles through each of the 64 possible
examples—a total of 77,312 trials (enough to make us wonder if the
time for this procedure to determine suitable coefficients increases
exponentially with the size of the retina). PDP does not address
this question. What happens when the retina has 100 elements? If
such a network required on the order of 2?°° trials to learn, most
observers would lose interest.

This observation shows most starkly how we and the authors of
PDP differ in interpreting the implications of our theory. Our ‘‘pes-

[254] Epilogue

OUTPUT

Figure 3 Parity using Gamba masks.

simistic evaluation of the perceptron’ was the assertion that, al-
though certain problems can easily by solved by perceptrons on
small scales, the computational costs become prohibitive when the
problem is scaled up. The authors of PDP seem not to recognize
that the coefficients of this symmetry machine confirm that thesis,
and celebrate this performance on a toy problem as a success
rather than asking whether it could become a profoundly ‘‘bad’’
form of behavior when scaled up to problems of larger size.

Both of these networks are in the class of what we called Gamba
perceptrons in section 13.1—that is, ordinary perceptrons whose ¢
functions are themselves perceptrons of order 1. Accordingly, we
are uncomfortable about the remark in PDP that ‘‘multilayer linear
threshold networks are potentially much more powerful than sin-
gle-layer perceptrons.”” Of course they are, in various ways—and
chapter 8 of PDP describes several studies of multilayer percep-
tron-like devices. However, most of them—Iike figure 2 above—
still belong to the class of networks discussed in Perceptrons.

Also in chapter 8 of PDP, similar methods are applied to the prob-
lem of recognizing parity—and the very construction described in
our section 13.1, through which a Gamba perceptron can recognize
parity, is rediscovered. Figure 3 here shows the results. To learn
these coefficients, the procedure described in PDP required 2,825
cycles through the 16 possible input patterns, thus consuming
45,200 trials for the network to learn to compute the parity predi-
cate for only four inputs. Is this a good result or a bad result? We
cannot tell without more knowledge about why the procedure re-
quires so many trials. Until one has some theory of that, there is no

Epilogue [255]

way to assess the significance of any such experimental result; all
one can say is that 45,200 = 45,200. In section 10.1 we saw thatifa
perceptron’s ¢ functions include only masks, the parity predicate
requires doubly exponential coefficients. If we were sure that that
was happening, this would suggest to us that we should represent
45,200 (approximately) as 2% rather than, say, as 2'°. However,
here we suspect that this would be wrong, because the input units
aren’t masks but predicates—apparently provided from the start—
that already know how to “‘count.”” These make the problem much
easier. In any case, the lesson of Perceptrons is that one cannot
interpret the meaning of such an experimental report without first
making further probes.

Learning

We haven’t yet said how those networks learned. The authors of
PDP describe a learning procedure called the ‘‘Generalized Delta
Rule”—we’ll call it GD—as a new breakthrough in connectionist
research. To explain its importance, they depict as follows the theo-
retical situation they inherited:

““A further argument advanced by Minsky and Papert against per-
ceptron-like models with hidden units is that there was no indica-
tion how such multilayer networks were to be trained. One of the
appealing features of the one-layer perceptron is the existence of a
powerful learning procedure, the perceptron convergence proce-
dure of Rosenblatt. In Minsky and Papert’s day, there was no such
powerful learning procedure for the more complex multilayer sys-
tems. This is no longer true. . . . The GD procedure provides a
direct generalization of the perceptron learning procedure which
can be applied to arbitrary networks with multiple layers and feed-
back among layers. This procedure can, in principle, learn arbi-
trary functions including, of course, parity and connectedness.”
(vol. 1, p. 113)

In Minsky and Papert’s day, indeed! In this section we shall ex-
plain why, although the GD learning procedure embodies some
useful ideas, it does not justify such sweeping claims. But in order
to explain why, and to see how the approach in the current wave of
connectionism differs from that in Perceptrons, we must first ex-
amine with some care the relationship between two branches of
perceptron theory which could be called ‘‘theory of learning’” and
“‘theory of representation.”” To begin with, one might paraphrase

[256] Epilogue

the above quotation as saying that, until recently, connectionism
had been paralyzed by the following dilemma:

Perceptrons could learn anything that they could represent, but
they were too limited in what they could represent.

Multilayered networks were less limited in what they could repre-
sent, but they had no reliable learning procedure.

According to the classical theory of perceptrons, those limitations
on representability depend on such issues as whether a given predi-
cate P can be represented as a perceptron defined by a given set ®
on a given retina, whether P is of finite order, whether P can be
realized with coefficients of bounded size, whether properties of
several representable predicates are inherited by combinations of
those predicates, and so forth. All the results in the first half of our
book are involved with these sorts of representational issues.
Now, when one speaks about ‘‘powerful learning procedures,’’ the
situation is complicated by the fact that, given enough input units
of sufficiently high order, even simple perceptrons can represent—
and therefore learn—arbitrary functions. Consequently, it makes
no sense to speak about ‘‘power’’ in absolute terms. Such state-
ments must refer to relative measures of sizes and scales.

As for learning, the dependability of Rosenblatt’s Perceptron Con-
vergence theorem of section 11.1—let’s call it PC for short—is
very impressive: If it is possible at all to represent a predicate P as
a linear threshold function of a given set of predicates ®, then the
PC procedure will eventually discover some particular set of
coefficients that actually represents P. However, this is not, in
itself, a sufficient reason to consider PC interesting and important,
because that theorem says nothing about the crucial issue of
efficiency. PC is not interesting merely because it provides a sys-
tematic way to find suitable coefficients. One could always take
recourse, instead, to simple, brute-force search—because, given
that some solution exists, one could simply search through all pos-
sible integer coefficient vectors, in order of increasing magnitude,
until no further ‘‘errors” occurred. But no one would consider
such an exhaustive process to be an interesting foundation for a
learning theory.

Epilogue [257]

What, then, makes PC seem significant? That it discovers those
coefficients in ways that are intriguing in several other important
respects. The PC procedure seems to satisfy many of the intuitive
requirements of those who are concerned with modeling what
really happens in a biological nervous system. It also appeals to
both our engineering aesthetic and our psychological aesthetic by
serving simultaneously as both a form of guidance by error correc-
tion and a form of hill-climbing. In terms of computational effi-
ciency, PC seems much more efficient than brute-force procedures
(although we have no rigorous and general theory of the condi-
tions under which that will be true). Finally, PC is so simple mathe-
matically as to make one¢ wish to believe that it reflects something real.

Hill-Climbing and the Generalized Delta Procedure

Suppose we want to find the maximum value of a given function
F(x,y,z, .. .)of n variables. The extreme brute-force solution is to
calculate the function for all sets of values for the variables and
then select the point for which F had the largest value. The ap-
proach we called hill-climbing in section 11.3 is a local procedure
designed to attempt to find that global maximum. To make this
subject more concrete, it is useful to think of the two-dimensional
case in which the x—y plane is the ground and z = F(x,y) is the
elevation of the point (x,y,z) on the surface of a real physical hill.
Now, imagine standing on the hill in a fog so dense that only the
immediate vicinity is visible. Then the only resort is to use some
diameter-limited local process. The best-known method is the
method known as ‘‘steepest ascent,”” discussed in section 11.6:
First determine the slope of the surface in various directions from
the point where you are standing, then choose the direction that
most rapidly increases your altitude and take a step of a certain size
in that direction. The hope is that, by thus climbing the slope, you
will eventually reach the highest point.

