
Training Neural Networks:
Optimization

Intro to Deep Learning, Spring 2021

1

Recap

• Neural networks are universal approximators

• We must train them to approximate any
function

• Networks are trained to minimize total “error”
on a training set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
– Gradients are computed through backpropagation

2

Recap
• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through
– Second order methods that normalize the variation across

dimensions

– Adaptive or decaying learning rates that can improve
convergence

– Methods like Rprop that decouple the dimensions can
improve convergence

– Momentum methods which emphasize directions of
steady improvement and deemphasize unstable directions

3

Moving on…

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

4

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

5

The training formulation

• Given input output pairs at a number of
locations, estimate the entire function

6

Input (X)

output (y)

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

7

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

8

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

9

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

10

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

11

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

12

Effect of number of samples

• Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points
– We must process all training points before making a single

adjustment
– “Batch” update

13

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

14

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

15

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

16

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

17

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

18

Incremental Update
• Given , ,…,

• Initialize all weights

• Do:
– For all

• For every layer :

– Compute ௐೖ 𝒕 𝒕

– Update

ೖ

• Until has converged
19

Incremental Updates

• The iterations can make multiple passes over
the data

• A single pass through the entire training data
is called an “epoch”
– An epoch over a training set with samples

results in updates of parameters

20

Incremental Update

• Given , ,…,

• Initialize all weights

• Do:
– For all

• For every layer :

– Compute ௐೖ 𝒕 𝒕

– Update

ೖ

• Until has converged
21

One epochOver multiple epochs

One update

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

22

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

23

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

24

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

25

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

26

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

27

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

28

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

29

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

30

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,

• Initialize all weights

• Do:
– Randomly permute , ,…,

– For all
• For every layer :

– Compute ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௐೖ 𝒕 𝒕
்

• Until has converged
31

Story so far

• In any gradient descent optimization problem,
presenting training instances incrementally
can be more effective than presenting them
all at once
– Provided training instances are provided in

random order
– “Stochastic Gradient Descent”

• This also holds for training neural networks

32

Explanations and restrictions

• So why does this process of incremental
updates work?

• Under what conditions?

• For “why”: first consider a simplistic
explanation that’s often given
– Look at an extreme example

33

The expected behavior of the gradient

• The individual training instances contribute different directions to the
overall gradient
– The final gradient points is the average of individual gradients
– It points towards the net direction

34

𝑑𝐸(𝑾(ଵ), 𝑾(ଶ), … , 𝑾 ௄)

𝒅𝑤௜,௝
(௞)

=
𝟏

𝑻
෍

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊; 𝑾(ଵ), 𝑾(ଶ), … , 𝑾(௄))

𝒅𝑤௜,௝
(௞)

𝒊

Extreme example

• Extreme instance of data clotting: all the
training instances are exactly the same

35

The expected behavior of the gradient

• The individual training instance contribute identical
directions to the overall gradient
– The final gradient points is simply the gradient for an individual

instance
36

𝑑𝑬

𝒅𝑤௜,௝
(௞)

=
𝟏

𝑻
෍

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤௜,௝
(௞)

=
𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤௜,௝
(௞)

𝒊

Batch vs SGD

• Batch gradient descent operates over T training instances
to get a single update

• SGD gets T updates for the same computation
37

Batch SGD

Clumpy data..

• Also holds if all the data are not identical, but
are tightly clumped together

38

Clumpy data..

• As data get increasingly diverse, the benefits of incremental
updates decrease, but do not entirely vanish

39

When does it work

• What are the considerations?

• And how well does it work?

40

Caveats: learning rate

• Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances
– Correcting the function for individual instances will lead to

never-ending, non-convergent updates
– We must shrink the learning rate with iterations to prevent this

• Correction for individual instances with the eventual miniscule
learning rates will not modify the function

Input (X)

output (y)

41

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,
• Initialize all weights ;

• Do:
– Randomly permute , ,…,
– For all

•

• For every layer :
– Compute ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௝ ௐೖ 𝒕 𝒕
்

• Until has converged
42

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,
• Initialize all weights ;

• Do:
– Randomly permute , ,…,
– For all

•

• For every layer :
– Compute ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௝ ௐೖ 𝒕 𝒕
்

• Until has converged
43

Randomize input order

Learning rate reduces with j

SGD convergence
• SGD converges “almost surely” to a global or local minimum for most

functions
– Sufficient condition: step sizes follow the following conditions

(Robbins and Munro 1951)

