
Deep Neural Networks
Convolutional Networks IV

Bhiksha Raj
Spring 2021

1

Outline

• Quick recap
• Back propagation through a CNN
• Modifications: Transposition, scaling, rotation and

deformation invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity

2

Story so far

• Shift-invariant pattern classification tasks such
as “does this picture contain a cat”, or “does
this recording include HELLO” are best
performed by scanning for the target pattern
using CNNs (or TDNNs)

• These are “shared parameter” models that
can be trained with variations of backprop

3

Backpropagation: Convolutional and
Pooling layers

• For each training instance: First, a forward pass through the net
• Then the backpropagate the derivative of the divergence
• Regular backprop until the first “flat” layer
• Subsequent backpropagation from the flat MLP requires special

consideration of
– The shared computation in the convolution layers
– The pooling layers

భ

ଵ

1
మ

ଶ

2

3

Need adjustments here

()

4

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine
combination maps from the derivatives for the
activation output maps

• How to compute the derivative w.r.t. and
given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
5

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine
combination maps from the derivatives for the
activation output maps

• How to compute the derivative w.r.t. and
given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
6

Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 7

𝛻()𝐷𝑖𝑣()𝛻()𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine
combination maps from the derivatives for the
activation output maps

• How to compute the derivative w.r.t. and
given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
8

The derivatives for

• The affine maps are produced by convolving with filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

9

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷)

Computing the derivative for

• This is just a convolution of the zero-padded
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side

10

𝑤(𝑚, 𝑛, 𝑥, 𝑦)

𝑤(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)

The filter derivative

• The derivative of the th affine map convolves with
every output map of the th layer, to get
the derivative for , the th “plane” of the th filter

11

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

Filter(n)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

 ିଵ

Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination

maps from the derivatives for activation output maps

• How to compute the derivative w.r.t. and given
derivatives w.r.t.

12

CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
13

Switching to 1-based
indexing with appropriate
adjustments

Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:-1:1

for y = Hl-1-Kl+1:-1:1

for j = Dl:-1:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:-1:1

for x’ = Kl:-1:1

for y’ = Kl:-1:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

14

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:-1:1

for y = Hl-1-Kl+1:-1:1

for j = 1:Dl:-1:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:-1:1

for x’ = Kl:-1:1

for y’ = Kl:-1:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)15

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:-1:1

for y = Hl-1-Kl+1:-1:1

for j = Dl:-1:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:-1:1

for x’ = Kl:-1:1

for y’ = Kl:-1:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)16

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here

Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = Wl:-stride:1

m = (x-1)stride
for y = Hl:-stride:1

n = (y-1)stride
for j = Dl:-1:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = Dl-1:-1:1

for x’ = Kl:-1:1
for y’ = Kl:-1:1

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

17

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

18

Max

19

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

20

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

21

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

22

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

23

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

24

Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

∈ ିଵ ௗାଵ, ିଵ ௗା ,

∈ ିଵ ௗାଵ, ିଵ ௗା

Max

1 3

6 5
Max

6

25

Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

∈ ିଵ ௗାଵ, ିଵ ௗା ,

∈ ିଵ ௗାଵ, ିଵ ௗା

26

1 3

6 5
Max

6

0 0
𝑑𝐷𝑖𝑣

𝑑𝑌 0

𝑑𝐷𝑖𝑣

𝑑𝑌
Backprop

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
27

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

28

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

ଶ

∈ ିଵ ௗାଵ, ିଵ ௗା ,

∈ ିଵ ௗାଵ, ିଵ ௗା

Mean

1 3

6 5
Mean

3.75

29

Derivative of mean pooling

• The derivative of mean pooling is distributed over the
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

𝑑𝑌

ଶ

30

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

31

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.

Derivative of mean pooling layer at
layer

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

32

“+=“ because adjacent windows may overlap

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

33

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back
propagation
– Maxpooling layers must propagate derivatives only over the maximum

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network 34

An implicit assumption

• We’ve always assumed that subsequent steps
shrink the size of the maps

• Can subsequent maps increase in size?

Stride>1

35

1-D scans

• The number of “bars” in each layer is usually the same or smaller than the
bars in the previous layer
– Scanning maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 36

time

softmax

Upsampling 1-D scans

• The number of “bars” in each layer is usually the same or smaller than the
bars in the previous layer
– Scanning maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 37

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate
values are missing from the previous layer!

• 38

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax This is exactly analogous to
the upsampling performed
during backprop when
forward convolution uses
stride > 1

Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax

41

Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax

Upsampling 1-D scans

• Key difference from downsampling layers
– All the “columns” in the regular/downsampling layers are identical

• Their incoming weight patterns are identical

– The columns in the upsampling layers are not identical
• The outgoing weight patterns of the lower layer columns are identical

softmax

Upsampling as a scanning network

• Example of a network with one upsampling layer
• Maintaining Symmetry:

– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer) bars is identical

time

softmax

44

Upsampling as a scanning network

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical 45

time

softmax Actual scanning network

Upsampling as a scanning network

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical 46

time

softmax Actual scanning networkNote two different types of
Neurons here

Scanning with increased-res layer

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

47

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

48

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

49

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

50

Transposed convolution

• Signal propagation rules are transposed for expanding layers
• In regular convolution, the affine value 𝑍 for a layer “pulls” 𝑌 values from the lower layer

