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Breakthrough in GNN
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The model architecture for determining optimal routes and their travel time.
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Breakthrough in GNN
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Graph Definitions

G =(V, E)

e Vs asetof nodes
e [ is asetof tuples of form (u, v), where there is an edge between u and v
e Gisagraph

O O

Undirected edge Directed edge



Graph encoding as a matrix

Adjacency Matrix: A e RIVI X1V
e In this example, binary matrix encoding of a unweighted graph

e Rows/columns number the nodes, matrix elements encode edges

(to)
V={u,v,w, x}; E={(w, u), (X, u), (u, v)}

(from)




Do the matrices encode the same graph?

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1

Hint: Have we given you enough information?



They are the same encoding!

W X \Y W
0 0 < 0 0
0 0 < 0 0
0 0 s 1 0
0 0 9 0 0




Considerations for GNN

1) Nodes are not i.i.d* (we are modeling an interconnected set of nodes)

2) A NN modeling a graph should be permutation invariant and equivariant

o Adjacency matrix orders nodes arbitrarily

For permutation matrix P, function f that takes in an adjacent matrix A:

Permutation Invariance Property:  flPAPT) = f(A)

Permutation Equivariance Property: f(PAPT) = Pf(A)

*i.i.d = independent and identically distributed



Considerations for GNN

3) Find an encoding that preserves the graph structure

_ENC(u)
..."" z
P4 \\/u\ encode nodes : >
\\ —— —v.........................-....,,,___.'"_'“ ."._‘.-‘
ENC(v)
original network embedding space

Insight: exploit homophily - a neighborhood of nodes tend to have shared attributes

Figure 3.1, Graph Representation Learning



https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

NEURAL MESSAGE PASSING



Graph

G=,E)
Node Features

X e RV
Node Embeddings

Zu, Vu € V



Hidden embedding:

—_ =5 —
h={hi,hy,...,hN}

Node vs Edge embeddings:

o uev

W, v) € E

(u,0)’



Goal: Combine the information from neighboring
nodes to encode contextual graph information

At every iteration, each node receives information
from it's neighbors

The information is then combined with the current
features with a learnable function



MESSAGE PASSING FRAMEWORK

TARGET NODE -
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Image source: https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf



AT EACH ITERATION k£ OF THE GNN:

® 46GREGATE all embeddings fromu's neighbors to
generate a message mN(u) based on this aggregated

neighborhood information
e yrpare the embedding h' of node u by combining
information from the previous embedding plk—b

: (k)
and with the message VN



AFTER RUNNING K ITERATIONS:

e Use the output of the final layer to define the
embeddings for each node:

7z, =h® Yuev



THE BASIC GNN

neigh

o = ¢ (ng‘f)h(" D 4 W<k> Z A0 4 b(")>
vEN,

e W%V e R™": Node embeddings

(k) (k) d® xg*="b
° self 2 Wne1gh €R

e b e R Bias term
e o: Elementwise non-linearity (e.g., a tanh or ReLU)

: Learnable parameters



REMARKS

e The learnable parameters can be shared across GNN
message passing iterations or trained separately for
each layer

e We just described only the node-level GNN
operations. There exists graph-level formalisms as
well.

e The message passing example is analogous to a
standard Multi-Layer Perceptron (MLP) in that it
relies on linear operations followed by an
elementwise non-linearity



SUMMARY

1. Sum the messages incoming from the neighbors

2. Combine the neighborhood information with the
node’s previous embedding using a linear
combination

3. Apply an elementwise non-linearity



Deep learning on GNN



Division of GNNs
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Recurrent

mme  Spectral Methods

Graph Conv
Network (GCN)

ChebNet ||

ammms  Spatial Methods
Graph Attention
Network (GAN)

Lagrangian,
Propagation GNN

- Convergence |
based

Graph Echo State
Network

Learnable GCN —

Gate based

Gated GNN
(GGNN)

Jump Knowledge
Network (JKN)




General structure of GNNs

...........

