Deep Learning
Recurrent Networks:
Stability analysis and LSTMs

Recap: Story so far

Recurrent networks retain information from the infinite past in
principle

In practice, they are poor at memorization

— The hidden outputs can blow up, or shrink to zero depending on the
Eigen values of the recurrent weights matrix

— The memory is also a function of the activation of the hidden units

* Tanh activations are the most effective at retaining memory, but even they
don’t hold it very long

Recurrent (and Deep) networks also suffer from a “vanishing or
exploding gradient” problem

— The gradient of the error at the output gets concentrated into a small
number of parameters in the earlier layers, and goes to zero for others

Exploding/Vanishing gradients
h=fy f WNfN—1(WN—2fN—1(--- VM)))

kaDiU — VD VfN WN VfN—l' WN—l ka+1Wk+1

* The memory retention of the network depends on the
behavior of the underlined terms

— Which in turn depends on the parameters I/ rather than what
it is trying to “remember”

* Can we have a network that just “remembers” arbitrarily
long, to be recalled on demand?

— Not be directly dependent on vagaries of network parameters,

but rather on input-based determination of whether it must be
remembered

Exploding/Vanishing gradients
h=fy g WNfN—1(WN—2fN—1(--- W1X)))

kaDiv — VD VfN WN VfN—l' WN—l ka+1Wk+1

* Replace this with something that doesn’t fade or blow up?

* Network that “retains” useful memory arbitrarily long, to
be recalled on demand?
— Input-based determination of whether it must be remembered

— Retain memories until a switch based on the input flags them
as ok to forget

* Or remember less

— Memory(k) = C(xg).01(x1).0,(x3). ... ox (x1)

Enter — the constant error carousel

C(t+1 C(t+?2 C(t+3
C(t)—»@ ()=® ():® ()=®

»C(t+4)

o(t + 1)[o(t + 2)] o(t + 3)] o(t + 4)]

|
|
|
|
|
|
|
|
t+1 t+2

History is carried through uncompressed

— No weights, no nonlinearities

— Only scaling is through the ¢ “gating” term that captures other

triggers
— E.g. “Have | seen Pattern2”?

Enter — the constant error carousel

h(t) h(t + 1) ézh(t +2) éfé(t +3)
‘o C(t + 1) C(t +2) C(t +3)) e+ 4

o(t+ 1) o(t+ 2) o(t+ 3) o(t+4)

» Time
* Actual non-linear work is done by other portions of the
network

— Neurons that compute the workable state from the memory

Enter — the constant error carousel

h(t) §t+1) §t+2) éfé(tw)
C(t+1 Ct + 2 C(t +3
C(t) X (t+):X (t+):X (t+) ;C(t+4)

g%
o(t+1) o(t+2) o(t+3) o(t+4)
X(t+1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current
hidden state...

Enter — the constant error carousel

h(t) §t+1) §t+2) é?t”)
C(t+1 Ct + 2 C(t +3
C(t) X (t+):X (t+):X (t+) ;C(t+4)

8%
o(t+1) o(t+2) o(t+3) o(t+4)
Other / /
Wit v+ 1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current
hidden state... and other stuff...

Enter — the constant error carousel

h(t) h(t +1) h(t +2) h(t +3)
C(t+1) C(t+2) C(t +3)
C(t) (X) (X (X (X) LC(t+4)
o(t+1) o(t+2) o(t+3) o(t+4)
Other / /
Wit v+ 1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current hidden
state... and other stuff...

* |Including, obviously, what is currently in raw memory

Enter the LSTM

Long Short-Term Memory

Explicitly latch information to prevent decay /
blowup

~ollowing notes borrow liberally from

nttp://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Standard RNN

&
T

A

®
AR
J A

&) © &)
Recurrent neurons receive past recurrent outputs and current input as
inputs

Processed through a tanh() activation function

— As mentioned earlier, tanh() is the generally used activation for the hidden
layer

Current recurrent output passed to next higher layer and next time instant

11

Long Short-Term Memory

t t t

~ N\ h A)
- —() ©, > —

CGanh>
A [b A
lo|[lo][tenh]| [O |

— | | | I | > —

J _J / 4 Py

* The a() are multiplicative gates that decide if
something is important or not

* Remember, every line actually represents a vector

12

LSTM: Constant Error Carousel

® ® ©

- T\ - D & T\
A II/IIH@/II(% A

\I J—> J >\I /_’

© ® ©

 Key component: a remembered cell state

13

LSTM: CEC

)
®
\ A%

* (; is the linear history carried by the constant-error
carousel

e Carries information through, only affected by a gate
— And addition of history, which too is gated..

