! Machinelearming For S@gnalProces'.lg Group

Training Neural Networks:
Optimization

Intro to Deep Learning, Spring 2021

Recap

Neural networks are universal approximators

We must train them to approximate any

function

|l(4

Networks are trained to minimize total “error’
on a training set

— We do so through empirical risk minimization

We use variants of gradient descent to do so

— Gradients are computed through backpropagation

Recap

* Vanilla gradient descent may be too slow or unstable

e Better convergence can be obtained through

— Second order methods that normalize the variation across
dimensions

— Adaptive or decaying learning rates that can improve
convergence

— Methods like Rprop that decouple the dimensions can
iImprove convergence

— Momentum methods which emphasize directions of
steady improvement and deemphasize unstable directions

Moving on...

Incremental updates
Revisiting “trend” algorithms
Generalization

Tricks of the trade

— Divergences..
— Activations
— Normalizations

Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms
Generalization
Tricks of the trade

— Divergences..
— Activations
— Normalizations

The training formulation

.
.
.
.
.
.
‘e
¥

output (y) O

¢ Q
,,,,,

e Given input output pairs at a number of
locations, estimate the entire function

A

PELLLLETYN
.
-

.
e
.
.
.

.
.

Gradient descent

st @,
.

v

Start with an initial function

Gradient descent

A
o LN
------------ .'~
"""""
K OOt 9 - —~\ “;‘
LETTEL ' d 0
,0(\ o
,
s’ l
e R \
’ e N,
,l '....-_\{
g S
b =y 4 \\
,/’ﬁ? Same” } \\~
-y
,’ ~N~~ ’f -~~~~.=.’
Se e —'I
@ @ L L @ >

e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Gradient descent

.
.
.
.
G
.
‘e
‘e

.
.
...........

e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Gradient descent

e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

10

Gradient descent

e Start with an initial function
e Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

11

Gradient descent

*e o
LT

e Start with an initial function
e Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

12

Effect of number of samples

A

.
.
.
.
G
.
‘e
e

* Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points

— We must process all training points before making a single
adjustment

— “Batch”

update

13

Alternative: Incremental update

.I ...

-~ Se

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

14

Alternative: Incremental update

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

15

Alternative: Incremental update

.
.
.
.
G
.
‘e
‘e

v

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

16

Alternative: Incremental update

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

17

Alternative: Incremental update

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

— Eventually, when we have processed all the training points, we will
have adjusted the entire function

» With greater overall adjustment than we would if we made a single “Batch”
update

18

Incremental Update

Given (X]J dl)l (XZJ dZ)I"'I (XT, dT)
nitialize all weights W, W, ..., Wk

DO:
—Forallt = 1: T

* For every layer k:

— Compute Vy, Div(Y,, d;)
— Update
— : T
Wk — Wk — nVWleV(Yt, dt)

Until Loss has converged

19

Incremental Updates

* The iterations can make multiple passes over
the data

* Asingle pass through the entire training data
is called an “epoch”

— An epoch over a training set with T samples
results in T updates of parameters

Incremental Update

Given (X]J dl)l (XZJ dZ)I"'I (XT, dT)
nitialize all weights W, W, ..., Wk

DO:- Over multiple epochs One epoch

)
—Forallt = 1: T

* For every layer k:
— Compute Vy, Div(Y,, d;)
— Update
Wy = Wy, —nVy, Div(Y,, dy)"

One update

Until Loss has converged

21

Caveats: order of presentation

* |f we loop through the samples in the same

order, we may get cyclic behavior

22

Caveats: order of presentation

'@

* |f we loop through the samples in the same

order, we may get cyclic behavior

23

Caveats: order of presentation

—”’

* |f we loop through the samples in the same
order, we may get cyclic behavior

24

Caveats: order of presentation

* |f we loop through the samples in the same

order, we may get cyclic behavior

25

Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

26

Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

27

Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

28

Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

29

Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

30

Incremental Update: Stochastic
Gradient Descent
Given (Xl) dl)l (XZJ dZ)I“'I (XT) dT)
Initialize all weights W,, W, ..., Wy