Sampling
Operator

Pooling
Operator

Input

Output

Node
Embedding

[::> Edge

Embedding

Graph

Embedding

—>

Loss Function

Training Setting Task
* Supervised * Node-level
* Semi-supervised * Edge-level
* Unsupervised * Graph-level

* Spatial approaches define convolutions directly on the graph based on the graph topology

* In spectral methods, an input graph signal X is firstly transformed to the spectral domain by
the graph Fourier transform F, then the convolution operation is conducted. After the
convolution, the resulted signal is transformed back using the inverse graph Fourier

transform F1

* The spectral method needs at most O(n) parameters per feature map, allowing efficient

forward propagation

Graph neural networks: A review of methods and applications, Jie Zhou et al in 2020
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Convolutional GNNs

* Introduced in “Spectral Networks and Deep Locally Connected Networks on
Graphs” by Bruna et al, in 2014
* Convolution on undirected graphs
» Defining graphs for convolution:
* Undirected graph with Q nodes and W edge weights, G = (2, W)
* Neighbors of a given node within threshold §, Nj(j) = {i € Q: W;; > §}

Sr—1
* Convolution operationona given G, ;. ; = Lyh (z Fk,i,j:zk,i) (G=1... k)

1=1

Convolution operation on
undirected graph

Undirected Graph definition

Qy

“Spectral Networks and Deep Locally Connected Networks on Graphs” by Bruna et al, in 2014.



Division of GNNs

Convolution Recurrent

- Convergence
based
Graph Conv Lagrangian, Jump Knowledge
Network (GCN) Propagation GNN Network (JKN)
Graph Echo State
Network
ammms  Spatial Methods Gate based
Graph Attention Gated GNN
Network (GAN) (GGNN)
Learnable GCN o




Convolutional GNNs-Continued

* Introduced in “Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering” by Defferrard et al, in 2016
* Proposed 3 steps for CNN translation to graphs:

i. The design of localized convolutional filters on graphs

ii. agraph coarsening procedure that groups together similar vertices
(Graclus multilevel clustering algorithm)

iii. agraph pooling operation that trades spatial resolution for higher filter

resolution
Input graph signals > Feature extraction > Classification . Output signals
e.g. bags of words Convolutional layers Fully connected layers e.g. labels

-
s % @ 5
Graph signal filtering \+ Graph coarsening
1. Convolution ® ® 3. Sub-sampling
2. Non-linear activation \*F 4. Pooling
) A ®

“Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering” by m& al, in 2016



Operations in ChebNet

* For agraph G = (V,EW); nodes, edges and edge weights respectively

* Graph Laplacian, L= D =W, where D is diagonal matrix such that D;; = Zj Wi

* The convolution operation is defined as, y = gy(L)z = go(UAUT )z = Uge(A)UT
here, L= UAUT (U is the Fourier basis) and 8 € R"is a vector of Fourier
coefficients

* Using a polynomial filter overcomes the limitations of nonparametric filters by

localizing it in space and reducing learning complexity K-1
and 6 € R is a vector of polynomial coefficients g90(A) = Z O AF
k=0
* The operation can thus be parametrized as a truncated expansion by using
Chebyshev polynomial, Ti(x) of order k, such that K-1
reduces the learning complexity of the filters g9(A) = Z 0xTi(A)
from O(N) to O(K) k=0

F‘in
* Finally, a learnable operation can be defined as, 1y, ; = Zggi,j (L)xs; € R™
i=1

where the x;; are the input feature maps and the F;, x f\% vectors of
Chebyshev coefficients 6;; € R¥ are the layer’s trainable parameters

“Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering” by met al, in 2016
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Convolutional GNNs-Continued

* Simpler definition of ChebNet introduced by Kipf et al. in “Semi-Supervised
Classification With Graph Convolutional Networks” in 2017 K )
* Here for a given operation using Chebyshev polynomial, gor * T = Z 0T (L)x
simplifying assumption can be made k=0
* [f K=1, or only First order Chebyshev polynomials are considered,
9o *xT ~ Oz — 0, D" 2 AD iz
here, A is the weight matrix and D is diagonal matrix such that D;; = Z].Aij
* The forward operation for a two-layer model is defined as:
Z= (X M) = soft.max(A ReLU (AXW(O’) 1.‘,;(1))
here W € R™H is weight matrix for first layer with H feature maps and C input
channels, W) € R*F js weight matrix for output layer with F output filters and
A = D-1/2A D-1/2

ey, /%\
- >
X,) )._ < — »(2,)
/ layers )
J-®
@ | @)@
input layer output layer

“Semi-Supervised Classification With Graph Convolutional Networks” by Thomas N. &R,fvet al, in 2017.



Summary

Bruna et al presented the first spectral method of
performing convolution on a given graph
Defferrard et al proposed expressing the
nonparametric filters of convolution as Chebyshev
Polynomials

Kipf et al reworked the Graph Convolution
methodology by simplifying concepts of ChebNet

Even more networks designs possible by changing
the operation on graphs (eg., recurrent, skip)
GNNs outperform conventional deep learning
methods in some tasks

GNNs are a rapidly developing field!