LSTM: Gates

®

?

9

e Gates are simple sigmoidal units with outputs in
the range (0,1)

e Controls how much of the information is to be let
through

LSTM: Forget gate

fo=0Wyg-lhi—1,2¢] + by)

The first gate determines whether to carry over the history or to
forget it

— More precisely, how much of the history to carry over

— Also called the “forget” gate

— Note, we're actually distinguishing between the cell memory C and
the state h that is coming over time! They’re related though

16

LSTM: Input gate

| b = U(Wi'[ht—laxt] + b’é)
0‘ Ct‘;nh C, = tanh(We - [hi—1,2¢] + bo)
|

he—1 I

Ftl

 The second input has two parts

— A perceptron layer that determines if there’s something
new and interesting in the input

— A gate that decides if its worth remembering

LSTM: Memory cell update

ﬁT ttr'b(]% Cy= fi*xCioy +iy % Cy

 The second input has two parts

— A perceptron layer that determines if there’s something
interesting in the input

— A gate that decides if its worth remembering
— If so its added to the current memory cell

18

LSTM: Output and Output gate

o =0 Wy [hi—1,2¢] + bo)
hy = oy * tanh (C})

* The output of the cell
— Simply compress it with tanh to make it lie between 1 and -1

* Note that this compression no longer affects our ability to carry memory
forward

— Controlled by an output gate

* To decide if the memory contents are worth reporting at this time

LSTM: The “Peephole” Connection

' ft =0 (Wg-|Ceo1,hi—1, 2] + by)
it =0 (W;-|Ce—1,hi—1,2¢] + b;)
- &) or =0 (Wy-|Ct, he—1,2¢] + bo)

* The raw memory is informative by itself and can
also be input

— Note, we’re using both C and h

The complete LSTM unit

Ce—1 /@ an) Ct
fifl U Ot
C,)
G(zl G(zl tanh' Eﬁ'
he—q 'll__ _Il__ — > hy

* With input, output, and forget gates and the
peephole connection..

LSTM computation: Forward

Ce—1 /f'\

9, @
tanh
fe L Ot
o
a() a() tanh c()
he_q = L_]]
Xt
e Forward rules:
Gates Variables

:Ct

ft =0 (W [Ci—1,he—1,74] + by) Cy = tanh(We-[he—1, 2] + be)

it = 0 (Wi-[Ci—1,ht—1, 2] + b;) Ciy = fe x Cp_q + 14 % @
Ot =0 (WO'[Ct,ht_l,.fL’t] -+ bo) ht = 0t * tanh (Ot)

22

LSTM computation: Forward

Ce—1 /f'\

9, @
tanh
fe L Ot
o
a() a() tanh c()
he_q = L_]]
Xt
e Forward rules:
Gates Variables

it = 0 (W;-[Ci=1,ht—1, 2] + b;)

Ci = fr x Cy_q + iy % Cy

:Ct

fe =0 (Wi [Cir,he—1, 4] + bfz iét = tanh(We-[hi—1,2¢] + bo)

or =0 (Wy-[Ct,he—1,2] + by)

ht = 0t * tanh (Ct)

23

LSTM Equations

i: input gate, how much of the new
information will be let through the memory
cell.

 f: forget gate, responsible for information

should be thrown away from memory cell.

o: output gate, how much of the information
will be passed to expose to the next time
step.

g: self-recurrent which is equal to standard
RNN

c;: internal memory of the memory cell
s¢: hidden state

y: final output

[= O'(XtUi + st_lwi)

f = a(xth +St_1Wf)
0= o(x;U°+ s;_W?)

g = tanh(x;U9 + s;,_ W9)
Ct=C—1°f+g el

s; = tanh(c;) e 0

y = softmax(Vs;)

LSTM Memory Cell

Notes on the pseudocode

Class LSTM_cell

We will assume an object-oriented program
Each LSTM unit is assumed to be an “LSTM cell”

There’s a new copy of the LSTM cell at each time, at
each layer

LSTM cells retain local variables that are not relevant to
the computation outside the cell