Do:

— Randomly permute (X,d,), (X5,d5),..., (X7, d7)
— Forallt = 1:T

* Forevery layer k:
— Compute Vy, Div(Y,, d;)
— Update
Wy = Wy —nVy, Div(Yy, dy)"

Until Loss has converged

31

Story so far

* |n any gradient descent optimization problem,
presenting training instances incrementally
can be more effective than presenting them
all at once

— Provided training instances are provided in
random order

— “Stochastic Gradient Descent”

* This also holds for training neural networks

Explanations and restrictions

* So why does this process of incremental
updates work?

e Under what conditions?

* For “why”: first consider a simplistic
explanation that’s often given

— Look at an extreme example

The expected behavior of the gradient

dE(WO, W@, . . wk)y 1 Z dDiv(Y(X;),d; WO w®, . w)
=)
L

(k) (k)
dwl.' j dWl.’ j

* The individual training instances contribute different directions to the

overall gradient
— The final gradient points is the average of individual gradients

— It points towards the net direction
34

Extreme example

* Extreme instance of data clotting: all the
training instances are exactly the same

The expected behavior of the gradient

dDw(Y(X,) d) _dDiv(Y(X,) d;)

(k) T W PG
Lj

* The individual training instance contribute identical
directions to the overall gradient

— The final gradient points is simply the gradient for an individual

instance
36

Batch vs SGD

e Batch gradient descent operates over T training instances
to get a single update

 SGD gets T updates for the same computation

37

Clumpy data..

* Also holds if all the data are not identical, but
are tightly clumped together

38

Clumpy data..

* As data get increasingly diverse, the benefits of incremental
updates decrease, but do not entirely vanish

39

When does it work

e What are the considerations?

e And how well does it work?

Caveats: learning rate

output (y)

Input (;()
* Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances

— Correcting the function for individual instances will lead to
never-ending, non-convergent updates

— We must shrink the learning rate with iterations to prevent this

e Correction for individual instances with the eventual miniscule
learning rates will not modify the function

Incremental Update: Stochastic

Gradient Descent

Given (X{,dq), (X,,d>),..., (X7, d7)
Initialize all weights W, W5, ..., Wy; j =0
Do:
— Randomly permute (X,d,), (X,,d5),..., (X7, d7)
— Forallt = 1:T

cj=j+1

* Forevery layer k:

— Compute Vy, Div(Y,, d;)

— Update
Wk — Wk — T]] VWkDiv(Yt, dt)T

Until Loss has converged

42

Incremental Update: Stochastic

Gradient Descent
* Given (Xll dl)l (XZ, dZ)I"'I (XT) dT)
* Initialize all weights W, W,, ..., Wy, j=0
* Do:

— Randomly permute (Xli dl)l (Xz, dz),..., (XT, dT)
— Forallt = 1:T T

Randomize input order

’]=]+1

For every layer k: Learning rate reduces with |

— Compute Vy, Div(Y,, d;)
— Update /

Wy = Wi =0,V Div(Y,, d,)"
e Until Loss has converged

43

SGD convergence

* SGD converges “almost surely” to a global or local minimum for most
functions

— Sufficient condition: step sizes follow the following conditions
(Robbins and Munro 1951)

Zflk:‘x’
k

* Eventually the entire parameter space can be searched
Q<
K

— The fastest converging series that satisfies both above requirements is

1
M_
Nk 2

* This is the optimal rate of shrinking the step size for strongly convex functions

* The steps shrink

— More generally, the learning rates are heuristically determined
e |f the loss is convex, SGD converges to the optimal solution
* For non-convex losses SGD converges to a local minimum

SGD convergence

We will define convergence in terms of the number of iterations taken to
get within € of the optimal solution