෍ 𝜂௞ = ∞

௞

• Eventually the entire parameter space can be searched

෍ 𝜂௞
ଶ < ∞

௞

• The steps shrink

– The fastest converging series that satisfies both above requirements is

𝜂௞ ∝
1

𝑘
• This is the optimal rate of shrinking the step size for strongly convex functions

– More generally, the learning rates are heuristically determined

• If the loss is convex, SGD converges to the optimal solution
• For non-convex losses SGD converges to a local minimum

44

SGD convergence
• We will define convergence in terms of the number of iterations taken to

get within of the optimal solution

– (௞) ∗

– Note: here is the optimization objective on the entire training data,
although SGD itself updates after every training instance

• Using the optimal learning rate , for strongly convex functions,

(௞) ∗ (଴) ∗

– Strongly convex  Can be placed inside a quadratic bowl, touching at any point

– Giving us the iterations to convergence as ଵ

ఢ

• For generically convex (but not strongly convex) function, various proofs
report an convergence of ଵ

௞
using a learning rate of ଵ

௞
.

45

Batch gradient convergence
• In contrast, using the batch update method, for strongly

convex functions,

– Giving us the iterations to convergence as

• For generic convex functions, iterations to convergence
is

• Batch gradients converge “faster”
– But SGD performs updates for every batch update

46

SGD Convergence: Loss value

If:
• is -strongly convex, and
• at step we have a noisy estimate of the

subgradient with for all ,
• and we use step size
Then for any :

47

SGD Convergence

• We can bound the expected difference between the
loss over our data using the optimal weights and
the weights at any single iteration to for

strongly convex loss or for convex loss

• Averaging schemes can improve the bound to

and

• Smoothness of the loss is not required

48

SGD Convergence and weight
averaging

Polynomial Decay Averaging:

With some small positive constant, e.g.

Achieves (strongly convex) and
(convex) convergence

49

SGD example

• A simpler problem: K-means
• Note: SGD converges faster

– But to a poorer minimum

• Also note the rather large variation between runs
– Let’s try to understand these results.. 50

Recall: Modelling a function

• To learn a network to model a function we
minimize the expected divergence

51

Recall: The Empirical risk

• In practice, we minimize the empirical risk (or loss)

𝐿𝑜𝑠𝑠 𝑊 =
1

𝑁
෍ 𝑑𝑖𝑣 𝑓 𝑋௜; 𝑊 , 𝑑௜

ே

௜ୀଵ

𝑾෢ = argmin
ௐ

 𝐿𝑜𝑠𝑠 𝑊

• The expected value of the empirical risk is actually the expected divergence
𝐸 𝐿𝑜𝑠𝑠 𝑊 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

52

Xi

di

Recall: The Empirical risk

• In practice, we minimize the empirical risk (or loss)

𝐿𝑜𝑠𝑠 𝑊 =
1

𝑁
෍ 𝑑𝑖𝑣 𝑓 𝑋௜; 𝑊 , 𝑑௜

ே

௜ୀଵ

𝑾෢ = argmin
ௐ

 𝐿𝑜𝑠𝑠 𝑊

• The expected value of the empirical risk is actually the expected divergence
𝐸 𝐿𝑜𝑠𝑠 𝑊 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

53

Xi

di

The empirical risk is an unbiased estimate of the expected divergence
Though there is no guarantee that minimizing it will minimize the
expected divergence

Recall: The Empirical risk

• In practice, we minimize the empirical risk

𝐿𝑜𝑠𝑠 𝑊 =
1

𝑁
෍ 𝑑𝑖𝑣 𝑓 𝑋௜; 𝑊 , 𝑑௜

ே

௜ୀଵ

𝑾෢ = argmin
ௐ

 𝐿𝑜𝑠𝑠 𝑓 𝑋; 𝑊 , 𝑔 𝑋

• The expected value of the empirical risk is actually the expected divergence
𝐸 𝐿𝑜𝑠𝑠 𝑊 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

54

Xi

di

The empirical risk is an unbiased estimate of the expected divergence
Though there is no guarantee that minimizing it will minimize the
expected divergence

The variance of the empirical risk: var(Loss) = 1/N var(div)
The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that
minimizes the empirical risk will differ significantly from the W that
minimizes the expected divergence

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 55

Xi

di

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 56

Xi

di

The sample divergence is also an unbiased estimate of the expected error

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 57

Xi

di

The variance of the sample divergence is the variance of the divergence itself:
var(div). This is N times the variance of the empirical average minimized by
batch update

The sample divergence is also an unbiased estimate of the expected error

Explaining the variance

• The blue curve is the function being approximated
• The red curve is the approximation by the model at a given
• The heights of the shaded regions represent the point-by-point error