— These are static and retain their value once computed,
unless overwritten

LSTM cell (single unit)
Definitions

Input:
C : previous value of CEC
h : previous hidden state wvalue (“output” of cell)
X: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/ (l+exp(-x))

H H H H I HHHHHEH

performed component-wise

Static local variables to the cell
static local z¢, z;, 2., 2,, £, 1, o, C;

function [C,h] = LSTM cell.forward(C,h,x,[W,b])
code on next slide

26

LSTM cell forward

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local z,, z;,, z,, z,, £, i, o, C;
function [C,, h,] = LSTM cell.forward(C,h,x, [W,b])
ze, = WelC + Wh + Weex + b
f = sigmoid(z;) # forget gate
z; = W,C+ W;;h + W, x + b;

1
i = sigmoid(z;) # input gate Assuming a peephole connection
into the tanh, which is not standard

z. =W C+ W, h + W x + b,
C; = tanh(z_) # Detecting input pattern
C, = foC + ioC;, # “o” is component-wise multiply

z, = W C, + W;h + W, x + b,

o oc ™o

o = sigmoid(z,) # output gate

h

o

ootanh(C) # “o” is component-wise multiply

return C_, h, 57

LSTM network forward

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{1l},b{1l}] are the entire set of weights and biases
i for the 1* hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1) ,h(t,1)] = LSTM cell(t,1l) .forward(..
.C(t-1,1),h(t-1,1),h(t,1-1) [W{1l},b{1}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z (t))

28

Training the LSTM

* |dentical to training regular RNNs with one
difference

— Commonality: Define a sequence divergence and
backpropagate its derivative through time

* Difference: Instead of backpropagating
gradients through an RNN unit, we will
backpropagate through an LSTM cell

Backpropagation rules: Backward

AZt
C
C t
Ce—1 /® P— > /O P > Cti1
1 tanh 1 tanh
ft L 0 _
C; Cy
(] (a0 tanh| ||o() cOf |10 tan a()
h 17— [U hy 1 4 > h
t—1 » Lt+1
Xt Xt+1

30

Backpropagation rules: Backward

AZt
Ct
Ct—l /® > [O ,:\ > Ct+1
tanh
ft L _
Ct

G()_IG() n 6()_16() tanh| ||lo()
hi_q — L — [> Ptyq

Xt Xt+1

Ve, Div =V, Div o o o tanh'(.)

31

Backpropagation rules: Backward

AZt
Ct
Ct—l /® > [O ,:\ > Ct+1
tanh
ft L _ 1
Ct

G()_IG() n 6()_16() tanh| ||lo()
hi_q — L — [> Ptyq

Xt Xt+1

Ve, Div =V, Div o (o, o tanh'(.) + tanh(.) o o'(.)Wc,)

32

Backpropagation rules: Backward

a
fee1

0] [cO

—_—

> Ct+1

AZt
C
Ct—l /® i t
1 tdnh|
ft 't
C;
a()| loQ tanh| (
he L I
Xt

tanh

Xt+1

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +

VCt+1Div © ft+1 +

> Niq

33

Backpropagation rules: Backward

> Ct+1

AZt
C
C t
Ce—1 /® D
tdnh| tanh
ft ‘e fren X
C, C,
a()| loQ tanh| (h 0Ol 10 tan a()
h i I - | t —_— |]
t—1 >
Xt Xt4+1

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +

Veer, Div o (fran + Cpo 0’ (OWey)

> Niq

34

Backpropagation rules: Backward

> Ct+1

AZt
C
C t
Ct—l /® i t
tdnh| tanh
ft Lt .
C, C,
a()| loQ tanhl (h 0 tan a()
he ;| KT] t, [O
Xt Xt4+1

Ve, Div = Vp, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

>Ny

35

Backpropagation rules: Backward

|<
C
mCt ‘ /r\

\)‘((} > % ,:\ > Cri1
tanh tanh
ft L 0 _
C, C,
()| o0 tanh| [[o() cOf |10 tan a()
h I Iy p— [U hy i i p— 4 > h
t—1 > Itt4+1
Xt Xt+1

Ve, Div = Vp, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

VhtDiU = VZtDivVhtZt

36

Backpropagation rules: Backward

\)(J } > @ ,:\ > Ct+1
. tanh o tanh
fi Lt 0 Le+1 Ot+1
C, C,
(] (a0 tanh| [[o() o] |0 tan a()
h I Iy p— [U hy i p— 4 > h
t—1 > Itt4+1