– In vector form
𝑍 = 𝑊𝑌ିଵ

– The ith neuron:
𝑧(𝑖) = 𝑊(𝑖, :)𝑌ିଵ

– Invokes the ith row of 𝑊

• In an upsampling layer the 𝑌 values are “pushed” to the upper 𝑍

𝑍 = 𝑊(: , 𝑗)𝑌ିଵ(𝑗)

– Invokes the jth column of 𝑊

– Or alternately, the jth row of 𝑊
்

• Expanding operations are sometimes called transpose convolutions as a result
– The primary operation uses the transpose of the convolutional filter 51

In 2-D

• Similar computation

52

2D expanding convolution

• Upsample the input to the appropriate size by interpolating 𝑏 − 1 zeros between adjacent
elements to increase the size of the map by 𝑏

• Convolve with the filter with stride 1, to get the final upsampled output
– Output map size also dependent on size of filter
– Zero-pad upsampled input maps to ensure the output is exactly the desired size 53

upsample

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) × (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size
54

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

These filters are “transposed” (flipped across the diagonal) w.r.t. the
scanning filters for the upsampled maps in the previous slide

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

55

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

56

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

57

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

58

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

59

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

60

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

61

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

62

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

63

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

𝑧 1, 𝑖, 𝑗 = 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

is the “stride”
(scaling factor between the sizes of Z and Y)

64

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

65

Backprop through expanding
convolution

• Backpropagation will give us derivatives for every element of the upsampled map
• Downsample the derivative map by dropping elements corresponding to zeros introduced during

upsampling
• Continue backprop from there
• Actually easier in code…

66

downsample backprop

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

67

We leave the rather trivial issue of how to modify this code to
compute the derivatives w.r.t w and y to you

Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance

68

• We can rewrite this as so (tensor inner product)

Shift-invariance – a different
perspective

69

• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance

70

• More generally each
filter produces a set of
transformed (and
shifted) maps
– Set of transforms

must be enumerated
and discrete

– E.g. discrete set of
rotations and scaling,
reflections etc.

• The network becomes
invariant to all the
transforms considered

Transform invariance

 71

Regular CNN : single layer
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

72

Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1

73

• Derivatives flow
back through the
transforms to update
individual filters
– Need point

correspondences
between original and
transformed filters

– Left as an exercise

BP with transform invariance

74

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with

distributed representations

• The parameters of the network can be learned through regular back
propagation

• Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

• The models can be easily modified to include invariance to other
transforms
– Although these tend to be computationally painful

75

But what about the exact location?

• We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?

76

Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates)

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)

77

Pose estimation

• Can use the same mechanism to predict the
joints of a stick model
– For pose estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints

78

Model variations
• Very deep networks

– 100 or more layers in MLP

– Formalism called “Resnet”
• You will encounter this in your HWs

• “Depth-wise” convolutions
– Instead of multiple independent filters with

independent parameters, use common layer-wise
weights and combine the layers differently for
each filter

79

Conventional convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that

filter

Conventional

convolve collapse

80

Conventional convolutions

• This is done separately for each of the M filters
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve

81

Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2

82

Conventional vs. depth-wise
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters,
which span all M input channels

• Each filter produces one output channel

• Total NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N Mx1x1 1D filters
• Each applies to one 2D location across all M input

channels
• Total NM + MK2 parameters 83

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.

84

What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by

backpropagation
85

86

Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly
become very large

• Insufficient training data to train well
– Solution: Data augmentation

87

Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data

88

Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

– Used in text processing

89

Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html

90

Digit classification

91

Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result: 6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 92

The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset: Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories

93

AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
• 1000 different classes (softmax layer)
• NN configuration

• NN contains 60 million parameters and 650,000 neurons,
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1: 96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3, stride 2
• Normalization layer [Unnecessary]
• Conv3: 384 3x3, stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC: 3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons

95

Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over

the lot!

10 patches

96

Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01, decreased by 10 every time validation accuracy

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks
– Lowest prior error using conventional classifiers: > 25%

97

ImageNet

Figure 3: 96 convolutional
kernels of size 11×11×3 learned
by the first convolutional layer
on the 224×224×3 input images.
The top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU 2.
See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five labels
considered most probable by our model. The correct
label is written under each image, and the
probability assigned to the correct label is also
shown with a red bar (if it happens to be in the top
5).

Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that
produce feature vectors in the last hidden layer with
the smallest Euclidean distance from the feature
vector for the test image.

ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4% 14.8%

• Combining multiple models as before

5121024512

100

VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to

6.8% using only two classifiers

• Final arch: 64 conv, 64 conv,
64 pool,
128 conv, 128 conv,
128 pool,
256 conv, 256 conv, 256 conv,
256 pool,
512 conv, 512 conv, 512 conv,
512 pool,
512 conv, 512 conv, 512 conv,
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 101

Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant; error 6.7%

– Using only 5 million parameters, thanks to average pooling102

Resnet

• Resnet: 2015
– Current top-5 error: < 3.5%
– Over 150 layers, with “skip” connections..

103

Resnet details for the curious..

• Last layer before addition must have the same number of filters as
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger

learning rate)
• Mini batch 256
• Weight decay 1e-5

104

Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 105

Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..

106

CNN for Automatic
Speech Recognition

• Convolution over frequencies
• Convolution over time

• Neural network with specialized connectivity
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap

