
Deep Learning
Recurrent Networks:

Stability analysis and LSTMs

1

Recap: Story so far

• Recurrent networks retain information from the infinite past in
principle

• In practice, they are poor at memorization
– The hidden outputs can blow up, or shrink to zero depending on the

Eigen values of the recurrent weights matrix
– The memory is also a function of the activation of the hidden units

• Tanh activations are the most effective at retaining memory, but even they
don’t hold it very long

• Recurrent (and Deep) networks also suffer from a “vanishing or
exploding gradient” problem
– The gradient of the error at the output gets concentrated into a small

number of parameters in the earlier layers, and goes to zero for others
2

Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• The memory retention of the network depends on the
behavior of the underlined terms
– Which in turn depends on the parameters rather than what

it is trying to “remember”

• Can we have a network that just “remembers” arbitrarily
long, to be recalled on demand?
– Not be directly dependent on vagaries of network parameters,

but rather on input-based determination of whether it must be
remembered

3

Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• Replace this with something that doesn’t fade or blow up?

• Network that “retains” useful memory arbitrarily long, to
be recalled on demand?
– Input-based determination of whether it must be remembered
– Retain memories until a switch based on the input flags them

as ok to forget
• Or remember less

– ଴ ଵ ଵ ଶ ଶ ௞ ௞

– ௙ೖ ே
ᇱ

ேିଵ
ᇱ

௞
ᇱ

4

Enter – the constant error carousel

• History is carried through uncompressed
– No weights, no nonlinearities
– Only scaling is through the s “gating” term that captures other

triggers
– E.g. “Have I seen Pattern2”?

Time
t+1 t+2 t+3 t+4

5

Enter – the constant error carousel

• Actual non-linear work is done by other portions of the
network
– Neurons that compute the workable state from the memory

Time

6

Enter – the constant error carousel

• The gate s depends on current input, current
hidden state…

Time

7

Enter – the constant error carousel

Other
stuff

Time

8

• The gate s depends on current input, current
hidden state… and other stuff…

Enter – the constant error carousel

Other
stuff

Time

9

• The gate s depends on current input, current hidden
state… and other stuff…

• Including, obviously, what is currently in raw memory

Enter the LSTM

• Long Short-Term Memory
• Explicitly latch information to prevent decay /

blowup

• Following notes borrow liberally from
• http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

10

Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as
inputs

• Processed through a tanh() activation function
– As mentioned earlier, tanh() is the generally used activation for the hidden

layer

• Current recurrent output passed to next higher layer and next time instant

11

Long Short-Term Memory

• The are multiplicative gates that decide if
something is important or not

• Remember, every line actually represents a vector
12

LSTM: Constant Error Carousel

• Key component: a remembered cell state

13

LSTM: CEC

• is the linear history carried by the constant-error
carousel

• Carries information through, only affected by a gate
– And addition of history, which too is gated..

14

LSTM: Gates

• Gates are simple sigmoidal units with outputs in
the range (0,1)

• Controls how much of the information is to be let
through

15

LSTM: Forget gate

• The first gate determines whether to carry over the history or to
forget it
– More precisely, how much of the history to carry over
– Also called the “forget” gate
– Note, we’re actually distinguishing between the cell memory and

the state that is coming over time! They’re related though
16

LSTM: Input gate

• The second input has two parts
– A perceptron layer that determines if there’s something

new and interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

17

LSTM: Memory cell update

• The second input has two parts
– A perceptron layer that determines if there’s something

interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

18

LSTM: Output and Output gate

• The output of the cell
– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory
forward

– Controlled by an output gate
• To decide if the memory contents are worth reporting at this time

19

LSTM: The “Peephole” Connection

• The raw memory is informative by itself and can
also be input
– Note, we’re using both and

20

The complete LSTM unit

• With input, output, and forget gates and the
peephole connection..

௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧
s() s() s()tanh

tanh

21

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

22

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

23

LSTM Equations

24

• ௧
௜

௧ିଵ
௜

• ௧
௙

௧ିଵ
௙

• ௧
௢

௧ିଵ
௢

• ௧
௚

௧ିଵ
௚

• ௧ ௧ିଵ

• ௧ ௧

• ௧

• input gate, how much of the new
information will be let through the memory
cell.

• : forget gate, responsible for information
should be thrown away from memory cell.

• output gate, how much of the information
will be passed to expose to the next time
step.

