

# Training Neural Networks: Optimization

Intro to Deep Learning, Spring 2021

#### Recap

- Neural networks are universal approximators
- We must train them to approximate any function
- Networks are trained to minimize total "error" on a training set
  - We do so through empirical risk minimization
- We use variants of gradient descent to do so
  - Gradients are computed through backpropagation

#### Recap

- Vanilla gradient descent may be too slow or unstable
- Better convergence can be obtained through
  - Second order methods that normalize the variation across dimensions
  - Adaptive or decaying learning rates that can improve convergence
  - Methods like Rprop that decouple the dimensions can improve convergence
  - Momentum methods which emphasize directions of steady improvement and deemphasize unstable directions

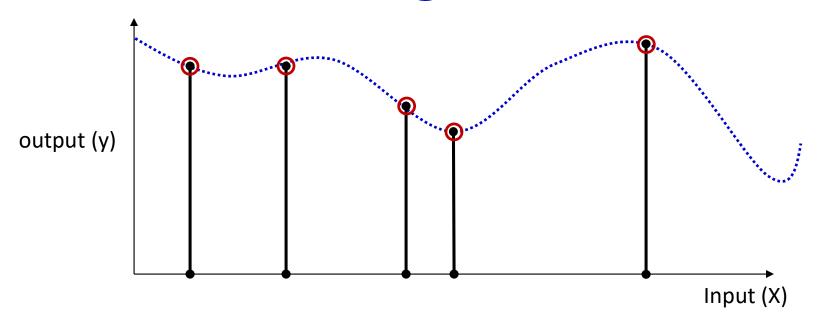
#### Moving on...

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
  - Divergences...
  - Activations
  - Normalizations

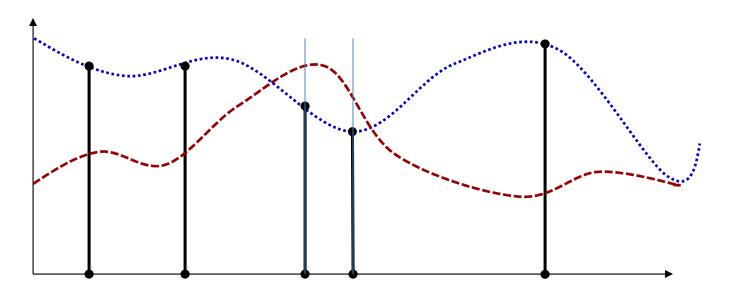
## Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
  - Divergences...
  - Activations
  - Normalizations

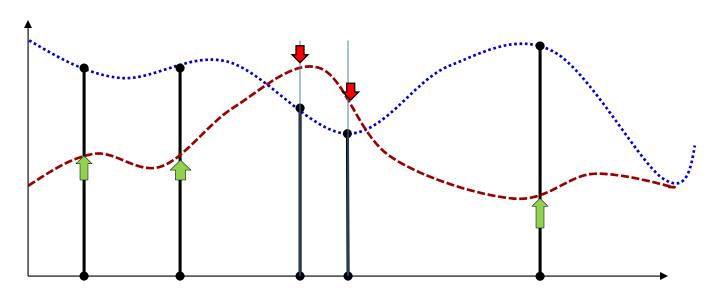
## The training formulation



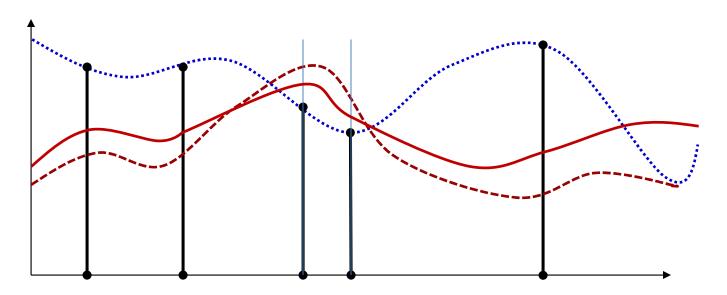
 Given input output pairs at a number of locations, estimate the entire function