It is both well known and obvious that hill-climbing does not al-
ways work. The simplest way to fail is to get stuck on a local
maximum—an isolated peak whose altitude is relatively in-
significant. There simply is no local way for a hill-climbing proce-
dure to be sure that it has reached a global maximum rather than
some local feature of topography (such as a peak, a ridge, or a
plain) on which it may get trapped. We showed in section 11.6 that
PC is equivalent (in a peculiar sense) to a hill-climbing procedure
that works its way to the top of a hill whose geometry can actually

[258] Epilogue

be proved not to have any such troublesome local features—
provided that there actually exists some perceptron-weight vector
solution A* to the problem. Thus, one could argue that perceptrons
“‘work’’ on those problems not because of any particular virtue of
the perceptrons or of their hill-climbing procedures but because the
hills for those soluble problems have clean topographies. What are
the prospects of finding a learning procedure that works equally
well on all problems, and not merely on those that have linearly
separable decision functions? The authors of PDP maintain that
they have indeed discovered one:

‘“Although our learning results do not guarantee that we can find a
solution for all solvable problems, our analyses and results have
shown that, as a practical matter, the error propagation scheme
leads to solutions in virtually every case. In short, we believe that
we have answered Minsky and Papert’s challenge and have found a
learning result sufficiently powerful to demonstrate that their pes-
simism about learning in multilayer machines was misplaced.”’
(vol. 1, p. 361)

But the experiments in PDP, though interesting and ingenious, do
not actually demonstrate any such thing. In fact, the ‘‘powerful
new learning result’’ is nothing other than a straightforward hill-
climbing algorithm, with all the problems that entails. To see how
GD works, assume we are given a network of units interconnected
by weighted, unidirectional links. Certain of these units are con-
nected to input terminals, and certain others are regarded as output
units. We want to teach this network to respond to each (vector)
input pattern X, with a specified output vector Y,. How can we find
a set of weights w = {w;} that will accomplish this? We could try to
do it by hill-climbing on the space of Ws, provided that we could
define a suitable measure of relative altitude or ‘‘success.”” One
problem is that there cannot be any standard, universal way to
measure errors, because each type of error has different costs in
different situations. But let us set that issue aside and do what
scientists often do when they can’t think of anything better: sum
the squares of the differences. So, if X(W,X) is the network’s out-
put vector for internal weights W and inputs X, define the altitude
function E(W) to be this sum:

EW) = — > [Y,~ Y(W, X))l
all input
patterns p

Epilogue [259]

In other words, we compute our measure of success by presenting
successively each stimulus X, to the network. Then we compute
the (vector) difference between the actual output and the desired
output. Finally, we add up the squares of the magnitudes of those
differences. (The minus sign is simply for thinking of climbing up
instead of down.) The error function E will then have a maximum
possible value of zero, which will be achieved if and only if the
machine performs perfectly. Otherwise there will be at least one
error and E(W) will be negative. Then all we have to is climb the hill
E(W) defined over the (high-dimensional) space of weight vectors
W. If our paths reaches a W for which E(W) is zero, our problem
will be solved and we will be able to say that our machine has
“‘learned from its experience.”’

We'll use a process that climbs this hill by the method of steepest
ascent. We can do this by estimating, at every step, the partial
derivatives 8E/dw;; of the total error with respect to each compo-
nent of the weight vector. This tells us the direction of the gradient
vector dE/dW, and we then proceed to move a certain distance in
that direction. This is the mathematical character of the General-
ized Delta procedure, and it differs in no significant way from older
forms of diameter-limited gradient followers.

Before such a procedure can be employed, there is an obstacle to
overcome. One cannot directly apply the method of gradient ascent
to networks that contain threshold units. This is because the
derivative of a step-function is zero, whenever it exists, and hence
no gradient is defined. To get around this, PDP applies a smoothing
function to make those threshold functions differentiable. The
trick is to replace the threshold function for each unit with a mono-
tonic and differentiable function of the sum of that unit’s inputs.
This permits the output of each unit to encode information about
the sum of its inputs while still retaining an approximation to the
perceptron’s decision-making ability. Then gradient ascent be-
comes more feasible. However, we suspect that this smoothing
trick may entail a large (and avoidable) cost when the predicate to
be learned is actually a composition of linear threshold functions.
There ought to be a more efficient alternative based on how much
each weight must be changed, for each stimulus, to make the local
input sum cross the threshold.

[260] Epilogue

In what sense is the particular hill-climbing procedure GD more
powerful than the perceptron’s PC? Certainly GD €an be applied to
more networks than PC can, because PC can operate only on the
connections between one layer of ¢ units and a single output unit.
GD, however, can modify the weights in an arbitrary multilayered
network, including nets containing loops. Thus, in contrast to the
perceptron (which is equipped with some fixed set of ¢s that can
never be changed), GP can be regarded as able to change the
weights inside the ¢s. Thus GD promises, in effect, to be able
discover useful new ¢ functions—and many of the experiments
reported in PDP demonstrate that this often works.

A natural way to estimate the gradient of E(W) is to estimate 0E/dw;;
by running through the entire set of inputs for each weight. How-
ever, for large networks and large problems that could be a hor-
rendous computation. Fortunately, in a highly connected network,
all those many components of the gradient are not independent of
one another, but are constrained by the algebraic ‘‘chain rule’’ for
the derivatives of composite functions. One can exploit those con-
straints to reduce the amount of computation by applying the chain-
rule formula, recursively, to the mathematical description of the
network. This recursive computation is called ‘‘back-propagation’
in PDP. It can substantially reduce the amount of calculation for
each hill-climbing step in networks with many connections. We have
the impression that many people in the connectionist community do
not understand that this is merely a particular way to compute a
gradient and have assumed instead that back-propagation is a new
learning scheme that somehow gets around the basic limitations of
hill-climbing.

Clearly GD would be far more valuable than PC if it could be made
to be both efficient and dependable. But virtually nothing has been
proved about the range of problems upon which GD works both
efficiently and dependably. Indeed, GD can fail to find a solution
when one exists, so in that narrow sense it could be considered less
powerful than PC.

In the early years of cybernetics, everyone understood that hill-
climbing was always available for working easy problems, but that
it almost always became impractical for problems of larger sizes

Epilogue [261]

and complexities. We were very pleased to discover (see section
11.6) that PC could be represented as hill-climbing; however, that
very fact led us to wonder whether such procedures could depend-
ably be generalized, even to the limited class of multilayer ma-
chines that we named Gamba perceptrons. The situation seems not
to have changed much—we have seen no contemporary connec-
tionist publication that casts much new theoretical light on the
situation. Then why has GD become so popular in recent years? In
part this is because it is so widely applicable, and because it does
indeed yield new results (at least on problems of rather small
scale). Its reputation also gains, we think, from its being presented
in forms that share, albeit to a lesser degree, the biological plausi-
bility of PC. But we fear that its reputation also stems from
unfamiliarity with the manner in which hill-climbing methods dete-
riorate when confronted with larger-scale problems.

In any case, little good can come from statements like ‘‘as a practi-
cal matter, GD leads to solutions in virtually every case’ or “‘GD
can, in principle, learn arbitrary functions.’” Such pronouncements
are not merely technically wrong; more significantly, the pretense
that problems do not exist can deflect us from valuable insights that
could come from examining things more carefully. As the field of
connectionism becomes more mature, the quest for a general solution
to all learning problems will evolve into an understanding of which
types of learning processes are likely to work on which classes
of problems. And this means that, past a certain point, we won’t be
able to get by with vacuous generalities about hill-climbing. We
will really need to know a great deal more about the nature of those
surfaces for each specific realm of problems that we want to solve.

On the positive side, we applaud those who bravely and roman-
tically are empirically applying hill-climbing methods to many new
domains for the first time, and we expect such work to result in
important advances. Certainly these researchers are exploring net-
works with architectures far more complex than those of percep-
trons, and some of their experiments already have shown indica-
tions of new phenomena that are well worth trying to understand.

Scaling Problems Up in Size
Experiments with toy-scale problems have proved as fruitful in
artificial intelligence as in other areas of science and engineering.

[262] Epilogue

Many techniques and principles that ultimately found real applica-
tions were discovered and honed in microworlds small enough to
comprehend yet rich enough to challenge our thinking. But not
every phenomenon encountered in dealing with small models can
be usefully scaled up. Looking at the relative thickness of the legs
of an ant and an elephant reminds us that physical structures do not
always scale linearly: an ant magnified a thousand times would
collapse under its own weight. Much of the theory of computa-
tional complexity is concerned with questions of scale. If it takes
100 steps to solve a certain kind of equation with four terms, how
many steps will it take to solve the same kind of equation with eight
terms? Only 200, if the problem scales linearly. But for other prob-
lems it will take not twice 100 but 100 squared.

