
Deep Learning
Recurrent Networks: 

Stability analysis and LSTMs
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Recap: Story so far

• Recurrent networks retain information from the infinite past in 
principle

• In practice, they are poor at memorization
– The hidden outputs can blow up, or shrink to zero depending on the 

Eigen values of the recurrent weights matrix
– The memory is also a function of the activation of the hidden units

• Tanh activations are the most effective at retaining memory, but even they 
don’t hold it very long

• Recurrent (and Deep) networks also suffer from a “vanishing or 
exploding gradient” problem
– The gradient of the error at the output gets concentrated into a small 

number of parameters in the earlier layers, and goes to zero for others
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Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• The memory retention of the network depends on the 
behavior of the underlined terms
– Which in turn depends on the parameters rather than what 

it is trying to “remember”

• Can we have a network that just “remembers” arbitrarily 
long, to be recalled on demand?
– Not be directly dependent on vagaries of network parameters, 

but rather on input-based determination of whether it must be 
remembered
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Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• Replace this with something that doesn’t fade or blow up?

• Network that “retains” useful memory arbitrarily long, to 
be recalled on demand?
– Input-based determination of whether it must be remembered
– Retain memories until a switch based on the input flags them 

as ok to forget
• Or remember less

– ଴ ଵ ଵ ଶ ଶ ௞ ௞

– ௙ೖ ே
ᇱ

ேିଵ
ᇱ

௞
ᇱ
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Enter – the constant error carousel

• History is carried through uncompressed
– No weights, no nonlinearities
– Only scaling is through the s “gating” term that captures other 

triggers 
– E.g. “Have I seen Pattern2”? 

Time
t+1 t+2 t+3 t+4
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Enter – the constant error carousel

• Actual non-linear work is done by other portions of the 
network 
– Neurons that compute the workable state from the memory

Time
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Enter – the constant error carousel

• The gate s depends on current input, current 
hidden state…

Time

7



Enter – the constant error carousel

Other
stuff

Time
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• The gate s depends on current input, current 
hidden state… and other stuff…



Enter – the constant error carousel

Other
stuff

Time
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• The gate s depends on current input, current hidden 
state… and other stuff…

• Including, obviously, what is currently in raw memory



Enter the LSTM

• Long Short-Term Memory
• Explicitly latch information to prevent decay / 

blowup

• Following notes borrow liberally from 
• http://colah.github.io/posts/2015-08-

Understanding-LSTMs/
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Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as 
inputs

• Processed through a tanh() activation function
– As mentioned earlier, tanh() is the generally used activation for the hidden 

layer

• Current recurrent output passed to next higher layer and next time instant
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Long Short-Term Memory

• The are multiplicative gates that decide if 
something is important or not

• Remember,  every line actually represents a vector
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LSTM: Constant Error Carousel

• Key component: a remembered cell state
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LSTM: CEC

• is the linear history carried by the constant-error 
carousel

• Carries information through, only affected by a gate
– And addition of history, which too is gated..
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LSTM: Gates

• Gates are simple sigmoidal units with outputs in 
the range (0,1)

• Controls how much of the information is to be let 
through
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LSTM: Forget gate

• The first gate determines whether to carry over the history or to 
forget it
– More precisely, how much of the history to carry over
– Also called the “forget” gate 
– Note, we’re actually distinguishing between the cell memory and 

the state that is coming over time!  They’re related though
16



LSTM: Input gate

• The second input has two parts
– A perceptron layer that determines if there’s something 

new and interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell
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LSTM: Memory cell update

• The second input has two parts
– A perceptron layer that determines if there’s something 

interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell
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LSTM: Output and Output gate

• The output of the cell
– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory 
forward

– Controlled by an output gate
• To decide if the memory contents are worth reporting at this time
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LSTM: The “Peephole” Connection

• The raw memory is informative by itself and can 
also be input
– Note, we’re using both and 
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The complete LSTM unit

• With input, output, and forget gates and the 
peephole connection..

௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧
s() s() s()tanh

tanh
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LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables
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LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables
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LSTM Equations

24

• ௧
௜

௧ିଵ
௜

• ௧
௙

௧ିଵ
௙

• ௧
௢

௧ିଵ
௢

• ௧
௚

௧ିଵ
௚

• ௧ ௧ିଵ

• ௧ ௧

• ௧

• input gate, how much of the new 
information will be let through the memory 
cell. 

• : forget gate, responsible for information 
should be thrown away from memory cell. 

• output gate, how much of the information 
will be passed to expose to the next time 
step.

• self-recurrent which is equal to standard 
RNN

• 𝒕: internal memory of the memory cell 

• 𝒕: hidden state 

• : final output

LSTM Memory Cell



Notes on the pseudocode

Class LSTM_cell

• We will assume an object-oriented program 

• Each LSTM unit is assumed to be an “LSTM cell”

• There’s a new copy of the LSTM cell at each time, at 
each layer 

• LSTM cells retain local variables that are not relevant to 
the computation outside the cell
– These are static and retain their value once computed, 

unless overwritten 
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LSTM cell (single unit)
Definitions

# Input:
#    C : previous value of CEC
#    h : previous hidden state value (“output” of cell)
#    x:  Current input
# [W,b]: The set of all model parameters for the cell
#      These include all weights and biases
# Output
#    C : Next value of CEC
#    h : Next value of h
# In the function:  sigmoid(x) = 1/(1+exp(-x))
#                   performed component-wise

# Static local variables to the cell
static local zf, zi, zc, zo, f, i, o, Ci
function [C,h] = LSTM_cell.forward(C,h,x,[W,b])

code on next slide
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LSTM cell forward
# Continuing from previous slide
# Note: [W,h] is a set of parameters, whose individual elements are
#       shown in red within the code.  These are passed in

# Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc)  # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 27

Assuming a peephole connection
into the tanh, which is not standard



LSTM network forward
# Assuming h(-1,*) is known and C(-1,*)=0

# Assuming L hidden-state layers and an output layer

# Note: LSTM_cell is an indexed class with functions

# [W{l},b{l}] are the entire set of weights and biases
#             for the lth hidden layer

# Wo and bo are output layer weights and biases

for t = 0:T-1  # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L  # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax( zo(t) )
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Training the LSTM

• Identical to training regular RNNs with one 
difference
– Commonality:  Define a sequence divergence and 

backpropagate its derivative through time

• Difference: Instead of backpropagating 
gradients through an RNN unit, we will 
backpropagate through an LSTM cell
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Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
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௧
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tanh
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Backpropagation rules: Backward
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Not explicitly deriving the derivatives w.r.t weights;
Left as an exercise
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Notes on the backward pseudocode

Class LSTM_cell

• We first provide backward computation within a cell
• For the backward code, we will assume the static variables 

computed during the forward are still available
• The following slides first show the forward code for 

reference
• Subsequently we will give you the backward, and explicitly 

indicate which of the forward equations each backward 
equation refers to
– The backward code for a cell is long (but simple) and extends 

over multiple slides
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LSTM cell forward (for reference)
# Continuing from previous slide
# Note: [W,h] is a set of parameters, whose individual elements are
#       shown in red within the code.  These are passed in

# Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc)  # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 43

Assuming a peephole connection
into the tanh, which is not standard



LSTM cell backward
# Static local variables carried over from forward
static local zf, zi, zc, zo, f, i, o, Ci
function [dC,dh,dx,d[W, b]]=LSTM_cell.backward(dCo, dho, C, h, Co, ho, x, [W,b])

# First invert ho = o∘tanh(C)
do = dho ∘ tanh(Co)T

d tanhCo = dho ∘ o
dCo += dtanhCo ∘ (1-tanh2(Co))T #(1-tanh2) is the derivative of tanh