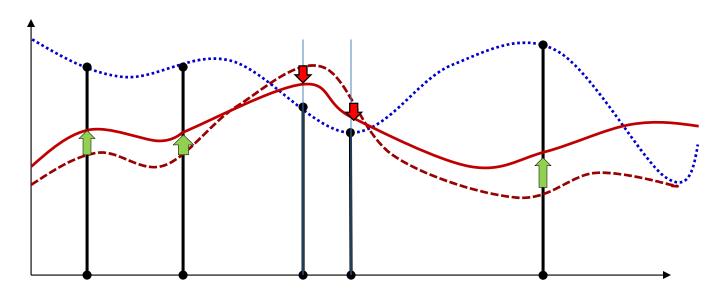
Start with an initial function



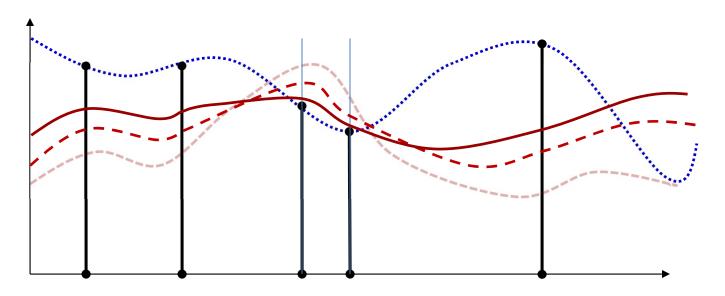
- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
  - Gradient descent adjusts parameters to adjust the function value at all points
  - Repeat this iteratively until we get arbitrarily close to the target function at the training points



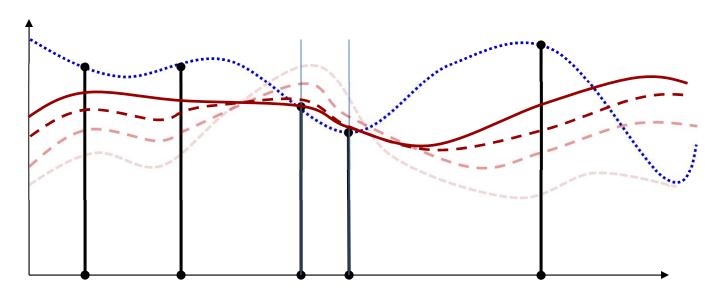
- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
  - Gradient descent adjusts parameters to adjust the function value at all points
  - Repeat this iteratively until we get arbitrarily close to the target function at the training points



- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
  - Gradient descent adjusts parameters to adjust the function value at all points
  - Repeat this iteratively until we get arbitrarily close to the target function at the training points

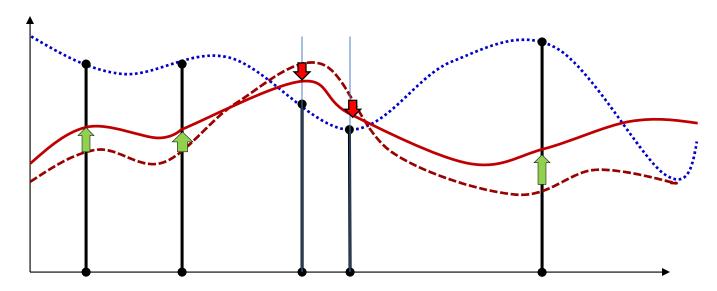


- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
  - Gradient descent adjusts parameters to adjust the function value at all points
  - Repeat this iteratively until we get arbitrarily close to the target function at the training points