- [fW®) —rw)
— Note: f(W) here is the optimization objective on the entire training data,
although SGD itself updates after every training instance

<€

Using the optimal learning rate 1/k, for strongly convex functions,

1
[FW) —fwH] < |f(W®) = fw)

— Strongly convex = Can be placed inside a quadratic bowl, touching at any point

. . : 1
— G@Giving us the iterations to € convergence as O (E)

For generically convex (but not strongly convex) function, various proofs
1 1

report an € convergence of
P g Tk Tk

using a learning rate of

Batch gradient convergence

In contrast, using the batch update method, for strongly
convex functions,

F(W®) — Fw*)

< K (W®) - Fw)

— Giving us the iterations to € convergence as O (109 (1))

€
For generic convex functions, iterations to € convergence
. 1
is 0 (—)
€

Batch gradients converge “faster”
— But SGD performs T updates for every batch update

SGD Convergence: Loss value

If:
* fis A-strongly convex, and

e at step t we have a noisy estimate of the
subgradient g, with E[||G.]|?] < G* for all t,

* and we use step size n; = 1/,

Then forany T > 1.:

17G*(1 + log(T
B[/ (wp) — fw)] < 08

SGD Convergence

 We can bound the expected difference between the
loss over our data using the optimal weights w* and

the weights wy at any single iteration to O (logT(T)) for
log(T)
VT

strongly convex loss or O () for convex loss

* Averaging schemes can improve the bound to 0 (%)

and O (\/i?)

* Smoothness of the loss is not required

48

SGD Convergence and weight
averaging

Polynomial Decay Averaging:
+ 1 + 1
w, = (1 4)v—vty_l L,
t+y t+y
With y some small positive constant, e.g. y = 3

Achieves O (%) (strongly convex) and O (\/LT)

(convex) convergence

SGD example

K=10
0.04 y T T —T g — T — g —

0.035 |-

0.03 |-

0.025 -

0.02 |-

0.015 |

0.01 |

Error from Best K-Means Objective Function Value

0.005 |

SIGD K‘-M;e.rems —— ‘
Batch K-Means =»=»

0 1 |
0.0001 0.001 0.01 0.1 1 10
Training CPU secs

 Asimpler problem: K-means
* Note: SGD converges faster
— Butto a poorer minimum

* Also note the rather large variation between runs

— Let’s try to understand these results..

100

1000

50

Recall: Modelling a function

%\

* To learn a network f(X; W) to model a function g(X) we
minimize the expected divergence

W= argminf div(f(X; W), g(X))P(X)dX
w X

= argmin E|div(f(X; W), g(X))|
w

Recall: The Empirical risk

|
=5

-

\
_><

* In practice, we minimize the empirical risk (or loss)

Loss(W) = %z div(f(X; W), d;)

W = argmin Loss(W)
%

* The expected value of the empirical risk is actually the expected divergence
E[Loss(W)] = E[div(f(X; W), g(X))]

52

Recall: The Empirical risk

|
=5

-

\
_><

In practice, we minimize the empirical risk (or loss)

Loss(W) = %Z div(f(X; W), d;)

The empirical risk is an unbiased estimate of the expected divergence
Though there is no guarantee that minimizing it will minimize the
expected divergence

E[Loss(W)] = E[div(f(X; w), g(X))]

53

Recall: The Empirical risk

/

.4]

The variance of the empirical risk: var(Loss) = 1/N var(div)

The variance of the estimator is proportional to 1/N
The larger this variance, the greater the likelihood that the W that
minimizes the empirical risk will differ significantly from the W that
minimizes the expected divergence

Loss(W) = %Z div(f(X; W), d;)

The empirical risk is an unbiased estimate of the expected divergence
Though there is no guarantee that minimizing it will minimize the
expected divergence

E[Loss(W)] = E[dh;(f(X; W),g(X))]

54

SGD

* At each iteration, SGD focuses on the divergence
of a single sample div(f (X; W), d;)

* The expected value of the sample error is still the
expected divergence E [div(fx;w),gx))] .