# Next invert o = sigmoid(zo)
dzo = do ∘ sigmoid(zo)T ∘(1-sigmoid(zo))T # do x derivative of sigmoid(zo)

# Next invert zo = WocCo + Wohh + Woxx + bo
dCo += dzoWoc #  Note – this is a regular matrix multiply
dh = dzo Woh
dx = dzo Wox

dWoc = Codzo # Note – this multiplies a column vector by a row vector
dWoh = h dzo
dWox = x dzo
dbo = dzo

# Next invert Co = f∘C + i∘Ci
dC = dCo ∘ f
dCi = dCo ∘ i
di = dCo ∘ Ci
df = dCo ∘ C
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LSTM cell backward (continued)
# Next invert Ci = tanh(zc)
dzc = dCi∘(1-tanh2(zc))T

# Next invert zc = WccC + Wchh + Wcxx + bc
dC += dzcWcc
dh += dzc Wch
dx += dzc Wcx

dWcc = C dzc
dWch = h dzc
dWcx = x dzc
dbc = dzc

# Next invert i = sigmoid(zi) 
dzi = di ∘ sigmoid(zi)T ∘(1-sigmoid(zi))T

# Next invert zi = WicC + Wihh + Wixx + bi
dC += dzi Wic
dh += dzi Wih
dx += dzi Wix

dWic = C dzi
dWih = h dzi
dWix = x dzi
dbi = dzi
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LSTM cell backward (continued)
# Next invert f = sigmoid(zf)

dzf = df sigmoid(zf)T (1-sigmoid(zf))T

# Finally invert zf = WfcC + Wfhh + Wfxx + bf
dC += dzf Wfc
dh += dzf Wfh
dx += dzf Wfx

dWfc = C dzf
dWfh = h dzf
dWfx = x dzf
dbf = dzf

return dC, dh, dx, d[W, b]

# d[W,b] is shorthand for the complete set 
of weight and bias derivatives
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LSTM network forward (for reference)

# Assuming h(-1,*) is known and C(-1,*)=0

# Assuming L hidden-state layers and an output layer

# Note: LSTM_cell is an indexed class with functions

# [W{l},b{l}] are the entire set of weights and biases
#             for the lth hidden layer

# Wo and bo are output layer weights and biases

for t = 0:T-1  # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L  # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax( zo(t) )
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# Assuming h(-1,*) is known and C(-1,*)=0
# Assuming L hidden-state layers and an output layer
# Note: LSTM_cell is an indexed class with functions
# [W{l},b{l}] are the entire set of weights and biases
#             for the lth hidden layer
# Wo and bo are output layer weights and biases
# Y is the output of the network
# Assuming dWo and dbo and d[W{l} b{l}] (for all l) are 
#          all initialized to 0 at the start of the computation

for t = T-1:0  # Including both ends of the index

dzo = dY(t) ∘ Softmax_Jacobian(zo(t))

dWo += h(t,L) dzo(t) 

dh(t,L) = dzo(t)Wo
dbo += dzo(t)

for l = L-1:0

[dC(t,l),dh(t,l),dx(t,l),d[W, b]] = …
… LSTM_cell(t,l).backward(…
… dC(t+1,l), dh(t+1,l)+dx(t,l+1), C(t-1,l), h(t-1,l), … 
… C(t,l), h(t,l), h(t,l-1), [W(l),b(l)])

d[W{l} b{l}] += d[W,b]
48
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Gated Recurrent Units: Lets simplify 
the LSTM

• Simplified LSTM which addresses some of 
your concerns of why

49



Gated Recurrent Units: Lets simplify 
the LSTM

• Combine forget and input gates
– In new input is to be remembered, then this means 

old memory is to be forgotten
• Why compute twice?
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Gated Recurrent Units: Lets simplify 
the LSTM