• self-recurrent which is equal to standard
RNN

• 𝒕: internal memory of the memory cell

• 𝒕: hidden state

• : final output

LSTM Memory Cell

Notes on the pseudocode

Class LSTM_cell

• We will assume an object-oriented program

• Each LSTM unit is assumed to be an “LSTM cell”

• There’s a new copy of the LSTM cell at each time, at
each layer

• LSTM cells retain local variables that are not relevant to
the computation outside the cell
– These are static and retain their value once computed,

unless overwritten

25

LSTM cell (single unit)
Definitions

Input:
C : previous value of CEC
h : previous hidden state value (“output” of cell)
x: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/(1+exp(-x))
performed component-wise

Static local variables to the cell
static local zf, zi, zc, zo, f, i, o, Ci
function [C,h] = LSTM_cell.forward(C,h,x,[W,b])

code on next slide
26

LSTM cell forward
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 27

Assuming a peephole connection
into the tanh, which is not standard

LSTM network forward
Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

28

Training the LSTM

• Identical to training regular RNNs with one
difference
– Commonality: Define a sequence divergence and

backpropagate its derivative through time

• Difference: Instead of backpropagating
gradients through an RNN unit, we will
backpropagate through an LSTM cell

29

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

௧ାଵ
s() s() s()tanh

tanh

೟

௧ାଵ

30

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

೟ ೟

௧ାଵ

௧ାଵ

௧ାଵ

31

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧
ᇱ

஼௢

௧ାଵ

௧ାଵ

௧ାଵ

32

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ

௧ାଵ

௧ାଵ

௧ାଵ

௧ାଵ

33

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧ ஼௙

௧ାଵ

௧ାଵ

34

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௧ାଵ

௧ାଵ

35

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧

௧ାଵ

௧ାଵ

36

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

37

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

38

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ ௛௜

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

39

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ
ᇱ

௛௜ ௛೟శభ ௛௢

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

40

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ
ᇱ

௛௜ ௛೟శభ ௛௢

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

Not explicitly deriving the derivatives w.r.t weights;
Left as an exercise

41

Notes on the backward pseudocode

Class LSTM_cell

• We first provide backward computation within a cell
• For the backward code, we will assume the static variables

computed during the forward are still available
• The following slides first show the forward code for

reference
• Subsequently we will give you the backward, and explicitly

indicate which of the forward equations each backward
equation refers to
– The backward code for a cell is long (but simple) and extends

over multiple slides

42

LSTM cell forward (for reference)
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 43

Assuming a peephole connection
into the tanh, which is not standard

LSTM cell backward
Static local variables carried over from forward
static local zf, zi, zc, zo, f, i, o, Ci
function [dC,dh,dx,d[W, b]]=LSTM_cell.backward(dCo, dho, C, h, Co, ho, x, [W,b])

First invert ho = o∘tanh(C)
do = dho ∘ tanh(Co)T

d tanhCo = dho ∘ o
dCo += dtanhCo ∘ (1-tanh2(Co))T #(1-tanh2) is the derivative of tanh

Next invert o = sigmoid(zo)
dzo = do ∘ sigmoid(zo)T ∘(1-sigmoid(zo))T # do x derivative of sigmoid(zo)

Next invert zo = WocCo + Wohh + Woxx + bo
dCo += dzoWoc # Note – this is a regular matrix multiply
dh = dzo Woh
dx = dzo Wox

dWoc = Codzo # Note – this multiplies a column vector by a row vector
dWoh = h dzo
dWox = x dzo
dbo = dzo

Next invert Co = f∘C + i∘Ci
dC = dCo ∘ f
dCi = dCo ∘ i
di = dCo ∘ Ci
df = dCo ∘ C

44

LSTM cell backward (continued)
Next invert Ci = tanh(zc)
dzc = dCi∘(1-tanh2(zc))T

Next invert zc = WccC + Wchh + Wcxx + bc
dC += dzcWcc
dh += dzc Wch
dx += dzc Wcx

dWcc = C dzc
dWch = h dzc
dWcx = x dzc
dbc = dzc

Next invert i = sigmoid(zi)
dzi = di ∘ sigmoid(zi)T ∘(1-sigmoid(zi))T

Next invert zi = WicC + Wihh + Wixx + bi
dC += dzi Wic
dh += dzi Wih
dx += dzi Wix

dWic = C dzi
dWih = h dzi
dWix = x dzi
dbi = dzi

45

LSTM cell backward (continued)
Next invert f = sigmoid(zf)

dzf = df sigmoid(zf)T (1-sigmoid(zf))T

Finally invert zf = WfcC + Wfhh + Wfxx + bf
dC += dzf Wfc
dh += dzf Wfh
dx += dzf Wfx