Xt Xt+1

Ve, Div = Vp, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

Vh,Div =V, DivVy z; + V¢, Divo Cioa ()W

37

Backpropagation rules: Backward

C
Ce_1 /® P > Ctia
tanh tanh
ft % 0
C;
_LG()_IG() tanhl _(Ij()
hi_q | > Ptyq
Xt

Ve, Div = Vp, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

Vn Div =V, DivVy, ze + Ve, Dive (Cpoo' (IWyr+ Cryq 00" (W)

38

Backpropagation rules: Backward

C
Ce_1 /® P > Ctia
tanh tanh
ft % 0
C;
_LG()_IG() tanhl _(Ij()
hi_q | S
Xt

Ve, Div = Vp, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

Vn Div =V, DivVy z, + Ve, Divo (Cpo o' (IWpr+ Cryq 00" (W) +
Ve, Div o ipyq o tanh'()Wy,

39

Backpropagation rules: Backward

C
Ce_1 /® P > Ctia
1 tanh 0 tanh
ft lt 0 t+1
C;
G()_IG() tanh| ||S() GI)
he_q — [— =l > Niiq
Xt

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

Vn Div =V, DivVy, z, + Ve, Divo (Cpo o' (IWpr+ Crypq 00" (W) +

Ve,, Div e opyq o tanh'()Wy; + Vp,, Div o tanh(.) o o' (.)Wh,

40

Backpropagation rules: Backward

Ce—1 /’x\ ’E\Ct > Cri1
. tanh tanh
];‘/ Lt 0 Ot+1
C;
o0l (00| (Lant [loO ol)
11 [0 |

Not explicitly deriving the der'uva’rlves w.r.t welgh‘rs
Left as an exercise

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
VCt+1Div o (ft+1 —+ Ct o O-’()ch ~+ C~t+1 o OJ(.)WCL')

Vn Div =V, DivVy, z, + Ve, Divo (Cpo o' (IWpr+ Crypq 00" (W) +
Ve,, Div e opyq o tanh'()Wy; + Vp,, Div o tanh(.) o o' (.)Wh,

Notes on the backward pseudocode

Class LSTM_cell

* We first provide backward computation within a cell

 For the backward code, we will assume the static variables
computed during the forward are still available

* The following slides first show the forward code for
reference

* Subsequently we will give you the backward, and explicitly
indicate which of the forward equations each backward
equation refers to

— The backward code for a cell is long (but simple) and extends
over multiple slides

LSTM cell forward (for reference)

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local z,, z;,, z,, z,, £, i, o, C;
function [C,, h,] = LSTM cell.forward(C,h,x, [W,b])
ze, = WelC + Wh + Weex + b
f = sigmoid(z;) # forget gate
z; = W,C+ W;;h + W, x + b;

1
i = sigmoid(z;) # input gate Assuming a peephole connection
into the tanh, which is not standard

z. =W C+ W, h + W x + b,
C; = tanh(z_) # Detecting input pattern
C, = foC + ioC;, # “o” is component-wise multiply

z, = W C, + W;h + W, x + b,

o oc ™o

o = sigmoid(z,) # output gate

h

o

ootanh(C) # “o” is component-wise multiply

return C_, h, 43

LSTM cell backward

Static local variables carried over from forward
static local z¢, z;,, z,, z,, £, 1, o, C;
function [dC,dh,dx,d[W, b]]=LSTM cell.backward(dC,, dh

First invert h, = ootanh(C)

do = dh, o tanh(C,)T

d tanhC, = dh oo

dC, += dtanhC_ o (1-tanh?(C.))T #(1-tanh?) is the derivative of tanh

C, h, C

o/ o/’

Next invert o = sigmoid(z,)
dz, = doosigmoid(z,)To(1-sigmoid(z,))T # do x derivative of sigmoid(z,)

Next invert z, = W, .C, + W,h + W_x + b,

oc~o

dC, += dz W # Note - this is a regular matrix multiply

o "oc
dh = dz W,
dx = dz, W,

dWw,, = C,dz, # Note - this multiplies a column vector by a row vector
dw_, = h dz,

dw_,, = x dz,

db, = dz,

Next invert C, = foC + ioC;

dC = dC_ o £
dc, = dC,o i
di = dC_ oC;
df = dC_ oC

44

h,, x, [W,b])

LSTM cell backward (continued)

Next invert C; = tanh(z.)
dz, = dC;o(1-tanh?(z.))"