• Don’t bother to separately maintain compressed and 
regular memories
– Pointless computation!
– Redundant representation
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LSTM architectures example

• Each green box is now a (layer of) LSTM or GRU cell(s)
– Keep in mind each box is an array of units

– For LSTMs the horizontal arrows carry both and 

Time
X(t)

Y(t)
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Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units. 
– Or layers of LSTM units

53
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Story so far
• Recurrent networks are poor at memorization

– Memory can explode or vanish depending on the weights and activation

• They also suffer from the vanishing gradient problem during training
– Error at any time cannot affect parameter updates in the too-distant past
– E.g. seeing a “close bracket” cannot affect its ability to predict an “open 

bracket” if it happened too long ago in the input

• LSTMs are an alternative formalism where memory is made more directly 
dependent on the input, rather than network parameters/structure
– Through a “Constant Error Carousel” memory structure with no weights or 

activations, but instead direct switching and  “increment/decrement” from 
pattern recognizers

– Do not suffer from a vanishing gradient problem but do suffer from exploding 
gradient issue
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Significant issues

• The Divergence
• How to use these nets..
• This and more in the remaining lecture(s)
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Key Issue

• How do we define the divergence

• Also: how do we compute the outputs..

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)
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What follows in this series on 
recurrent nets

• Architectures: How to train recurrent networks of 
different architectures

• Synchrony: How to train recurrent networks when
– The target output is time-synchronous with the input
– The target output is order-synchronous, but not time 

synchronous
– Applies to only some types of nets

• How to make predictions/inference with such networks
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Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Variants of recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g isolated word/phrase recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 59



More variants

• A posteriori sequence to sequence:  Generate output sequence after processing 
input
– E.g. language translation

• Single-input a posteriori sequence generation
– E.g. captioning an image

Images from
Karpathy
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Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Regular MLP for processing sequences

• No recurrence in model
– Exactly as many outputs as inputs

– Every input produces a unique output

– The output at time is unrelated to the output at 

Time

X(t)

Y(t)

t=0
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Learning in a Regular MLP

• No recurrence
– Exactly as many outputs as inputs

• One to one correspondence between desired output and actual 
output

– The output at time is unrelated to the output at .

Time

X(t)

Y(t)

t=0

DIVERGENCE

Ydesired(t)
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Regular MLP

• Gradient backpropagated at each time 

௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௧ ௒(௧) ௧௔௥௚௘௧

– ௧ is typically set to 1.0
– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)
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Regular MLP

• Gradient backpropagated at each time 
௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

65Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧



Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy
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With a brief detour into modelling languageWith a brief detour into modelling language



Time synchronous network

• Network produces one output for each input
– With one-to-one correspondence
– E.g.  Assigning grammar tags to words

• May require a bidirectional network to consider both past 
and future words in the sentence

68

two

CD

h-1

roads diverged a yellow wood

NNS VBD DT JJ NN

in

IN



Time-synchronous networks: 
Inference

• One sided network: Process input left to right 
and produce output after each input

69

X(0)

Y(0)

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)



Time-synchronous networks: 
Inference

• For bidirectional networks: 
– Process input left to right using forward net
– Process it right to left using backward net
– The combined outputs are time-synchronous, one per input time, and are passed up to the next 

layer

• Rest of the lecture(s) will not specifically consider bidirectional nets, but the 
discussion generalizes 70

ℎ𝑓(−1)

ℎ(𝑇 − 1) ℎ(𝑇)

𝑋(0) 𝑋(1) 𝑋(𝑇 − 1) 𝑋(𝑇)

௕

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)



How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence training instances comprising input 
sequences and output sequences of equal length, with one-to-one 
correspondence
– ௜ ௜ ,  where 

– ௜ ௜,଴ ௜,்

– ௜ ௜,଴ ௜,்

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training: Forward pass

• For each training input:
• Forward pass:  pass the entire data sequence through the network, 

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training: Computing gradients

• For each training input:
• Backward pass: Compute divergence gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute for all t

The rest of backprop continues from there
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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(భ)

First step of backprop:   Compute for all t

And so on!