For example, the Gamba perceptron of figure 2 needs only two ¢
functions rather than the six required in figure 1. In neither of these
two toy-sized networks does the number seem alarmingly large.
One network has fewer units; the other has smaller coefficients.
But when we examine how those numbers grow with retinas of
increasing size, we discover that whereas the coefficients of figure
1 remain constant, those of figure 2 grow exponentially. And, pre-
sumably, a similar price must be paid again in the number of repeti-
tions required in order to learn.

In the examination of theories of learning and problem solving, the
study of such growths in cost is not merely one more aspect to be
taken into account; in a sense, it is the only aspect worth consider-
ing. This is because so many problems can be solved “‘in principle””’
by exhaustive search through a suitable space of states. Of course,
the trouble with that in practice is that there is usually an exponen-
tial increase in the number of steps required for an exhaustive
search when the scale of the problem is enlarged. Consequently,
solving toy problems by methods related to exhaustive search
rarely leads to practical solutions to larger problems. For example,
though it is easy to make an exhaustive-search machine that never
loses a game of noughts and crosses, it is infeasible to do the same
for chess. We do not know if this fact is significant, but many of the
small examples described in PDP could have been solved as
quickly by means of exhaustive search—that is, by systematically
assigning and testing all combinations of small integer weights.

Epilogue [263]

When we started our research on perceptrons, we had seen many
interesting demonstrations of perceptrons solving problems of
very small scale but not doing so well when those problems were
scaled up. We wondered what was going wrong. Our first “*handle”’
on how to think about scaling came with the concept of the order of
a predicate. If a problem is of order N, then the number of ¢s for
the corresponding perceptron need not increase any faster than as
the Nth power of R. Then, whenever we could show that a given
problem was of low order, we usually could demonstrate that per-
ceptron-like networks could do surprisingly well on that problem.
On the other hand, once we developed the more difficult tech-
niques for showing that certain other problems have unbounded
order, this raised alarming warning flags about extending their so-
lutions to larger domains.

Unbounded order was not the only source of scaling failures. An-
other source—one we had not anticipated until the later stages of
our work—involved the size, or rather the information content, of
the coefficients. The information stored in connectionist systems is
embodied in the strengths of weights of the connections between
units. The idea that learning can take place by changing such
strengths has a ring of biological plausibility, but that plausibility
fades away if those strengths are to be represented by numbers that
must be accurate to ten or twenty decimal orders of significance.

The Problem of Sampling Variance

Our description of the Generalized Delta Rule assumes that it is
feasible to compute the new value of E(W) at every step of the
climb. The processes discussed in chapter 8 of PDP typically re-
quire only on the order of 100,000 iterations, a range that is easily
accessible to computers (but that might in some cases strain our
sense of biological plausibility). However, it will not be practical,
with larger problems, to cycle through all possible input patterns.
This means that when precise measures of E(W) are unavailable,
we will be forced to act, instead, on the basis of incomplete sam-
ples—for example, by making a small hill-climbing step after each
reaction to a stimulus. (See the discussion of complete versus in-
cremental methods in subsection 12.1.1.) When we can no longer
compute dE/dW precisely but can only estimate its components,
then the actual derivative will be masked by a certain amount of

[264] Epilogue

sampling noise. The text of PDP argues that using sufficiently small
steps can force the resulting trajectory to come arbitrarily close to
that which would result from knowing dE/dW precisely. When we
tried to prove this, we were led to suspect that the choice of step
size may depend so much on the higher derivatives of the smooth-
ing functions that large-scale problems could require too many
steps for such methods to be practical.

So far as we could tell, every experiment described in chapter 8 of
PDP involved making a complete cycle through all possible input
situations before making any change in weights. Whenever this is
feasible, it completely eliminates sampling noise—and then even
the most minute correlations can become reliably detectable, be-
cause the variance is zero. But no person or animal ever faces
situations that are so simple and arranged in so orderly a manner as
to provide such cycles of teaching examples. Moving from small to
large problems will often demand this transition from exhaustive to
statistical sampling, and we suspect that in many realistic situa-
tions the resulting sampling noise would mask the signal com-
pletely. We suspect that many who read the connectionist litera-
ture are not aware of this phenomenon, which dims some of the
prospects of successfully applying certain learning procedures to
large-scale problems.

Problems of Scaling

In principle, connectionist networks offer all the potential of uni-
versal computing devices. However, our examples of order and
coefficient size suggest that various kinds of scaling problems are
likely to become obstacles to attempts to exploit that potential.
Fortunately, our analysis of perceptrons does not suggest that con-
nectionist networks need always encounter these obstacles. In-
deed, our book is rich in surprising examples of tasks that simple
perceptrons can perform using relatively low-order units and small
coefficients. However, our analysis does show that paraliel net-
works are, in general, subject to serious scaling phenomena. Con-
sequently, researchers who propose such models must show that,
in their context, those phenomena do not occur.

The authors of PDP seem disinclined to face such problems. They
seem content to argue that, although we showed that single-layer
networks cannot solve certain problems, we did not know that

Epilogue [265]

there could exist a powerful learning procedure for multilayer net-
works—to which our theorems no longer apply. However, strictly
speaking, it is wrong to formulate our findings in terms of what
perceptrons can and cannot do. As we pointed out above, percep-
trons of sufficiently large order can represent any finite predicate.
A Dbetter description of what we did is that, in certain cases, we
established the computational costs of what perceptrons can do as
a function of increasing problem size. The authors of PDP show
little concern for such issues, and usually seem content with exper-
iments in which small multilayer networks solve particular in-
stances of small problems.

What should one conclude from such examples? A person who
thinks in terms of can versus can’t will be tempted to suppose that
if toy machines can do something, then larger machines may well
do it better. One must always probe into the practicality of a pro-
posed learning algorithm. It is no use to say that ‘‘procedure P is
capable of learning to recognize pattern X’’ unless one can show
that this can be done in less time and at less cost than with exhaus-
tive search. Thus, as we noted, in the case of symmetry, the authors of
PDP actually recognized that the coefficients were growing as
powers of 2, yet they did not seem to regard this as suggesting that
the experiment worked only because of its very small size. But
scientists who exploit the insights gained from studying the single-
layer case might draw quite different conclusions.

The authors of PDP recognize that GD is a form of hill-climber, but
they speak as though becoming trapped on local maxima were
rarely a serious problem. In reporting their experiments with learn-
ing the XOR predicate, they remark that this occurred ‘‘in only two
cases . . . in hundreds of times.”” However, that experiment in-
volved only the toy problem of learning to compute the XOR of two
arguments. We conjecture that learning XOR for larger numbers of
variables will become increasingly intractable as we increase the
numbers of input variables, because by its nature the underlying
parity function is absolutely uncorrelated with any function of
fewer variables. Therefore, there can exist no useful correlations
among the outputs of the lower-order units involved in computing
it, and that leads us to suspect that there is little to gain from
following whatever paths are indicated by the artificial introduc-
tion of smoothing functions that cause partial derivatives to exist.

[266] Epilogue

The PDP experimenters encountered a more serious local-maxi-
mum problem when trying to make a network learn to add two
binary numbers—a problem that contains an embedded XOR prob-
lem. When working with certain small networks, the system got
stuck reliably. However, the experimenters discovered an inter-
esting way to get around this difficulty by introducing longer chains
of intermediate units. We encourage the reader to study the discus-
sion starting on page 341 of PDP and try to make a more complete
theoretical analysis of this problem. We suspect that further study
of this case will show that hill-climbing procedures can indeed get
multilayer networks to learn to do multidigit addition. However,
such a study should be carried out not to show that ‘‘networks are
good’’ but to see which network architectures are most suitable for
enabling the information required for ‘‘carrying’ to flow easily
from the smaller to the larger digits. In the PDP experiment, the
network appears to us to have started on the road toward inventing
the technique known to computer engineers as ‘‘carry jumping.”’