Next invert z_, = W_ C + W, ;h + W_x + b_
dC += dz _W_,

dh += dz_W_,
dx += dz_ W,

dw.. = C dz,
dWw_, = h dz,
dw_, x dz_
db, = dz

Cc Cc

Next invert i = sigmoid(z;)
dz;, = diosigmoid(z;)To(l-sigmoid(z;))”

Next invert z; = W;C + W;;h + W; . x + b;
dC += dz; W,

dh += dz; W,,

dx += dz; W,,

dw,. = C dz;
dW. = x dz

ix

db; = d

1

N

LSTM cell backward (continued)

Next invert £ = sigmoid(z;)
dz, = df o sigmoid(z;)To(1-sigmoid(z;))"”

Finally invert z. = W, C + Wph + W, x + b,
dC += dz, W,
dh += dz; Wg,
dx += dz; Wi,

dWw.., = C dz;
dW;, = h dz;
dW.,, = x dz;
db, = dz;

return dC, dh, dx, d[W, Db]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

46

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{1l},b{1l}] are the entire set of weights and biases
i for the 1* hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1) ,h(t,1)] = LSTM cell(t,1l) .forward(..
.Cc(t-1,1) ,h(t-1,1) ,h(t,1-1) [W{l} 6 b{1l}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z (t))

47

LSTM network backward

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the 1* hidden layer

W, and b, are output layer weights and biases
Y is the output of the network

Assuming dW_, and db_, and d[W{l} b{l}] (for all 1) are
all initialized to 0 at the start of the computation

FHIH HHHHH I

for t = T-1:0 # Including both ends of the index
dz, = dY(t) o Softmax Jacobian(zo(t))
dw, += h(t,L) dz, (t)
dh(t,L) = dz_ (t)W,

db, += dz, (t)

for 1 = L-1:0
[dC(t,1),dh(t,1) ,dx(t,1),d[W, b]] = ..
. LSTM cell(t,1) .backward(..

.dCc(t+1,1), dh(t+1,1)+dx(t,1+1), C(t-1,1), h(t-1,1),

. c(t,1), h(t, 1), h(t,1-1), [W(l),b(1)])
d[W{1l} b{1l}] += d[W,Db]

48

Gated Recurrent Units: Lets simplify
the LSTM

hy
hii(\L ze =0 (W, - [ht—1,74])
Ty = U(Wr . [ht—laxt])

o o tanh }VLt — tanh (W : [’I“t X ht—l; ZL’t])

) ht:(l—zt)*ht_1—|-zt>l<ﬁt

Tt

* Simplified LSTM which addresses some of
your concerns of why

49

Gated Recurrent Units: Lets simplify
the LSTM

hy
hi1f \L ze =0 (W, - [hi—1, 74))

— R———
1: ri =0 (W - [hi—1,24])

Tto Zto tant?75 }VLt — tanh (W = [’I“t * ht—l; ZL’t])

}/ ht:(l—zt)*ht_1—|-zt>l<ﬁt

* Combine forget and input gates

— In new input is to be remembered, then this means
old memory is to be forgotten

 Why compute twice?

50

Gated Recurrent Units: Lets simplify
the LSTM

hy
hioi Q_@@ xt — 0 (WZ) [h’t—17£t])
% $ Ty = U(Wr ' [ht—laxt])
Tto Zto tant?75 }VLt = tanh (W . [’I“t X ht—l; ZL’t])

J

) ht:(l—zt)*ht_1—|-zt>l<ﬁt

Tt

 Don’t bother to separately maintain compressed and
regular memories

— Pointless computation!
— Redundant representation

51

LSTM architectures example

SEEBERE

f f

Y(t)

X(t)
Time

* Each green box is now a (layer of) LSTM or GRU cell(s)
— Keep in mind each box is an array of units
— For LSTMs the horizontal arrows carry both C(t) and h(t)

52

,_______________________
>
\"
T
—_
A
C/
A S
N\
(e]
—
‘S/
N\
—_
N/
[]
[]
[]
[]
oy
(e
s
\7_/
—_
V/—\

Bidirectional LSTM

h(0) h(1) h(T — 1) h(T)
----------------- S R S

/Thf(O) /Thf(l) /Thf(T ~1)

X(0) X(1) X(T -1) X(T)
. t

e Like the BRNN, but now the hidden nodes are LSTM units.
— Or layers of LSTM units

53

Story so far

Recurrent networks are poor at memorization
— Memory can explode or vanish depending on the weights and activation
They also suffer from the vanishing gradient problem during training

— Error at any time cannot affect parameter updates in the too-distant past

— E.g. seeing a “close bracket” cannot affect its ability to predict an “open
bracket” if it happened too long ago in the input

LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure
— Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

— Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

Significant issues

* The Divergence
e How to use these nets..