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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First step of backprop:   Compute for all t

• The key component is the computation of this derivative!!
• This depends on the definition of “DIV”



Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at 
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)
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Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at 
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

79Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧



Simple recurrence example: Text 
Modelling

• Learn a model that can predict the next character given a sequence of 
characters

• L I N C O L ?

– Or, at a higher level, words
• TO BE OR NOT TO ???

• After observing inputs ଴ ௞ it predicts ௞ାଵ

h-1

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻
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Simple recurrence example: Text 
Modelling

• Input presented as one-hot vectors
– Actually “embeddings” of one-hot vectors

• Output: probability distribution over characters
– Must ideally peak at the target character

Figure from Andrej Karpathy.

Input:  Sequence of characters (presented
as one-hot vectors).

Target output after observing “h e l l” is “o” 
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Training

• Input:  symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary” 

• Output: Probability distribution over symbols
𝑌 𝑡, 𝑖 = 𝑃(𝑉௜|𝑤଴ … 𝑤௧ିଵ)

• 𝑉௜ is the i-th symbol in the vocabulary

• Divergence

𝐷𝑖𝑣 𝑌௧௔௥௚௘௧ 1 … 𝑇 , 𝑌(1 … 𝑇) = ෍ 𝐾𝐿 𝑌௧௔௥௚௘௧ 𝑡 , 𝑌(𝑡)

௧

= − ෍ log 𝑌(𝑡, 𝑤௧ାଵ)

௧

Time

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻

The probability assigned 
to the correct next word
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Brief detour: Language models

• Modelling language using time-synchronous 
nets

• More generally language models and 
embeddings..

83



Language modelling using RNNs

• Problem:  Given a sequence of words (or 
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??
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Language modelling: Representing 
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g.  [ A  AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros 
and a single 1 (in the position of the word in the ordered list of 
words)
• E.g.  “AARDVARK”  [0 1 0 0 0 …]
• E.g. “AARON”  [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases, 

special characters such as commas, hyphens, apostrophes, etc., 
and the space character

85



Predicting words

• Given one-hot representations of … , predict 

• Dimensionality problem: All inputs … are both 
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡
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Predicting words

• Given one-hot representations of … , predict 

• Dimensionality problem: All inputs … are both 
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡
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The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit 
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

௥ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)
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Why one-hot representation

• The one-hot representation makes no assumptions about the relative 
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)
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Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations 
between the words

(1,0,0)

(0,1,0)

(0,0,1)
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Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations 
between the words

(1,0,0)

(0,1,0)

(0,0,1)
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The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊௜ by 𝑃𝑊௜

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊௜ is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

௡ ଴ ଶ ௡ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

(1,0,0)

(0,1,0)

(0,0,1)
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“Projection”

• P is a simple linear transform
• A single transform can be implemented as a layer of M neurons with linear activation
• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with 

tied weights

௡ ଵ ଶ ௡ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

௡

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

௡ିଵ
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Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional 
representations of words

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴
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Alternative models to learn 
projections

• Soft bag of words: Predict word based on words in 
immediate context
– Without considering specific position

• Skip-grams:  Predict adjacent words based on current 
word

• More on these in a future recitation?

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊଺

𝑃

𝑊଻

𝑊ସ

𝑃

𝑊଻

𝑊ହ 𝑊଺ 𝑊଼ 𝑊ଽ 𝑊ଵ଴𝑊ସ

Color indicates
shared parameters
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Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words 
and Phrases and their Compositionality” 96



Modelling language

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

– No explicit labels in the training data: at each time the next 
word is the label.

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴ଶ ଷ ସ
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Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution 
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ
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Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ
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Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)
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Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/103



Returning to our problem

• Divergences are harder to define in other 
scenarios..

• … next class

104