SGD

The sample divergence is also an unbiased estimate of the expected error

* At each iteration, SGD focuses on the divergence
of a single sample div(f (X; W), d;)

* The expected value of the sample error is still the
expected divergence E [div(fx;w),gx))] .

SGD

/ /
/\ .\L\)

The variance of the sample divergence is the variance of the divergence itself:
var(div). This is N times the variance of the empirical average minimized by
batch update

=

The sample divergence is also an unbiased estimate of the expected error

* At each iteration, SGD focuses on the divergence
of a single sample div(f (X; W), d;)

* The expected value of the sample error is still the
expected divergence E [div(fx;w),gx))]

Explaining the variance

g(x)

f ;W)

v

* The blue curve is the function being approximated
* The red curve is the approximation by the model at a given W

* The heights of the shaded regions represent the point-by-point error
— The divergence is a function of the error
— We want to find the W that minimizes the average divergence

58

Explaining the variance

g(x)

\ flw)

X

 Sample estimate approximates the shaded area with the
average length of the lines

59

Explaining the variance

 Sample estimate approximates the shaded area
with the average length of the lines

* This average length will change with position of
the samples

60

Explaining the variance

 Sample estimate approximates the shaded area
with the average length of the lines

* This average length will change with position of
the samples

61

Explaining the variance

gx) ~
/ RN
)j;‘\l\m
NP

X

/
/\\

f ;W)

—

* Having more samples makes the estimate more

robust to changes in the position of samples

— The variance of the estimate is smaller

62

Explaining the variance

With only one sample

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly

63

Explaining the variance

With only one sample

fl W)

X

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly

64

Explaining the variance

With only one sample

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly

65

0.04

SGD example

0.035 |-

0.03 |

0.025 -

0.02 |

0.015 |

0.01 |

Error from Best K-Means Objective Function Value

0.005 |

0

I SIGD K‘-M;e.[?ms -—-—- ‘

Batch K-Means

1
0.0001 0.001 0.01 0.1 1
Training CPU secs

* Asimpler problem: K-means
* Note: SGD converges faster

|
10

ol
100

* But also has large variation between runs

1000

66

SGD vs batch

e SGD uses the gradient from only one sample
at a time, and is consequently high variance

e But also provides significantly quicker updates
than batch

* |s there a good medium?

Alternative: Mini-batch update

o
—+ e 9..
..... anuEEEg, ““‘
I'e. N 4 ATTS 9’
---------- ."o(’ \\ 0“
s N
4 ‘e
. A
,,/ 0" \
, C. \ "
0. ”
,, te, -\‘
/ , \\
4 N
-
| s L ~
,,’ Suer” ~\~ *,
-—
s ~4 - -~~~; ,,,,,
é S 7 i
~~—.-._— ~
L L L L L @ >

Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data

68

Alternative: Mini-batch update

..............
..... FPLLLLLT TR ““‘ ¢
o . -— \d
. ‘. ~... ” N\ “.
. *
/.(\\ 0“
2 . ‘ o
* \ “’
/ .’0 \S ”“
L — s’ .'., AN
/, \
- ’
- ~ L
- S’
,/
4
L L o L L @ >

Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data

69

Alternative: Mini-batch update

T e Q..
“-‘ LN
9
“
:n PR il L P
[~ - -
S -
-~
kL P —

L L L @ L @ >

Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data

Alternative: Mini-batch update

...