* This and more in the remaining lecture(s)

Key Issue

Ydesired(t)

Y(t)

X(t)

t=0

Time

* How do we define the divergence

* Also: how do we compute the outputs..

56

What follows in this series on
recurrent nets

 Architectures: How to train recurrent networks of
different architectures

* Synchrony: How to train recurrent networks when
— The target output is time-synchronous with the input

— The target output is order-synchronous, but not time
synchronous

— Applies to only some types of nets

* How to make predictions/inference with such networks

Variants of recurrent nets

one to one many to many
! tt 1
- >
Images from
? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 58

Variants of recurrent nets

many to one

Sequence classification: Classifying a full input sequence
— E.gisolated word/phrase recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

59

More variants

many to many one to many

Images from
Karpathy

* A posteriori sequence to sequence: Generate output sequence after processing
input
— E.g. language translation
* Single-input a posteriori sequence generation

— E.g. captioning an image 60

Variants of recurrent nets

one to one many to many

Images from

? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 61

Regular MLP for processing sequences

A EEEEE:

X(t)

t=0

Time

No recurrence in model
— Exactly as many outputs as inputs
— Every input produces a unique output

— The output at time t is unrelated to the output at t’ # t

62

Learning in a Regular MLP
Ydesired(t)

A 2N 2NN 2N N S

Y(t)

Time
* No recurrence
— Exactly as many outputs as inputs

* One to one correspondence between desired output and actual
output

— The output at time t is unrelated to the output at t’ # t.

63

Regular MLP

Yta rget(t)

v o

Y(t)

Gradient backpropagated at each time

VyyDiv(Yrarger(1 ... T),Y(1...T))
Common assumption:

Div(Yrarget(1..T),Y(1..T)) = Z weDiv(Yegrger (8), Y (1))
t

‘7Y(t)Div(Ytarget(1 T); Y(l T)) = Wt VY(t)Div(Ytarget(t): Y(t))

— W is typically set to 1.0
— This is further backpropagated to update weights etc

64

Regular MLP
Ytarget(t)
v Y ¥

Y(t)

* Gradient backpropagated at each time

Py yDiv(Yearger(1 .. T), Y (1 ...T))
¢ Common assumption:

Div(Yiarger(1..T),Y(1..T)) = Z Div(Yiarge: (), Y (1))

t
VY(t)Div(Ytarget(l T)» Y(l T)) - VY(t)Div(Ytarget(t); Y(t))

— This is further backpropagated to update weights etc

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (t), Y (1))

Variants of recurrent nets

one to one any to man
! t t 1
- >
Images from
? T T ? Karpathy
N, 4
\/

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 66

Variants of recurrent nets

one to one any to man
! bt 1
Bl -
Images from
? T T T Karpathy
N, 4
N_

With a brief defour into modelling language

* Time-synchronous outputs
— E.g. part of speech tagging 67

Time synchronous network
CD NNS VBD IN DT J) NN
S EEEEEE

two roads diverged in a yellow wood

\ 4

»
»

 Network produces one output for each input
— With one-to-one correspondence
— E.g. Assigning grammar tags to words

* May require a bidirectional network to consider both past
and future words in the sentence

68

Time-synchronous networks:

Inference
Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
, W W E N RN
. > > —> 0000 —» >

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

* One sided network: Process input left to right
and produce output after each input

69

- -

Time-synchronous networks:

h(0) h(1)

/'Thfan /Thfm

[
»

X(0) X(1)

Inference
................. N N SR S

h(T — 1) h(T)

A

X(T - 1) X(T)

 For bidirectional networks:

— Process input left to right using forward net

— Process it right to left using backward net
— The combined outputs are time-synchronous, one per input time, and are passed up to the next

layer

» Rest of the lecture(s) will not specifically consider bidirectional nets, but the

discussion generalizes

How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
B EEEEER
1 { f { { f

000 —> > >

A A A A A A

\ 4
\ 4

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

Back propagation through time (BPTT)