– The divergence is a function of the error
– We want to find the that minimizes the average divergence

58

Explaining the variance

• Sample estimate approximates the shaded area with the
average length of the lines of these curves is the red curve
itself

• Variance: The spread between the different curves is the
variance

59

Explaining the variance

• Sample estimate approximates the shaded area
with the average length of the lines

• This average length will change with position of
the samples

60

Explaining the variance

• Sample estimate approximates the shaded area
with the average length of the lines

• This average length will change with position of
the samples

61

Explaining the variance

• Having more samples makes the estimate more
robust to changes in the position of samples
– The variance of the estimate is smaller

62

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

63

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

64

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

65

SGD example

• A simpler problem: K-means
• Note: SGD converges faster
• But also has large variation between runs 66

SGD vs batch

• SGD uses the gradient from only one sample
at a time, and is consequently high variance

• But also provides significantly quicker updates
than batch

• Is there a good medium?

67

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

68

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

69

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

70

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

71

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ +
ଵ

௕
𝛻ௐೖ

𝐷𝑖𝑣(𝑌௧, 𝑑௧)்

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝∆𝑊௞

• Until has converged 72

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ +
ଵ

௕
𝛻ௐೖ

𝐷𝑖𝑣(𝑌௧, 𝑑௧)்

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝∆𝑊௞

• Until has converged 73

Mini-batch size

Shrinking step size

Mini Batches

• Mini-batch updates compute and minimize a batch loss

௜ ௜

௕

௜ୀଵ

• The expected value of the batch loss is also the expected divergence

74

Xi

di

Mini Batches

• Mini-batch updates compute and minimize a batch loss

௜ ௜

௕

௜ୀଵ

• The expected value of the batch loss is also the expected divergence

75

Xi

di

The minibatch loss is also an unbiased estimate of the expected loss

Mini Batches

• Mini-batch updates compute and minimize a batch loss

௜ ௜

௕

௜ୀଵ

• The expected value of the batch loss is also the expected divergence

76

Xi

di

The variance of the minibatch loss: var(BatchLoss) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The minibatch loss is also an unbiased estimate of the expected error

Minibatch convergence
• For convex functions, convergence rate for SGD is .

• For mini-batch updates with batches of size , the
convergence rate is

– Apparently an improvement of over SGD
– But since the batch size is , we perform times as many

computations per iteration as SGD

– We actually get a degradation of

• However, in practice
– The objectives are generally not convex; mini-batches are more

effective with the right learning rates
– We also get additional benefits of vector processing

77

SGD example

• Mini-batch performs comparably to batch
training on this simple problem
– But converges orders of magnitude faster

78

Measuring Loss
• Convergence is generally

defined in terms of the
overall training loss
– Not sample or batch loss

• Infeasible to actually measure the overall training loss
after each iteration

• More typically, we estimate is as
– Divergence or classification error on a held-out set
– Average sample/batch loss over the past

samples/batches
79

Training and minibatches

• In practice, training is usually performed using mini-
batches
– The mini-batch size is a hyper parameter to be optimized

• Convergence depends on learning rate
– Simple technique: fix learning rate until the error plateaus,

then reduce learning rate by a fixed factor (e.g. 10)

– Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation

80

Story so far
• SGD: Presenting training instances one-at-a-time can be more effective

than full-batch training
– Provided they are provided in random order

• For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations
– Otherwise the learning will continuously “chase” the latest sample

• SGD estimates have higher variance than batch estimates

• Minibatch updates operate on batches of instances at a time
– Estimates have lower variance than SGD
– Convergence rate is theoretically worse than SGD
– But we compensate by being able to perform batch processing

81

Training and minibatches

• Convergence depends on learning rate
– Simple technique: fix learning rate until the error

plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

– Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the
estimation

82

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

83

Recall: Momentum

• The momentum method

• Updates using a running average of the gradient

84

Momentum and incremental updates

• The momentum method

• Incremental SGD and mini-batch gradients tend to have
high variance

• Momentum smooths out the variations
– Smoother and faster convergence

85

SGD instance
or minibatch
loss

Momentum: Mini-batch update
• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄; , ௞

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝛻ௐೖ

𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝(𝛻ௐೖ
𝐿𝑜𝑠𝑠)்

𝑊௞ = 𝑊௞ + ∆𝑊௞

• Until has converged
86

Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

• This also applies directly to incremental update methods
– The accelerated gradient smooths out the variance in the

gradients

87

Nestorov’s Accelerated Gradient

• Nestorov’s method
 ()