To what extent can hill-climbing systems be made to solve hard
problems? One might object that this is a wrong question because
“hard”’ is so ill defined. The lesson of Perceptrons is that we must
find ways to make such questions meaningful. In the case of hill-
climbing, we need to find ways to characterize the types of prob-
lems that lead to the various obstacles to climbing hills, instead of
ignoring those difficulties or trying to find universal ways to get
around them.

The Society of Mind

The preceding section was written as though it ought to be the
principal goal of research on network models to determine in which
situations it will be feasible to scale their operations up to deal with
increasingly complicated problems. But now we propose a some-
what shocking alternative: Perhaps the scale of the toy problem is
that on which, in physiological actuality, much of the functioning
of intelligence operates. Accepting this thesis leads into a way of
thinking very different from that of the connectionist movement.
We have used the phrase ‘society of mind’’ to refer to the idea that
mind is made up of a large number of components, or ‘‘agents,”’
each of which would operate on the scale of what, if taken in

Epilogue [267]

isolation, would be little more than a toy problem. [See Marvin
Minsky, The Society of Mind (Simon and Schuster, 1987) and Sey-
mour Papert, Mindstorms (Basic Books, 1982).]

To illustrate this idea, let’s try to compare the performance of the
symmetry perceptron in PDP with human behavior. An adult hu-
man can usually recognize and appreciate the symmetries of a
kaleidoscope, and that sort of example leads one to imagine that
people do very much better than simple perceptrons. But how
much can people actually do? Most people would be hard put to be
certain about the symmetry of a large pattern. For example, how
long does it take you to decide whether or not the following pattern
is symmetrical?

DB4HWUK85HCNZEWJKRKJWEZNCH58KUWH4BD

In many situations, humans clearly show abilities far in excess of
what could be learned by simple, uniform networks. But when we
take those skills apart, or try to find out how they were learned, we
expect to find that they were made by processes that somehow
combined the work (already done in the past) of many smaller
agencies, none of which, separately, need to work on scales much
larger than do those in PDP. Is this hypothesis consistent with the
PDP style of connectionism? Yes, insofar as the computations of
the nervous system can be represented as the operation of societies
of networks. But no, insofar as the mode of operation of those
societies of networks (as we imagine them) raises theoretical issues
of a different kind. We do not expect procedures such as GD to be
able to produce such societies. Something else is needed.

What that something must be depends on how we try to extend the
range of small connectionist models. We see two principal alterna-
tives. We could extend them either by scaling up small connection-
ist models or by combining small-scale networks into some larger
organization. In the first case, we would expect to encounter theo-
retical obstacles to maintaining GD’s effectiveness on larger,
deeper nets. And despite the reputed efficacy of other alleged rem-
edies for the deficiencies of hill-climbing, such as ‘‘annealing,”” we
stay with our research conjecture that no such procedures will
work very well on large-scale nets, except in the case of problems
that turn out to be of low order in some appropriate sense. The

[268] Epilogue

second alternative is to employ a variety of smaller networks rather
than try to scale up a single one. And if we choose (as we do) to
move in that direction, then our focus of concern as theoretical
psychologists must turn toward the organizing of small nets into
effective large systems. The idea that the lowest levels of thinking
and learning may operate on toy-like scales fits many of our com-
mon-sense impressions of psychology. For example, in the realm
of language, any normal person can parse a great many kinds of
sentences, but none of them past a certain bound of involuted
complexity. We all fall down on expressions like ‘‘the cheese that
the rat that the cat that the dog bit chased ate.”” In the realm of
vision, no one can count great numbers of things, in parallel, at a
single glance. Instead, we learn to ‘‘estimate.”” Indeed, the visual
joke in figure 0.1 shows clearly how humans share perceptrons’
inability to easily count and match, and a similar example is em-
bodied in the twin spirals of figure 5.1. The spiral example was
intended to emphasize not only that low-order perceptrons cannot
perceive connectedness but also that humans have similar limita-
tions. However, a determined person can solve the problem, given
enough time, by switching to the use of certain sorts of serial men-
tal processes.

Beyond Perceptrons

No single-method learning scheme can operate efficiently for every
possible task; we cannot expect any one type of machine to ac-
count for any large portion of human psychology. For example, in
certain situations it is best to carefully accumulate experience;
however, when time is limited, it is necessary to make hasty
generalizations and act accordingly. No single scheme can do all
things. Our human semblance of intelligence emerged from how
the brain evolved a multiplicity of ways to deal with different prob-
lem realms. We see this as a principle that underlies the mind’s
reality, and we interpret the need for many kinds of mechanisms
not as a pessimistic and scientifically constraining limitation but as
the fundamental source of many of the phenomena that artificial
intelligence and psychology have always sought to understand.
The power of the brain stems not from any single, fixed, universal
principle. Instead it comes from the evolution (in both the individ-
ual sense and the Darwinian sense) of a variety of ways to develop
new mechanisms and to adapt older ones to perform new functions.
Instead of seeking a way to get around that need for diversity, we

Epilogue [269]

have come to try to develop ‘‘society of mind’’ theories that will
recognize and exploit the idea that brains are based on many differ-
ent kinds of interacting mechanisms.

Several kinds of evidence impel us toward this view. One is the
great variety of different and specific functions embodied in the
brain’s biology. Another is the similarly great variety of phenom-
ena in the psychology of intelligence. And from a much more ab-
stract viewpoint, we cannot help but be impressed with the practi-
cal limitations of each ‘‘general’’ scheme that has been proposed—
and with the theoretical opacity of questions about how they be-
have when we try to scale their applications past the toy problems
for which they were first conceived.

Our research on perceptrons and on other computational schemes
has left us with a pervasive bias against seeking a general, domain-
independent theory of ‘‘how neural networks work.”’ Instead, we
ought to look for ways in which particular types of network models
can support the development of models of particular domains of
mental function—and vice versa. Thus, our understanding of the
perceptron’s ability to perform geometric tasks was actually based
on theories that were more concerned with geometry than with
networks. And this example is supported by a broad body of expe-
rience in other areas of artificial intelligence. Perhaps this is why
the current preoccupation of connectionist theorists with the
search for general learning algorithms evokes for us two aspects of
the early history of computation.

First, we are reminded of the long line of theoretical work that
culminated in the ‘‘pessimistic’’ theories of Goédel and Turing
about the limitations on effective computability. Yet the realization
that there can be no general-purpose decision procedure for mathe-
matics had not the slightest dampening effect on research in mathe-
matics or in computer science. On the contrary, awareness of those
limiting discoveries helped motivate the growth of rich cultures
involved with classifying and understanding more specialized al-
gorithmic methods. In other words, it was the realization that seek-
ing overgeneral solution methods would be as fruitless as—and
equivalent to—trying to solve the unsolvable halting problem for
Turing machines. Abandoning this then led to seeking progress in
more productive directions.

[270] Epilogue

Our second thought is about how the early research in artificial
intelligence tended to focus on general-purpose algorithms for rea-
soning and problem solving. Those general methods will always
play their roles, but the most successful applications of Al research
gained much of their practical power from applying specific knowl-
edge to specific domains. Perhaps that work has now moved too far
toward ignoring general theoretical considerations, but by now we
have learned to be skeptical about the practical power of unre-
strained generality.

Interaction and Insulation

Evolution seems to have anticipated these discoveries. Although
the nervous system appears to be a network, it is very far from
being a single, uniform, highly interconnected assembly of units
that each have similar relationships to the others. Nor are all brain
cells similarly affected by the same processes. It would be better to
think of the brain not as a single network whose elements operate
in accord with a uniform set of principles but as a network whose
components are themselves networks having a large variety of dif-
ferent architectures and control systems. This ‘‘society of mind”’
idea has led our research perspective away from the search for
algorithms, such as GD, that were hoped to work across many
domains. Instead, we were led into trying to understand what
specific kinds of processing would serve specific domains.

We recognize that the idea of distributed, cooperative processing
has a powerful appeal to common sense as well to computational
and biological science. Our research instincts tell us to discover as
much as we can about distributed processes. But there is another
concept, complementary to distribution, that is no less strongly
supported by the same sources of intuition. We’ll call it insulation.