dWfc = C dzf
dWfh = h dzf
dWfx = x dzf
dbf = dzf

return dC, dh, dx, d[W, b]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

46

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

47

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM_cell is an indexed class with functions
[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer
Wo and bo are output layer weights and biases
Y is the output of the network
Assuming dWo and dbo and d[W{l} b{l}] (for all l) are
all initialized to 0 at the start of the computation

for t = T-1:0 # Including both ends of the index

dzo = dY(t) ∘ Softmax_Jacobian(zo(t))

dWo += h(t,L) dzo(t)

dh(t,L) = dzo(t)Wo
dbo += dzo(t)

for l = L-1:0

[dC(t,l),dh(t,l),dx(t,l),d[W, b]] = …
… LSTM_cell(t,l).backward(…
… dC(t+1,l), dh(t+1,l)+dx(t,l+1), C(t-1,l), h(t-1,l), …
… C(t,l), h(t,l), h(t,l-1), [W(l),b(l)])

d[W{l} b{l}] += d[W,b]
48

LSTM network backward

Gated Recurrent Units: Lets simplify
the LSTM

• Simplified LSTM which addresses some of
your concerns of why

49

Gated Recurrent Units: Lets simplify
the LSTM

• Combine forget and input gates
– In new input is to be remembered, then this means

old memory is to be forgotten
• Why compute twice?

50

Gated Recurrent Units: Lets simplify
the LSTM

• Don’t bother to separately maintain compressed and
regular memories
– Pointless computation!
– Redundant representation

51

LSTM architectures example

• Each green box is now a (layer of) LSTM or GRU cell(s)
– Keep in mind each box is an array of units

– For LSTMs the horizontal arrows carry both and

Time
X(t)

Y(t)

52

Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units.
– Or layers of LSTM units

53

t

ℎ𝑓(−1)

ℎ(𝑇 − 1) ℎ(𝑇)

𝑋(0) 𝑋(1) 𝑋(𝑇 − 1) 𝑋(𝑇)

௕

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Story so far
• Recurrent networks are poor at memorization

– Memory can explode or vanish depending on the weights and activation

• They also suffer from the vanishing gradient problem during training
– Error at any time cannot affect parameter updates in the too-distant past
– E.g. seeing a “close bracket” cannot affect its ability to predict an “open

bracket” if it happened too long ago in the input

• LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure
– Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

– Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

54

Significant issues

• The Divergence
• How to use these nets..
• This and more in the remaining lecture(s)

55

Key Issue

• How do we define the divergence

• Also: how do we compute the outputs..

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

56

What follows in this series on
recurrent nets

• Architectures: How to train recurrent networks of
different architectures

• Synchrony: How to train recurrent networks when
– The target output is time-synchronous with the input
– The target output is order-synchronous, but not time

synchronous
– Applies to only some types of nets

• How to make predictions/inference with such networks

57

Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

58

Variants of recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g isolated word/phrase recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 59

More variants

• A posteriori sequence to sequence: Generate output sequence after processing
input
– E.g. language translation

• Single-input a posteriori sequence generation
– E.g. captioning an image

Images from
Karpathy

60

Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

61

Regular MLP for processing sequences

• No recurrence in model
– Exactly as many outputs as inputs

– Every input produces a unique output

– The output at time is unrelated to the output at

Time

X(t)

Y(t)

t=0

62

Learning in a Regular MLP

• No recurrence
– Exactly as many outputs as inputs

• One to one correspondence between desired output and actual
output

– The output at time is unrelated to the output at .

Time

X(t)

Y(t)

t=0

DIVERGENCE

Ydesired(t)

63

Regular MLP

• Gradient backpropagated at each time

௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௧ ௒(௧) ௧௔௥௚௘௧

– ௧ is typically set to 1.0
– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

64

Regular MLP

• Gradient backpropagated at each time
௒(௧) ௧௔௥௚௘௧

• Common assumption:

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

65Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧

Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

66

Variants of recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

67

With a brief detour into modelling languageWith a brief detour into modelling language

Time synchronous network

• Network produces one output for each input
– With one-to-one correspondence
– E.g. Assigning grammar tags to words

• May require a bidirectional network to consider both past
and future words in the sentence

68

two

CD

h-1

roads diverged a yellow wood

NNS VBD DT JJ NN

in

IN

Time-synchronous networks:
Inference

• One sided network: Process input left to right
and produce output after each input

69

X(0)

Y(0)