P
“
.
.
R

.‘
o

Ll
7
]
]
/]
]
I
I
1
\
\
\
\
1
1
I
I
I
/

Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data

Incremental Update: Mini-batch
update

Given (Xlr dl)/ (Xz, dZ)/"-; (XTI dT)
Initialize all weights W, W,, ..., Wy, j=0
Do:

— Randomly permute (X4, d,), (X5,d5),..., X7,d7)
— Fort = 1:b:T

e j=j+1
* For every layer k:
- AWk = 0

e Fort’'=t:t+b-1
— For every layer k:
» Compute Vy, Div(Y;, d;)
» AWy = AWy, + = Vi, Div (Y, d;)T

e Update
— For every layer k:

Wk = Wk — T]]AWk

Until E7r has converged

72

Incremental Update: Mini-batch
update

Given (X,d,), (X,,d5),..., Xg,dr)
Initialize all weights W, W,, ..., Wy, j=0
Do:
— Randomly permute (X,d,), (X,,d5),..., X, dr)
— Fort = 1:b:]
c j=j+1 Mini-batch size
* For every layer k:

— AW, =0 Shrinking step size
* Fort'=t:t+b-1
— For every layer k:
» Compute Vy, Div(Y;, d;)

» AW, = AW, kDiv(Yt, d)T

e Update

— For every layer k:

Wk - Wk @Wk

Until Err has converged

73

Mini Batches

Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = EZ div(f(X; W), d;)

=1

The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E[div(f(X; w), g(X))]

74

Mini Batches

|
=5

NEDS

The minibatch loss is also an unbiased estimate of the expected loss

* Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = EZ div(f(X; W), d;)

=1

 The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E[div(f(X; w), g(X))]

75

Mini Batches

/ /

The variance of the minibatch loss: var(BatchlLoss) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The minibatch loss is also an unbiased estimate of the expected error

* Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = EZ div(f(X; W), d;)

=1

 The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E[div(f(X; w), g(X))]

Minibatch convergence

. . 1
For convex functions, convergence rate for SGD is O (\/_E)

For mini-batch updates with batches of size b, the

1

. 1
convergence rate Is O (\/ﬁ ~+ E)

— Apparently an improvement of Vb over SGD

— But since the batch size is b, we perform b times as many
computations per iteration as SGD

— We actually get a degradation of Vb

However, in practice

— The objectives are generally not convex; mini-batches are more
effective with the right learning rates

— We also get additional benefits of vector processing

SGD example

0.04

I SIGD K‘-M'e.[?ms -—-—- ‘
Batch K-Means {

ini- - = I
0.035 | Mini-Batch K-Means (b=1000) |

0.03 |-
0.025 |

0.02 |-

0.015 |

0.01 |

Error from Best K-Means Objective Function Value

-"—
0.005 | e,
m

0 1 1 e = | T
0.0001 0.001 0.01 Q.1 1 10 100 1000

Training CPU secs

* Mini-batch performs comparably to batch
training on this simple problem

— But converges orders of magnitude faster

78

Measuring Loss

I SGD K-Me'ans —
Batch K-Meat

ns
Mini-Batch K-Means (b=1000) 3n1@n=
0.085 - b

* Convergence is generally
defined in terms of the
overall training loss

ction Value

Error from Best K-Means Objective Fun

— Not sample or batch loss

* |nfeasible to actually measure the overall training loss
after each iteration

* More typically, we estimate is as
— Divergence or classification error on a held-out set

— Average sample/batch loss over the past N
samples/batches

Training and minibatches

* |n practice, training is usually performed using mini-
batches

— The mini-batch size is a hyper parameter to be optimized

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error plateaus,
then reduce learning rate by a fixed factor (e.g. 10)

— Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation

Story so far

SGD: Presenting training instances one-at-a-time can be more effective
than full-batch training

— Provided they are provided in random order

For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations

— Otherwise the learning will continuously “chase” the latest sample

SGD estimates have higher variance than batch estimates

Minibatch updates operate on batches of instances at a time
— Estimates have lower variance than SGD
— Convergence rate is theoretically worse than SGD
— But we compensate by being able to perform batch processing

Training and minibatches

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error
plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

— Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the

estimation

82

Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms

Generalization
Tricks of the trade

— Divergences..
— Activations
— Normalizations

Recall: Momentum

«

* The momentum method
AW = pAW =) — 7y, Loss(W kD)

e Updates using a running average of the gradient

84

Momentum and incremental updates

> SGD instance
or minibatch
loss
e The momentum method /

AW O = AW k=D — n1, Loss(w k-D)"

* |Incremental SGD and mini-batch gradients tend to have
high variance

* Momentum smooths out the variations

— Smoother and faster convergence
85

Momentum: Mini-batch update

Given (X1,dq), (X5,d5),..., (X7, dp)
Initialize all weights W, W5, ..., Wy, j =0, AW, =0
Do:
— Randomly permute (X{,d,), (X5,d>5),..., Xp,d7)
— Fort = 1:b:T
c j=j+1
* For every layer k:
~ Wy, Loss =0
e Fort'=t:t+b-1

— For every layer k:
» Compute Vy, Div(Y;, d¢)

» Vi, Loss += - Vy, Div(¥,, d;)

* Update
— For every layer k:
AW, = BAW), — n;(Vy, Loss)"
W, = W, + AW,

Until Loss has converged

86

Nestorov’s Accelerated Gradient

e At any iteration, to compute the current step:
— First extend the previous step
— Then compute the gradient at the resultant position
— Add the two to obtain the final step

* This also applies directly to incremental update methods

— The accelerated gradient smooths out the variance in the
gradients

87

Nestorov’s Accelerated Gradient

&>
SGD instance
or minibatch
) loss
e Nestorov’s method /

AWE = gAW *=1) — pp,, Loss(W *=1) + gAW (k=1))T
W& = wk-1 L Ay

88

Nestorov: Mini-batch update

Given (Xl' dl)' (Xz, dz),..., (XT, dT)
Initialize all weights W, W5, ..., Wg; j =0, AW, =0

Do:
— Randomly permute (X;,d,), (X3,d5),..., Xr,dr)
— Fort = 1:b:T

- j=j+1

* For every layer k:
- Wy, =Wy + AW,
Vw,Loss =0
e Fort' =t:t+b-1
— Forevery layer k:
» Compute Vi, Div(Y;, d;)
» Vy, Loss += %VWkDiv(Yt,dt)

* Update
— For every layer k:
Wy = Wy —n;Vy, Loss”
AW, = BAW), — 1V, Loss”

Until Loss has converged

89

Still higher-order methods

e Momentum and Nestorov’s method improve
convergence by normalizing the mean of the
derivatives

* More recent methods take this one step further by also
considering their variance
— RMS Prop
— Adagrad
— AdaDelta
— ADAM: very popular in practice

* All roughly equivalent in performance

90

Smoothing the trajectory
o

1 1 +2.5
2 1 -3

3 2 +2.5
4 1 -2

5 1.5 1.5

 Observation: Steps in “oscillatory” directions show large total
movement

— In the example, total motion in the vertical direction is much greater
than in the horizontal direction

— Can happen even when momentum or Nestorov are used
 Improvement: Dampen step size in directions with high motion

— Second order term
91

Normalizing steps by second moment

M A

Modify usual gradient-based update:

— Scale updates in every component in inverse proportion to the total

movement of that component in recent past
* According to their variation (not just their average)

* This will change the relative update sizes for the individual
components

— In the above example it would scale down Y component

— And scale up X component (in comparison)

* We will see two popular methods that embody this principle...
92

RMS Prop

Notation:
— Updates are by parameter

— Derivative of loss w.r.t any individual parameter w is shown as d,,D
* Batch or minibatch loss, or individual divergence for batch/minibatch/SGD

— The squared derivative is 02D = (0,,D)?