Certain parallel computations are by their nature synergistic and
cooperative: each part makes the others easier. But the And/Or of
theorem 4.0 shows that under other circumstances, attempting to
make the same network perform two simple tasks at the same time
leads to a task that has a far greater order of difficulty. In those
sorts of circumstances, there will be a clear advantage to having
mechanisms, not to connect things together, but to keep such tasks
apart. How can this be done in a connectionist net? Some recent
work hints that even simple multilayer perceptron-like nets can

Epilogue [271]

learn to segregate themselves into quasi-separate components—
and that suggests (at least in principle) research on uniform learn-
ing procedures. But it also raises the question of how to relate
those almost separate parts. In fact, research on networks in which
different parts do different things and learn those things in different
ways has become our principal concern. And that leads us to ask
how such systems could develop managers for deciding, in differ-
ent circumstances, which of those diverse procedures to use.

For example, consider all the specialized agencies that the human
brain employs to deal with the visual perception of spatial scenes.
Although we still know little about how all those different agencies
work, the end result is surely even more complex than what we
described in section 13.4. Beyond that, human scene analysis also
engages our memories and goals. Furthermore, in addition to all
the systems we humans use to dissect two-dimensional scenes into
objects and relationships, we also possess machinery for exploiting
stereoscopic vision. indeed, there appear to be many such agen-
cies—distinct ones that employ, for example, motion cues, dis-
parities, central correlations of the Julesz type, and memory-based
frame-array-like systems that enable us to imagine and virtually
““see’” the occluded sides of familiar objects. Beyond those, we
seem also to have been supplied with many other visual agencies—
for example, ones that are destined to learn to recognize faces and
expressions, visual cliffs, threatening movements, sexual attrac-
tants, and who knows how many others that have not been discov-
ered yet. What mechanisms manage and control the use of all those
diverse agencies? And from where do those managers come?

Stages of Development

In Mindstorms and in The Society of Mind, we explained how the
idea of intermediate, hidden processes might well account for some
phenomena discovered by Piaget in his experiments on how chil-
dren develop their concepts about the ‘‘conservation of quantity.”
We introduced a theory of mental growth based on inserting, at
various times, new inner layers of ‘‘management’ into already
existing networks. In particular, we argued that, to learn to make
certain types of comparisons, a child’s mind must construct a mul-
tilayer structure that we call a “‘society-of-more.’” The lower levels
of that net contain agents specialized to make a variety of spatial

[272] Epilogue

and temporal observations. Then the higher-level agents learn to
classify, and then control, the activities of the lower ones. We
certainly would like to see a demonstration of a learning process
that could spontaneously produce the several levels of agents
needed to embody a concept as complex as that. Chapter 17 of The
Society of Mind offers several different reasons why this might be
very difficult to do except in systems under systematic controls,
both temporal and architectural. We suspect that it would require
far too long, in comparison with an infant’s months of life, to create
sophisticated agencies entirely by undirected, spontaneous learn-
ing. Each specialized network must begin with promising ingre-
dients that come either from prior stages of development or from
some structural endowment that emerged in the course of organic
evolution.

When should new layers of control be introduced? If managers are
empowered too soon, when their workers still are too immature,
they won’t be able to accomplish enough. (If every agent could
learn from birth, they would all be overwhelmed by infantile ideas.)
But if the managers arrive too late, that will retard all further
growth. Ideally, every agency’s development would be controlled
by yet another agency equipped to introduce new agents just when
they are needed—that is, when enough has been learned to justify
the start of another stage. However, that would require a good deal
of expertise on the controlling agency’s part. Another way—much
easier to evolve—would simply enable various agencies to estab-
lish new connections at genetically predetermined times (perhaps
while also causing lower-level parts to slow further growth). Such a
scheme could benefit a human population on the whole, although
it might handicap individuals who, for one reason or another, hap-
pen to move ahead of or behind that inborn ‘‘schedule.”” In any
case, there are many reasons to suspect that the parts of any sys-
tem as complex as a human mind must grow through sequences of
stage-like episodes.

Architecture and Specialization

The tradition of connectionism has always tried to establish two
claims: that connectionist networks can accomplish interesting
tasks and that they can learn to do so with no explicit program-
ming. But a closer look reveals that rarely are those two virtues

Epilogue [273]

present in the same device. It is true that networks, taken as a
class, can do virtually anything. However, each particular type of
network can best learn only certain types of things. Each particular
network we have seen seems relatively limited. Yet our wondrous
brains are themselves composed of connected networks of cells.

We think that the difference in abilities comes from the fact that a
brain is not a single, uniformly structured network. Instead, each
brain contains hundreds of different types of machines, intercon-
nected in specific ways which predestine that brain to become a
large, diverse society of partially specialized agencies. We are born
with specific parts of our brains to serve every sense and muscle
group, and with perhaps separate sections for physical and social
matters (e.g., natural sounds versus social speech, inanimate
scenes versus facial expressions, mechanical contacts versus so-
cial caresses). Our brains also embody proto-specialists involved
with hunger, laughter, anger, fear, and perhaps hundreds of other
functions that scientists have not yet isolated. Many thousands of
genes must be involved in constructing specific internal architec-
tures for each of those highly evolved brain centers and in laying
out the nerve bundles that interconnect them. And although each
such system is embodied in the form of a network-based learning
system, each almost surely also learns in accord with somewhat
different principles.

Why did our brains evolve so as to contain so many specialized
parts? Could not a single, uniform network learn to structure itself
into divisions with appropriate architectures and processes? We
think that this would be impractical because of the problem of repre-
senting knowledge. In order for a machine to learn to recognize or
perform X, be it a pattern or a process, that machine must in one
sense or another learn to represent or embody X. Doing that
efficiently must exploit some happy triadic relationship between
the structure of X, the learning procedure, and the initial architec-
ture of the network. It makes no sense to seek the ‘‘best’’ network
architecture or learning procedure because it makes no sense to
say that any network is efficient by itself: that makes sense only in
the context of some class of problems to be solved. Different kinds
of networks lend themselves best to different kinds of representa-
tions and to different sorts of generalizations. This means that the
study of networks in general must include attempts, like those in

[274] Epilogue

this book, to classify problems and learning processes; but it must
also include attempts to classify the network architectures. This is
why we maintain that the scientific future of connectionism is tied
not to the search for some single, universal scheme to solve all
problems at once but to the evolution of a many-faceted technology
of “‘brain design’’ that encompasses good technical theories about
the analysis of learning procedures, of useful architectures, and of
organizational principles to use when assembling those compo-
nents into larger systems.

Symbolic versus Distributed

Let us now return to the conflict posed in our prologue: the war
between the connectionists and the symbolists. We hope to make
peace by exploiting both sides.

There are important virtues in the use of parallel distributed net-
works. They certainly often offer advantages in simplicity and in
speed. And above all else they offer us ways to learn new skills
without the pain and suffering that might come from comprehend-
ing how. On the darker side, they can limit large-scale growth
because what any distributed network learns is likely to be quite
opaque to other networks connected to it.

Symbolic systems yield gains of their own, in versatility and un-
limited growth. Above all else they offer us the prospect that com-
puters share: of not being bound by the small details of the parts of
which they are composed. But that, too, has its darker side: sym-
bolic processes can evolve worlds of their own, utterly divorced
from their origins. Perceptrons can never go insane—but the same
cannot be said of a brain.

Now, what are symbols, anyway? We usually conceive of them as
compact things that represent more complex things. But what,
then, do we mean by represent? It simply makes no sense, by itself,
to say that ‘S represents 7,”” because the significance of a symbol
depends on at least three participants: on S, on 7, and on the
context of some process or user U. What, for example, connects
the word table to any actual, physical table? Since the words peo-
ple use are the words people learn, clearly the answer must be that
there is no direct relationship between § and T, but that there is a
more complex triadic relationship that connects a symbol, a thing,

Epilogue [275]

and a process that is active in some person’s mind. Furthermore,
when the term symbol is used in the context of network psychol-
ogy, it usually refers to something that is reassignable so that it can
be made to represent different things and so that the symbol-using
processes can learn to deal with different symbols.