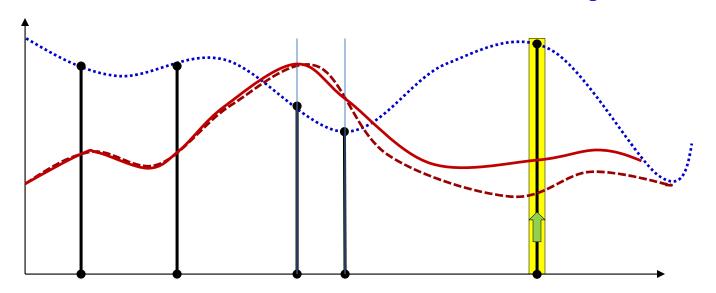


- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
  - Gradient descent adjusts parameters to adjust the function value at all points
  - Repeat this iteratively until we get arbitrarily close to the target function at the training points

### **Effect of number of samples**



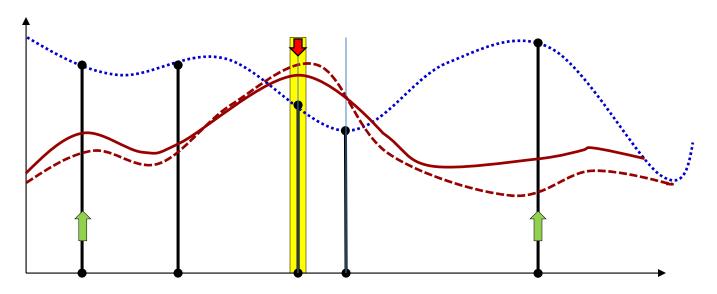
- Problem with conventional gradient descent: we try to simultaneously adjust the function at all training points
  - We must process all training points before making a single adjustment
  - "Batch" update



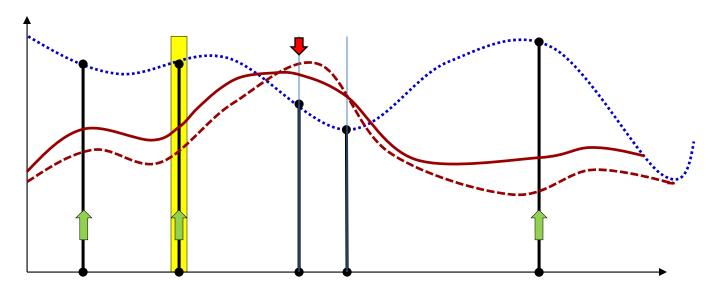
- Alternative: adjust the function at one training point at a time
  - Keep adjustments small



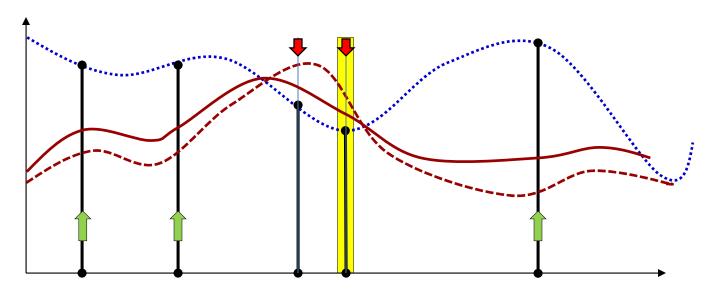
- Alternative: adjust the function at one training point at a time
  - Keep adjustments small



- Alternative: adjust the function at one training point at a time
  - Keep adjustments small



- Alternative: adjust the function at one training point at a time
  - Keep adjustments small



- Alternative: adjust the function at one training point at a time
  - Keep adjustments small
  - Eventually, when we have processed all the training points, we will have adjusted the entire function
    - With greater overall adjustment than we would if we made a single "Batch" update

#### **Incremental Update**

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$
- Do:
  - For all t = 1:T
    - For every layer *k*:
      - Compute  $\nabla_{W_k} Div(Y_t, d_t)$
      - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(Y_t, \mathbf{d}_t)^T$$

Until Loss has converged

#### **Incremental Updates**

- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
  - An epoch over a training set with T samples results in T updates of parameters