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

Time-synchronous networks:
Inference

• For bidirectional networks:
– Process input left to right using forward net
– Process it right to left using backward net
– The combined outputs are time-synchronous, one per input time, and are passed up to the next

layer

• Rest of the lecture(s) will not specifically consider bidirectional nets, but the
discussion generalizes 70

ℎ𝑓(−1)

ℎ(𝑇 − 1) ℎ(𝑇)

𝑋(0) 𝑋(1) 𝑋(𝑇 − 1) 𝑋(𝑇)

௕

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence training instances comprising input
sequences and output sequences of equal length, with one-to-one
correspondence
– ௜ ௜ , where

– ௜ ௜,଴ ௜,்

– ௜ ௜,଴ ௜,்

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

71

Training: Forward pass

• For each training input:
• Forward pass: pass the entire data sequence through the network,

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

72

Training: Computing gradients

• For each training input:
• Backward pass: Compute divergence gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

73

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way

74

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop: Compute for all t

The rest of backprop continues from there

75

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

76

(భ)

First step of backprop: Compute for all t

And so on!

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

77

First step of backprop: Compute for all t

• The key component is the computation of this derivative!!
• This depends on the definition of “DIV”

Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

78

Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

௧௔௥௚௘௧ ௧௔௥௚௘௧

௧

௒(௧) ௧௔௥௚௘௧ ௒(௧) ௧௔௥௚௘௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

79Typical Divergence for classification: ௧௔௥௚௘௧ ௧௔௥௚௘௧

Simple recurrence example: Text
Modelling

• Learn a model that can predict the next character given a sequence of
characters

• L I N C O L ?

– Or, at a higher level, words
• TO BE OR NOT TO ???

• After observing inputs ଴ ௞ it predicts ௞ାଵ

h-1

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻

80

Simple recurrence example: Text
Modelling

• Input presented as one-hot vectors
– Actually “embeddings” of one-hot vectors

• Output: probability distribution over characters
– Must ideally peak at the target character

Figure from Andrej Karpathy.

Input: Sequence of characters (presented
as one-hot vectors).

Target output after observing “h e l l” is “o”

81

Training

• Input: symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary”

• Output: Probability distribution over symbols
𝑌 𝑡, 𝑖 = 𝑃(𝑉௜|𝑤଴ … 𝑤௧ିଵ)

• 𝑉௜ is the i-th symbol in the vocabulary

• Divergence

𝐷𝑖𝑣 𝑌௧௔௥௚௘௧ 1 … 𝑇 , 𝑌(1 … 𝑇) = ෍ 𝐾𝐿 𝑌௧௔௥௚௘௧ 𝑡 , 𝑌(𝑡)

௧

= − ෍ log 𝑌(𝑡, 𝑤௧ାଵ)

௧

Time

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

଴ ଵ ଶ ଷ ସ ହ ଺

ଵ ଶ ଷ ସ ହ ଺ ଻

The probability assigned
to the correct next word

82

Brief detour: Language models

• Modelling language using time-synchronous
nets

• More generally language models and
embeddings..

83

Language modelling using RNNs

• Problem: Given a sequence of words (or
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??

84

Language modelling: Representing
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g. [A AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)
• E.g. “AARDVARK”  [0 1 0 0 0 …]
• E.g. “AARON”  [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases,

special characters such as commas, hyphens, apostrophes, etc.,
and the space character

85

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

86

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

87

The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

௥ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)

88

Why one-hot representation

• The one-hot representation makes no assumptions about the relative
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)

89

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

90

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

91

The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊௜ by 𝑃𝑊௜

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊௜ is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

௡ ଴ ଶ ௡ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

(1,0,0)

(0,1,0)

(0,0,1)

92

“Projection”

• P is a simple linear transform
• A single transform can be implemented as a layer of M neurons with linear activation
• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights

௡ ଵ ଶ ௡ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

௡

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

௡ିଵ

93

Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional
representations of words

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴

94

Alternative models to learn
projections

• Soft bag of words: Predict word based on words in
immediate context
– Without considering specific position

• Skip-grams: Predict adjacent words based on current
word

• More on these in a future recitation?

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊଺

𝑃

𝑊଻

𝑊ସ

𝑃

𝑊଻

𝑊ହ 𝑊଺ 𝑊଼ 𝑊ଽ 𝑊ଵ଴𝑊ସ

Color indicates
shared parameters

95

Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality” 96

Modelling language

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

– No explicit labels in the training data: at each time the next
word is the label.

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴ଶ ଷ ସ

97

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ

98

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ

99

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ

100

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ

101

Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

102

Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/103

Returning to our problem

• Divergences are harder to define in other
scenarios..

• … next class

104