What do we mean by distributed? This usually refers to a system in
which each end-effect comes not from any single, localized ele-
ment-part, but from the interactions of many contributors, all
working at the same time. Accordingly, in order to make a desired
change in the output of a distributed system, one must usually alter
a great many components. And changing the output of any particu-
lar component will rarely have a large effect in any particular cir-
cumstance; instead, such changes will tend to have small effects in
many different circumstances.

Symbols are tokens or handles with which one specialist can ma-
nipulate representations within another specialist. But now, sup-
pose that we want one agency to be able to exploit the knowledge in
another agency. So long as we stay inside a particular agency, it
may be feasible to use representations that involve great hosts of
internal interactions and dependencies. But the fine details of such
a representation would be meaningless to any outside agency that
lacks access to, or the capacity to deal with, all that fine detail.
Indeed, if each representation in the first agency involves activities
that are uniformly distributed over a very large network, then di-
rect communication to the other agency would require so many
connection paths that both agencies would end up enmeshed to-
gether into a single, uniform net—and then all the units of both
would interact.

How, then, could networks support symbolic forms of activities?
We conjecture that, inside the brain, agencies with different jobs
are usually constrained to communicate with one another only
through neurological bottlenecks (i.e., connections between rela-
tively small numbers of units that are specialized to serve as sym-
bolic recognizers and memorizers). The recognizers learn to en-
code significant features of the representation active in the first
network, and the memorizers learn to evoke an activity that can
serve a corresponding function in the receiving network. But in
order to prevent those features from interfering too much with one

[276] Epilogue

another, there must be an adequate degree of insulation between
the units that serve these purposes. And that need for insulation
can lead to genuine conflicts between the use of symbolic and dis-
tributed representations. This is because distributed representa-
tions make it hard to combine (in arbitrary, learnable ways) the
different fragments of knowledge embodied in-different representa-
tions. The difficulty arises because the more distributed is the rep-
resentation of each fragment, the fewer fragments can be simulta-
neously active without interfering with one another. Sometimes
those interactions can be useful, but in general they will be destruc-
tive. This is discussed briefly in section 8.2 of The Society of Mind:

““The advantages of distributed systems are not alternatives to the
advantages of insulated systems: the two are complementary. To
say that the brain may be composed of distributed systems is not
the same as saying that it /s a distributed system—that is, a single
network in which all functions are uniformly distributed. We do not
believe that any brain of that sort could work, because the interac-
tions would be uncontrollable. To be sure, we have to explain how
different ideas can become connected to one another—but we must
also explain what keeps our separate memories intact. For ex-
ample, we praised the power of metaphors that allow us to mix the
ideas we have in different realms—but all that power would be lost
if all our metaphors got mixed! Similarly, the architecture of a
mind-society must encourage the formation and maintenance of
distinct levels of management by preventing the formation of con-
nections between agencies whose messages have no mutual
significance. Some theorists have assumed that distributed systems
are inherently both robust and versatile but, actually, those attri-
butes are more likely to conflict. Systems with too many interac-
tions of different types will tend to be fragile, while systems with
too many interactions of similar types will tend to be too redundant
to adapt to novel situations and requirements.”’

A larger-scale problem is that the use of widely distributed repre-
sentations will tend to oppose the formulation of knowledge about
knowledge. This is because information embodied in distributed
form will tend to be relatively inaccessible for use as a subject upon
which other knowledge-based processes can operate. Conse-
quently (we conjecture), systems that use highly distributed repre-
sentations will tend to become conceptual dead ends as a result of
their putting performance so far ahead of comprehension as to

Epilogue [277]

retard the growth of reflective thought. Too much diffusing of in-
formation can make it virtually impossible (for other portions of
the brain) to find out how results, however useful, are obtained.
This would make it very difficult to dissect out the components that
might otherwise be used to construct meaningful variations and
generalizations. Of course such problems won’t become evident in
experiments with systems that do only simple things, but we can
expect to see such problems grow when systems try to learn to do
more complex things. With highly distributed systems, we should
anticipate that the accumulation of internal interactions may even-
tually lead to intractable credit-assignment problems. Perhaps the
only ultimate escape from the limitations of internal interactions is
to evolve toward organizations in which each network affects
others primarily through the use of serial operations and special-
ized short-term-memory systems, for although seriality is rela-
tively slow, its uses makes it possible to produce and control in-
teractions between activities that occur at different and separate
places and times.

The Parallel Paradox

It is often argued that the use of distributed representations enables
a system to exploit the advantages of parallel processing. But what
are the advantages of parallel processing? Suppose that a certain
task involves two unrelated parts. To deal with both concurrently,
we would have to maintain their representations in two decoupled
agencies, both active at the same time. Then, should either of those
agencies become involved with two or more subtasks, we would
have to deal with each of them with no more than a quarter of the
available resources. If that proceeded on and on, the system would
become so fragmented that each job would end up with virtually no
resources assigned to it. In this regard, distribution may oppose
parallelism: the more distributed a system is—that is, the more
intimately its parts interact—the fewer different things it can do at
the same time. On the other side, the more we do separately in
parallel, the less machinery can be assigned to each element of
what we do, and that ultimately leads to increasing fragmentation
and incompetence.

This is not to say that distributed representations and parallel pro-
cessing are always incompatible. When we simultaneously activate

[278] Epilogue

two distributed representations in the same network, they will be
forced to interact. In favorable circumstances, those interactions
can lead to useful parallel computations, such as the satisfaction of
simultaneous constraints. But that will not happen in general; it
will occur only when the representations happen to mesh in suit-
ably fortunate ways. Such problems will be especially serious
when we try to train distributed systems to deal with problems that
require any sort of structural analysis in which the system must
represent relationships between substructures of related types—
that is, problems that are likely to compete for the same limited
resources.

On the positive side, there are potential virtues to embodying
knowledge in the form of networks of units with weighted intercon-
nections. For example, distributed representations can sometimes
be used to gain the robustness of redundancy, to make machines
that continue to work despite having injured, damaged, or unreli-
able components. They can embody extremely simple learning al-
gorithms, which operate in parallel with great speed.

Representations and Generalizations

It is often said that distributed representations are inherently pos-
sessed of useful holistic qualities; for example, that they have in-
nate tendencies to recognize wholes from partial cues—even for
patterns they have not encountered before. Phenomena of that sort
are often described with such words as generalization, induction,
or gestalt. Such phenomena certainly can emerge from connection-
ist assemblies. The problem is that, for any body of experience,
there are always many kinds of generalizations that can be made.
The ones made by any particular network are likely to be inappro-
priate unless there happens to be an appropriate relationship be-
tween the network’s architecture and the manner in which the
problem is represented. What makes architectures and representa-
tions appropriate? One way to answer that is to study how they
affect which signals will be treated as similar.

Consider the problem of comparing an arbitrary input pattern with
a collection of patterns in memory, to find which memory is most
similar to that stimulus. In section 12.7 we conjectured that solving
best-match problems will always be very tedious when serial hard-

Epilogue [279]

ware is used. PDP suggests another view in regard to parallel,
distributed machines: ‘“This is precisely the kind of problem that is
readily implemented using highly parallel algorithms of the kind we
consider.”” This is, in some ways, plausible, since a sufficiently
paralle]l machine could simultaneously match an input pattern
against every pattern in its memory. And yet the assertion is
quaintly naive, since best match means different things in different
circumstances. Which answers should be accepted as best always
depends on the domain of application. The very same stimulus may
signify food to one animal, companionship to another, and a
dangerous predator to a third. Thus, there can be no single, univer-
sal measure of how well two descriptions match; every context
requires appropriate schemes. Because of this, distributed net-
works do not magically provide solutions to such best-match prob-
lems. Instead, the functional architecture of each particular net-
work imposes its own particular sort of metrical structure on the
space of stimuli. Such structures may often be useful. Yet, that can
give us no assurance that the outcome will correspond to what an
expert observer would consider to be the very best match, given
that observer’s view of what would be the most appropriate re-
sponse in the current context or problem realm.