Given a collection of sequence training instances comprising input
sequences and output sequences of equal length, with one-to-one
correspondence

— (X;,D;), where

- Xi = Xl',O' "'JXi,T

— Di - Di,O' ""Di,T

Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENEREE

[
»

> —> o000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

* For each training input:

Forward pass: pass the entire data sequence through the network,
generate outputs

72

SEENEREE

Training: Computing gradients

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

[
»

> —> o000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

<

For each training input:

Backward pass: Compute divergence gradients via backpropagation

— Back Propagation Through Time

73

Back Propagation Through Time

DIV
D(1..T)
f f
Y (0) Y(1) Y(2) Y(T-2) Y({T-1) YT
h-1 ‘\ * o000 *
J N N { N N
X(0) X(1) X(2) X(T-2) X(T-1 X

* The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

* This is not just the sum of the divergences at individual times

= Unless we explicitly define it that way
74

Back Propagation Through Time

DIV
D(1..T)
t t
Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y
* *
h-l XXX
by N N | N N
X(0) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute Vy DIV for all t

The rest of backprop continues from there

75

Back Propagation Through Time

DIV

D(1..T)
YEO) Y(Tl) Y(2) Y(T-2) Y(T-1) Y
h-l * o000
by N N | N N
X(0) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute Vy DIV for all t
VZ(l)(t)DIV = VyyDIV VY (t)

And so on!

76

Back Propagation Through Time

DIV
D(1..T)
t t
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
y N N | A N
X(0) X(1) X(2) X(T-2) X(T-1) X()

First step of backprop: Compute Vy DIV for all t
/

 The key component is the computation of this derivative!!
* This depends on the definition of “DIV”

77

. -
\4
A\ 4
A\ 4
v
A\ 4

Time-synchronous recurrence
Ytarget(t)
v Y ¥

Y(t)

Time
Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(l T)) — VY(t)Div(Ytarget(t)r Y(t))

78

Time-synchronous recurrence

Ytarget(t) * * *

Y(t)
h-1

X(t)

t=0
Time
* Usual assumption: Sequence divergence is the sum of the divergence at

individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(l T)) — VY(t)Div(Ytarget(t)r Y(t))

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (t), Y (1))

Simple recurrence example: Text

Modelling

w1
h_l *

.

Wy

W»
A

Wq

»
Ll

»
>

W»

W3 Wy
A A

W3

»
»

Ws
A

Wy

»
>

Wg
A

Ws

Wy

Learn a model that can predict the next character given a sequence of

characters
« LINCOL?

— Or, at a higher level, words

e TO BE OR NOT TO ???

After observing inputs wy ... wy it predicts wy, 4

Simple recurrence example: Text
Modelling

target chars: ‘e’ i “1" ‘0"
Figure from Andrej Karpathy. . o o -
outputlayer | % 1.0 1.9 0.1
4.1 1=2 -1.1 2.2
Input: Sequence of characters (presented T T T Tw_hy
as one-hot vectors). 03 0 . . [
hidden layer | -0.1 0.3 05 — 0.9
.) 0.9 0.1 -0.3 0.7
Target output after observing “h e | I” is “0” T T T T
W_xh
1 0 0 0
input layer 8 [1) (1) ?
0 0 0 0
input chars: “p” “e@” A “I”

* |nput presented as one-hot vectors

— Actually “embeddings” of one-hot vectors

* Qutput: probability distribution over characters
— Must ideally peak at the target character

81

v
v
v

Training
\ \ \ y ¥

r
Y(t)
..

A A A A A

WO W4 W, W3 Wy

t=0 Time

v

Input: symbols as one-hot vectors
* Dimensionality of the vector is the size of the “vocabulary”

Output: Probability distribution over symbols
Y(t, l) == P(VL|WO ...Wt_l)
* V;isthei-th symbol in the vocabulary

Divergence

Div(Yegrger(1..T),Y(1..T)) = Z KL(Yiarge:(8),Y(t)) = — Z log Y (t, Wey1)

v

The probability assigned
to the correct next word

82

Brief detour: Language models

* Modelling language using time-synchronous
nets

* More generally language models and
embeddings..