88

SGD instance
or minibatch
loss

Nestorov: Mini-batch update
• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄ ; 𝑗 = 0, ∆𝑊௞ = 0

• Do:
– Randomly permute 𝑋ଵ, 𝑑ଵ , 𝑋ଶ, 𝑑ଶ ,…, 𝑋், 𝑑்

– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝑊௞ = 𝑊௞ + 𝛽Δ𝑊௞

– 𝛻ௐೖ
𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

• Until has converged

89

Still higher-order methods
• Momentum and Nestorov’s method improve

convergence by normalizing the mean of the
derivatives

• More recent methods take this one step further by also
considering their variance
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

• All roughly equivalent in performance
90

Smoothing the trajectory

• Observation: Steps in “oscillatory” directions show large total
movement
– In the example, total motion in the vertical direction is much greater

than in the horizontal direction
– Can happen even when momentum or Nestorov are used

• Improvement: Dampen step size in directions with high motion
– Second order term

91

1 2
3

4
5

Step X component Y component

1 1 +2.5

2 1 -3

3 2 +2.5

4 1 -2

5 1.5 1.5

Normalizing steps by second moment

• Modify usual gradient-based update:
– Scale updates in every component in inverse proportion to the total

movement of that component in recent past
• According to their variation (not just their average)

• This will change the relative update sizes for the individual
components
– In the above example it would scale down Y component
– And scale up X component (in comparison)

• We will see two popular methods that embody this principle…
92

RMS Prop
• Notation:

– Updates are by parameter

– Derivative of loss w.r.t any individual parameter is shown as ௪

• Batch or minibatch loss, or individual divergence for batch/minibatch/SGD

– The squared derivative is ௪
ଶ

௪
ଶ

• Short-hand notation represents the squared derivative, not the second
derivative

– The mean squared derivative is a running estimate of the average
squared derivative. We will show this as ௪

ଶ

• Modified update rule: We want to
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives

93

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

௞ାଵ ௞
௪
ଶ

௞
௪

94

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

௞ାଵ ௞
௪
ଶ

௞
௪

95
Note similarity to RPROP
The magnitude of the derivative is being normalized out

RMS Prop (updates are for each
weight of each layer)

• Do:
– Randomly shuffle inputs to change their order
– Initialize: ; for all weights in all layers, ௪

ଶ
௞

– For all (incrementing in blocks of inputs)
• For all weights in all layers initialize 𝜕௪𝐷 ௞ = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute

» Output 𝒀(𝑿𝒕ା𝒃)

» Compute gradient 𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

» Compute 𝜕௪𝐷 ௞ +=
ଵ

஻

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

• update: for all 𝑤 ∈ 𝑤 ௜௝
௞ ∀𝑖, 𝑗, 𝑘

𝑬 𝝏𝒘
𝟐 𝑫

𝒌
= 𝜸𝑬 𝝏𝒘

𝟐 𝑫
𝒌ି𝟏

+ 𝟏 − 𝜸 𝝏𝒘
𝟐 𝑫

𝒌

𝒘𝒌ା𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐 𝑫 𝒌 + 𝝐

𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until loss has converged
96

Typical values:

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the current

gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

– Considers both first and second moments

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean squared derivative

௞ ௞ିଵ ௪ ௞

௞ ௞ିଵ ௪
ଶ

௞

𝑚ෝ௞ =
𝑚௞

1 − 𝛿௞
, 𝑣ො௞ =

𝑣௞

1 − 𝛾௞

𝑤௞ାଵ = 𝑤௞ −
𝜂

𝑣ො௞ + 𝜖
𝑚ෝ௞

97

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the

current gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each

parameter
– Scale update of the parameter by the inverse of the root mean squared

derivative

௞ ௞ିଵ ௪ ௞

௞ ௞ିଵ ௪
ଶ

௞

௞
௞

௞ ௞
௞

௞

௞ାଵ ௞
௞

௞

98

Ensures that the
and terms do

not dominate in
early

iterations

Other variants of the same theme

• Many:
– Adagrad
– AdaDelta
– AdaMax
– …

• Generally no explicit learning rate to optimize
– But come with other hyper parameters to be optimized
– Typical params:

• RMSProp: ,
• ADAM: , ,

99

Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

100

Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

101

Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

102

Story so far

• Gradient descent can be sped up by incremental
updates
– Convergence is guaranteed under most conditions

• Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

– Mini-batch updates: update after batches. Can be more
efficient than SGD

• Convergence can be improved using smoothed updates
– RMSprop and more advanced techniques

103