We certainly do not mean to suggest that networks cannot perform
useful matching functions. We merely mean to emphasize that dif-
ferent problems entail different matching criteria, and that hence
no particular type of network can induce a topology of similarity or
nearness that is appropriate for every realm. Instead, we must
assume that, over the course of time, each specialized portion of
the brain has evolved a particular type of architecture that is rea-
sonably likely to induce similarity relationships that are useful in
performing the functions to which that organ is likely (or destined)
to be assigned. Perhaps an important activity of future connection-
ist research will be to develop networks that can learn to embody
wide ranges of different, context-dependent types of matching
functions.

We have also often heard the view that machines that employ lo-
calized or symbolic representations must be inherently less capa-
ble than are distributed machines of insight, consciousness, or
sense of self. We think this stands things on their heads. It is
because our brains primarily exploit connectionist schemes that

[280] Epilogue

we possess such small degrees of consciousness, in the sense that
we have so little insight into the nature of our own conceptual
machinery. We agree that distributed representations probably are
used in virtually every part of the brain. Consequently, each
agency must learn to exploit the abilities of the others without
having direct access to compact representations of what happens
inside those other agencies. This makes direct insight infeasible;
the best such agencies can do is attempt to construct their own
models of the others on the basis of approximate; pragmatic mod-
els based on presuppositions and concepts already embodied in the
observing agency. Because of this, what appear to us to be direct
insights into ourselves must be rarely genuine and usually conjec-
tural. Accordingly, we expect distributed representations to tend
to produce systems with only limited abilities to reflect accurately
on how they do what they do. Thinking about thinking, we main-
tain, requires the use of representations that are localized enough
that they can be dissected and rearranged. Besides, distributed
representations spread out the information that goes into them.
The result of this is to mix and obscure the effects of their separate
elements. Thus their use must entail a heavy price; surely, many of
them must become ‘‘conceptual dead ends’” because the perfor-
mances that they produce emerge from processes that other agen-
cies cannot comprehend. In other words, when the representations
of concepts are distributed, this will tend to frustrate attempts of
other agencies to adapt and transfer those concepts to other con-
texts.

How much, then, can we expect from connectionist systems?
Much more than the above remarks might suggest, since reflective
thought is the lesser part of what our minds do. Most probably, we
think, the human brain is, in the main, composed of large numbers
of relatively small distributed systems, arranged by embryology
into a complex saciety that is controlled in part (but only in part) by
serial, symbolic systems that are added later. But the subsymbolic
systems that do most of the work from underneath must, by their
very character, block all the other parts of the brain from knowing
much about how they work. And this, itself, could help explain
how people do so many things yet have such incomplete ideas of
how those things are actually done.

Bibliographic Notes

The following remarks are intended to introduce the literature
of this field. This is not to be considered an attempt at historical
scholarship, for we have made no serious venture in that direc-
tion.

In a decade of work on the family of machines loosely called
perceptrons, we find an interacting evolution and refinement of
two ideas: first, the concept of realizing a predicate as a linear
threshold function of much more local predicates; second, the
idea of a convergence or “learning” theorem. The most com-
monly held version of this history sees the perceptron invented
by Rosenblatt in a single act, with the final proof of the con-
vergence theorem vindicating his insight in the face of skepticism
from the scientific world. This is an oversimplification, especially
in its taking the concept of perceptron as static. For in fact
a key part of the process leading to the convergence theorem was
the molding of the concept of the machine to the appropriate
form. (Indeed, how often does “finding the proof” of a conjec-
ture involve giving the conjecture a more provable form?)

In the early papers one sees a variety, both of machines and of
“training” procedures, converging in the course of accumulation
of mathematical insight toward the simple concepts we have used
in this book. Students interested in this evolution can read:

Rosenblatt, Frank (1959), “Two theorems of statistical separability in
the perceptron,”” Proceedings of a Symposium on the Mechanization of
Thought Processes, Her Majesty’s Stationary Office, London, pp. 421-
456;

Rosenblatt, Frank (1962), Principles of Neurodynamics, Spartan Books,
New York.

In a variety of contexts, other perceptronlike learning experiments
had been described. Quite well-known was the paper of

Samuel, Arthur L. (1959), “‘Some studies in machine learning using the
game of checkers,” IBM Journal of Research and Development, Vol. 3,
No. 3, pp. 210-223

who describes a variety of error-correcting vector addition pro-
cedures. In a later paper

Samuel, Arthur L. (1967), “‘Some studies in machine learning using the
game of checkers, Part [1,”” IBM Journal of Research and Development,
Vol. 11, No. 4, pp. 601-618

he describes studies that lead toward detecting more complex

Poss:k[&

[282] Bibliographic Notes

interactions between the partial predicates. The simple multilayer
perceptronlike machines discussed in Chapter 13 were described
in

Palmier1, G. and R. Sanna (1960), Methodos, Vol. 12, No. 48;

Gamba, A., L. Gamberini, G. Palmieri, and R. Sanna (1961), “Further
experiments with PAPA.” Nuovo Cimento Suppl. No. 2, Vol. 20, pp. 221~
231.

Some earlier reward-modified machines, further from the final
form of the perceptron, are described in

Ashby, W. Ross (1952), Design for a Brain, Wiley, New York;

Clark, Wesley A., and Farley, B. G. (1955), “*Generalization of pattern-
recognition in a self-organizing system,” Proceedings 1955 Western Joint
Computer Conference, pp. 85-111;

Minsky, M. (1954), **Neural nets and the brain-model problem,” doc-
toral dissertation, Princeton University, Princeton, N.J.;

Uttley, A. M. (1956), ““Conditional probability machines,” in Automata
Studies, Princeton University, Princeton, N.J., pp. 253-285.

The proof of the convergence theorem (Theorem 11.1) is another
example of this sort of evolution. In an abstract mathematical
sense, both theorem and proof already existed before the percep-
tron, for several people had considered the idea of solving a set
of linear inequalities by *‘relaxation’ methods—successive adjust-
ments much like those used in the perceptron proceduce. An
elegant early paper on this is

Agmon, S. (1954), “The relaxation method for linear inequalities,”
Canadian Journal of Mathematics, Vol. 6, No. 3, pp. 382-392.

In Agmon’s procedure, one computes the ®-vector that gives the
largest numerical error in the satisfaction of the linear inequality,
and uses a multiple of that vector for correction. (See §11.4.)
We do not feel sufficiently scholarly to offer an opinion on
whether this paper should deserve priority for the discovery of
the convergence theorem. It is gtHte-eleasthat the theorem would
have been instantly obvious had the cyberneticists interested in
perceptrons known about Agmon’s work.

In any case, the first proofs of the convergence theorem offered
in cybernetic circles were quite independent of the work on linear
inequalities. See, for example

Bibliographic Notes [283]

Block, H. D. (1962), ““The perceptron: a model for brain functioning,”
Reviews of Modern Physics, Vol. 34, No. 1, pp. 123 -135.

This proof was quite complicated. The first use known to us of the
simpler kind of analysis used in §11.1 is in
Papert, Seymour (1961), “Some Mathematical Models of Learning,”

Proceedings of the Fourth London Symposium on Information Theory,
C. Cherry, Editor, Academic Press, New York.

Curiously, this paper is not mentioned by any later commentators
(including the usually scholarly Nilsson) other than Rosenblatt in
Neurodynamics. The convergence theorem is well discussed, in a
variety of settings, by

Nilsson, Nils (1965), Learning Machines, McGraw-Hill, New York,

who includes a number of historical notes. Readers who consult
the London Symposium volume might also read

Minsky, Marvin, and Oliver G. Selfridge (1961), “Learning in neural
nets,” Proceedings of the Fourth London Symposium on Information
Theory, C. Cherry, Editor, Academic Press, New York.

for some discussion of the relations between convergence and hill-
climbing. Although Minsky and Papert did not yet know one
another, their papers in that volume overlap to the extent of prov-
ing the same theorem about the Bayesian optimality of linear
separation. This coincidence had no obvious connection with
their later collaboration.