Language modelling using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

84

Language modelling: Representing
words

* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical) order
* E.g. [A AARDVARK AARON ABACK ABACUS... ZZYP]

— Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

 E.g. “AARDVARK” 2> [01000...]
 E.g. “AARON” > [001000..]

e Characters can be similarly represented

— English will require about 100 characters, to include both cases,
special characters such as commas, hyphens, apostrophes, etc.,
and the space character

Predicting words

Four score and seven years ??? Wo

Wn =fWo, ..., Wn_q)

~/ R

Nx1 one-hot vectors

S roo&= o3

,S

co o R
L —

* Given one-hot representations of W,...W,,_4, predict W,

86

Predicting words

Four score and seven years ??? Wo

W, = f(WOr ey Wn—l)

~/ R

Nx1 one-hot vectors

:C;...HO(D::O,_\...Oo:

S

co o R
L —

* Given one-hot representations of W,...W,,_4, predict W,

* Dimensionality problem: All inputs W,...W,,_4 are both
very high-dimensional and very sparse

87

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0

* (1,&8) has no meaning except fore =6 =0
. . N
— Density of points: O (r_N)

This is a tremendously inefficient use of dimensions

88

Why one-hot representation

(1,0,0)

(0T

v

(0,0,1)

The one-hot representation makes no assumptions about the relative

importance of words
— All word vectors are the same length

It makes no assumptions about the relationships between words
— The distance between every pair of words is the same

89

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: O (TiM)

90

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: O (TiM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

91

The Projected word vectors

.
Four score and seven years ??? w, || p
1
W, = f(PWy, PW,, ...,PW,_1) o
W, |1 P)
1 —P
; fO ;| Wa
: 0
(1,0,0) o
1
0
Wh-1|:[™ p

v

* Project the N-dimensional one-hot word vectors into a lower-dimensional space
— Replace every one-hot vector W; by PW;
— Pisan M X N matrix
— PW; is now an M-dimensional vector

— Learn P using an appropriate objective

* Distances in the projected space will reflect relationships imposed by the objective
92

“Projection”

W, = f(PWp PW,, ...,PWn_l) 0

f0 [w

(1,0,0)

v

M
N

* Pisasimple linear transform
* Asingle transform can be implemented as a layer of M neurons with linear activation

e The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights
93

Predicting words: The TDNN model

v

Predict each word based on the past N words
— “A neural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

94

Alternative models to learn

projections
We| [Wo| [Wio|

*

Mean pooling

Color indicates
shared parameters

7Am7AmA Am7Ama

* Soft bag of words: Predict word based on words in
immediate context

— Without considering specific position
e Skip-grams: Predict adjacent words based on current
word

e More on these in a future recitation?

95

Embeddings: Examples

Country and Capital Vectors Projected by PCA

] !]

" Chinax
Beijing
15 Russias s
Japan«
Al AMoscow |
Turkey- snkara Tokyo
05 F -
Polandk
0 Germany o
France Warsaw
» »Berlin
05 | Italy Paris .
Greece: w - WAthens
-1} Spain Rome -
-1.5 | Portugal Fifie ::adnd |
_2 | 1 | ! 1 Il 1
-2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

From Mikolov et al., 2013, “Distributed Representations of Words

and Phrases and their Compositionality” %

Modelling language

 The hidden units are (one or more layers of) LSTM units
* Trained via backpropagation from a lot of text

— No explicit labels in the training data: at each time the next
word is the label.

97

Generating Language: Synthesis

i

* On trained model : Provide the first few words
— One-hot vectors
» After the last input word, the network generates a probability distribution

over words

— Outputs an N-valued probability distribution rather than a one-hot vector
98

Generating Language: Synthesis

i

v

On trained model : Provide the first few words
— One-hot vectors

After the last input word, the network generates a probability distribution over words
— Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution
— And set it as the next word in the series

99

Generating Language: Synthesis

w,| we
EEE B
t =T__»T =T

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

100

Generating Language: Synthesis

\ 4
v
v
\ 4
\ 4
v

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

Continue this process until we terminate generation

— In some cases, e.g. generating programs, there may be a natural termination

101

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;

I
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
t table;
return segtable; 102

Composing music with RNN

>
%g,

A

http://www.hexahedria.com/2015/08/03/composing-music-with-recu rrent-neural-netw&gks/

Returning to our problem

* Divergences are harder to define in other
scenarios..

e ...nextclass