* Short-hand notation represents the squared derivative, not the second
derivative

— The mean squared derivative is a running estimate of the average
squared derivative. We will show this as E[02 D]

Modified update rule: We want to
— scale down updates with large mean squared derivatives

— scale up updates with small mean squared derivatives
93

RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale update of the parameter by the inverse of the root mean
squared derivative

E[0yD]y = YE[05;,D]x—1 + (1 — y) (05 D)x

n
Wk 1:Wk_ 0 D
" \/E[O‘%,D]k+6 v

94

RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale update of the parameter by the inverse of the root mean
squared derivative

E[0yD]y = YE[05;,D]x—1 + (1 — y) (05 D)x

n
Wk 1:Wk_ 5‘ D
" \/E[O‘%,D]k+6 v

Note similarity to RPROP
The magnitude of the derivative is being normalized out

RMS Prop (updates are for each
™ weight of each layer)

— Randomly shuffle inputs to change their order
— Initialize: k = 1; for all weights w in all layers, E[05D], = 0
— Forallt = 1:B:T (incrementing in blocks of B inputs)

* For all weights in all layers initialize (d,,D); = 0

* Forb =0:B—-1

— Compute

» Output Y (X;yp)

dDiv(Y (X¢+p).de+b)
dw
1 dDiv(Y (X¢+p).de+b)

» Compute(d,,D); += B dw

» Compute gradient

* update: forallw € {W{ki,-}‘v’i,j, k}

E|o;D] =vE[d;D]| _ + 1 -y)(95D),
n Typical values:

Wii1 = Wy — JE®D], 1 eawD y = 0.9
n = 0.001

« k=k+1

Until loss has converged
96

ADAM: RMSprop with momentum

RMS prop only considers a second-moment normalized version of the current

gradient
ADAM utilizes a smoothed version of the momentum-augmented gradient

— Considers both first and second moments

Procedure:
Maintain a running estimate of the mean derivative for each parameter

Maintain a running estimate of the mean squared value of derivatives for each parameter

Scale update of the parameter by the inverse of the root mean squared derivative
my = 6my_1 + (1 —6)(0,D)i
— 2
Vg = YVk—1 + (L —y)(0D)x
my Uk

M =1 5% k=T

U P

W1 = Wi — —F/—Mg
ﬂﬁk + €

97

ADAM: RMSprop with momentum

* RMS prop only considers a second-moment normalized version of the
current gradient
 ADAM utilizes a smoothed version of the momentum-augmented gradient

* Procedure:
— Maintain a running estimate of the mean derivative for each pars=

— Maintain a running estimate of the mean squared valur

Ensures that the

parameter 6 and y terms do
— Scale update of the parameter by the inverse of the not dominate in
derivative early
my, = dmy_; + (1 —6)(0,D)y iterations

Vg = YVUg—1 + (1 —y)(05D)x

mg ~ 2%
1— 5k’ Vk =

ﬁ\lk:

U .

Wigi1 = Wg — —F/———My
ﬂﬁk + €

98

Other variants of the same theme

* Many:
— Adagrad
— AdaDelta
— AdaMax

* Generally no explicit learning rate to optimize
— But come with other hyper parameters to be optimized

— Typical params:
* RMSProp:n =0.001,y =0.9
« ADAM: n =0.001,6 = 0.9, y = 0.999

Visualizing the optimizers: Beale’s Function

* http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Long Valley

- SGD

= Momentum
- NAG

- Adagrad
Adadelta
Rmsprop
N
i

W

0
(o';:i

1.0

-1.5

* http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

101

Saddle Point

5
g2 TS
Q rerol.u
A EZER]
ee (R=22%Z ¢
74 o
—
= ||| "
Q =
N
O N
& :
o N =

0.0

Visualizing the opt

-for.html

ions

t

-anima

t.com/2015/03/alec-radfords

//www.denizyure

http

102

Story so far

* Gradient descent can be sped up by incremental
updates

— Convergence is guaranteed under most conditions

* Learning rate must shrink with time for convergence

— Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

— Mini-batch updates: update after batches. Can be more
efficient than SGD

* Convergence can be improved using smoothed updates

— RMSprop and more advanced techniques