As Agmon had clearly anticipated the learning aspect of the
perceptron, so had Selfridge anticipated its quality of combining
local properties to yield apparently global ones. This is seen,
for example, in

Selfridge, Oliver G. (1956), ‘‘Pattern recognition and learning,” Pro-
ceedings of the Third London Symposium of Information Theory, Aca-
demic Press, New York, p. 345.

Incidentally, we consider that there has been a strong influence of
these cybernetic ideas on the trend of ideas and discoveries in the
physiology of vision represented, for example, in

Lettvin, Jerome Y., H. Maturana, W. S. McCulloch, and W. Pitts (1959),

““What the frog’s eye tells the frog’s brain,” Proceedings of the IRE,
Vol. 47, pp. 1940-1951

[284] Bibliographic Notes

and

Hubel, D. H., and T. N. Wiesel (1959), “Receptive fields of single
neurons in the cat’s striate cortex,” Journal of Physiology, Vol. 148,
pp. 574-591.

Other ideas used in this book come from earlier models of
physiological phenomena, notably the paper of

Pitts, W., and W. S. McCulloch (1947), “How we know universals,”
Bulletin of Mathematical Biophysics, Vol. 9, pp. 127-147

which is the first we know of that treats recognition invariant
under a group by integrating or summing predicates over the
group. This paper and that of Lettvin et al. are reprinted in

McCulloch, Warren S. (1965), Embodiments of Mind, The M.1.T. Press,
Cambridge, Mass.,

and this book reprints other early attempts to pass from the local
to the global with networks of individually simple devices. In a
third paper reprinted in Embodiments of Mind

McCulloch, W. S., and Walter Pitts (1943), ““A logical calculus of the
ideas immanent in neural nets,” Bulletin of Mathematical Biophysics,
Vol. 5, pp. 115-137

will be found the prototypes of the linear threshold functions
themselves. Readers who are unfamiliar with this theory, or that
of Turing machines, are directed to the elementary exposition in

Minsky, Marvin (1967), Computation: Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, N.J.

The local-global transition has dominated several biological areas
in recent years. A most striking example is the trend in analysis
of animal behavior associated with the name of Tinbergen, as in
his classic

Tinbergen, N. (1951), The Study of Instinct, Oxford, New Y ork.

Returning to the technical aspects of perceptrons, we find that
our main subject is not represented at all in the literature. We
know of no papers that either prove that a nontrivial perceptron
cannot accomplish a given task or else show by mathematical
analysis that a perceptron can be made to compute any significant
geometric predicate. There is a vast literature about experimental
results but generally these are so inconclusive that we will refrain
from citing particular papers. In most cases that seem to show

Bibliographic Notes [285]

“success,” it can be seen that the data permits an order-1 separa-
tion, or even a conjunctively local separation! In these cases, the
authors do not mention this, though it seems inconceivable that
they could not have noticed it!

The approach closest to ours, though still quite distant, is that of

Bledsoe, W. W._, and I. Browning (1959), ‘“Pattern recognition and
reading by machine,” Proceedings of the Eastern Joint Computer Con-
ference, 1959, pp. 225-232.

Another early paper that recognizes the curiously neglected fact
that partial predicates work better when realistically matched
to the problem, is

Roberts, Lawrence G. (1960), ‘‘Pattern recognition with an adaptive
network,” IRE International Convention Record, Part 11, pp. 66-70.

Rosenblatt made some studies (in Neurodynamics) concerning the
probability that if a perceptron recognizes a certain class of fig-
ures it will also recognize other figures that are similar in certain
ways. In another paper

Rosenblatt, Frank (1960), “‘Perceptual generalization over transforma-
tion groups,” Self-Organizing Systems, Pergamon Press, New York,
pp. 63-96.

he considers group-invariant patterns but does not come close
enough to the group-invariance theorem to get decisive results.

The nearest approach to our negative results and methods 1s the
analysis of Y,.xry found in

Dertouzos, Michael (1965), Threshold Logic: A Synthesis Approach,
The M.1.T. Press, Cambridge, Mass.

This is also a good book in which to see how people who are
not interested in geometric aspects of perceptrons deal with linear
threshold functions. They had already been interested, for other
reasons, in the size of coefficients of (first-order) threshold func-
tions, and we made use of an idea described in

Myhill, John and W. H. Kautz (1961), ““On the size of weights required
for linear-input switching functions,” IRE Transactions on Electronic
Computers, Vol. 10, No. 2, pp. 288-290

to get our theorem in §10.1. A more recent result on order-1
coeflicients is in

Muroga, Saburo, and 1. Toda (1966), “‘Lower bounds on the number of

[286] Bibliographic Notes

threshold functions,” IEEE Transactions on Electronic Computers, Vol.
EC-15, No. 5, pp. 805-806,

which improves upon an earlier result in

Muroga, Saburo (1965), “Lower bounds on the number of threshold
functions and a maximum weight,” IEEE Transactions on Electronic
Computers, Vol. EC-14, No. 2, pp. 136-148.

These papers also discuss another question: the proportion of
Boolean functions (of n-variables) that happens to be first-order.
To our knowledge, there is no literature about the same question
for higher-order functions.

The general area of artificial intelligence and heuristic program-
ming was mentioned briefly in Chapter 13 as the direction we feel
one should look for advanced ideas about pattern recognition and
learning. No systematic treatment is available of what is known in
this area, but we can recommend a few general references. The
collection of papers in

Feigenbaum, Edward A., and Julian Feldman (1963), Computers and
Thought, McGraw-Hill, New York.

shows the state of affairs in the area up to about 1962, while

Minsky, Marvin (1968), Semantic Information Processing, The M.LT.
Press, Cambridge, Mass., 1968

contains more recent papers—mainly doctoral dissertations—
dealing with computer programs that manipulate verbal and
symbolic descriptions. Anyone interested in this area should also
know the classic paper

Newell, Allen, J. C. Shaw, and H. A. Simon (1959), “Report on a

general problem-solving program,” Proceedings of International Con-
ference on Information Processing, UNESCO House, pp. 256-264.

The program mentioned in Chapter 13 is described in detail in

Guzman, Adoifo (1968), “‘Decomposition of a visual scene into bodies,”
Proceedings Fall Joint Computer Conference, 1968.

Finally, we mention two early works that had a rather broad
influence on cybernetic thinking. The fearfully simple homeostat
concept mentioned in §11.6 is described in

Ashby, W. Ross (1952), Design for a brain, Wiley, New York

which discussed only very simple machines, to be sure, but for the

Bibliographic Notes [287]

first time with relentless clarity. At the other extreme, perhaps,
was

Hebb, Donald O. (1949), The Organization of Behavior, Wiley, New York

which sketched a hierarchy of concepts proposed to account for
global states in terms of highly local neuronal events. Although
the details of such an enterprise have never been thoroughly
worked out, Hebb’s outline was for many workers a landmark in
the shift from a search for a single, simple principle of brain
organization toward mcre realistic attempts to construct hier-
archies (or rather hererarchies, as McCulloch would insist) that
could support the variety of computations evidently needed for
thinking.

You muiH live to compare your veackions Yo this bool with those of

other readers. The following ave sevious discussions of the baolk
and s theovetiaal a.f?roa,c"li

Blocl Herbert D: A Review o " Pevceptions” Tnkormation
and Control vol, 17, 1970, ?P.SOI'S‘?\&.

Newell Allen: A step foward the understanding of dnfe irndfion
Processes Sclence vl 165) A Avqu;" 16166)) PP780'78& .

Myczeisﬁ(iJ Jan: Review of "Percep{‘m“;-
Roll. Amer. Math Soc. vol 78, Jan 1972 pp.12-15.

Mms\(y)M. and Pa?evﬂs: Re-View of Peme*rons.
AT. Memo 293, Avtiical L‘(cl(fcyence Labom+0Vj)
M.IT., Cambridge,Mass. 02139

The Block review also contains an edtensive bn&’roqvq@kﬂ.