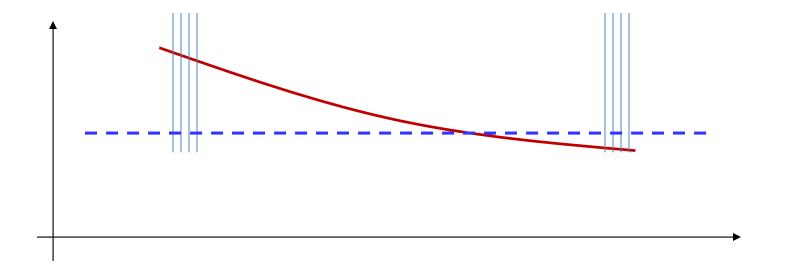
#### **Incremental Update**

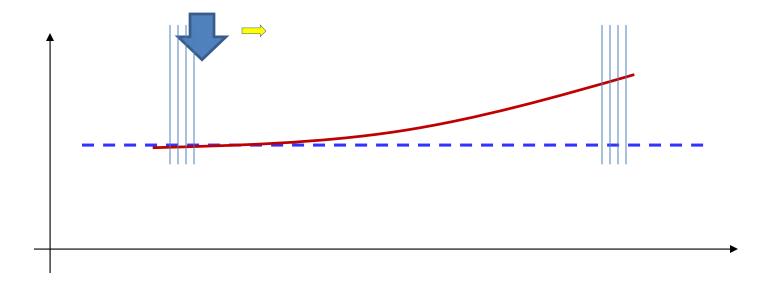
- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$
- Do:

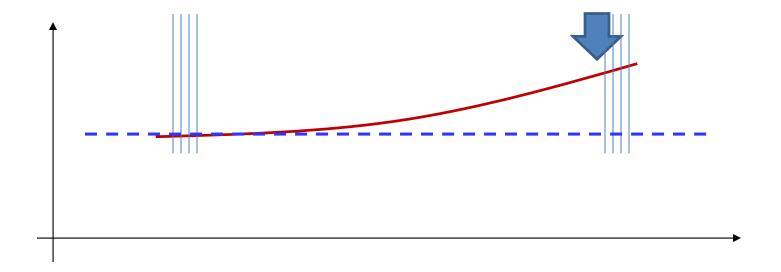
  Over multiple epochs

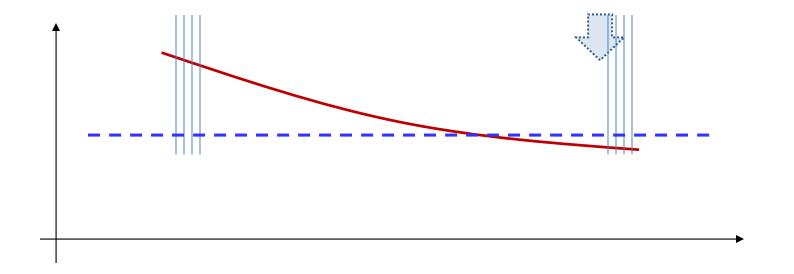
   For all t=1:T• For every layer k:

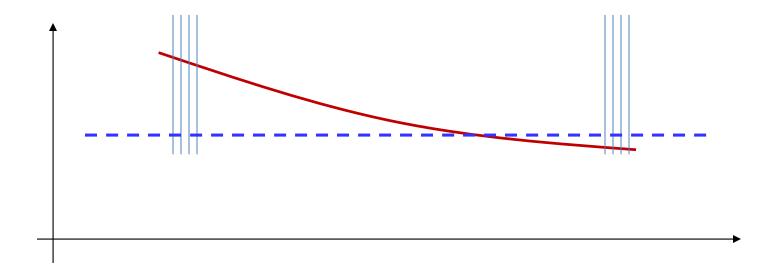
   Compute  $\nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$  Update  $W_k = W_k \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)^T$ One update
- Until Loss has converged



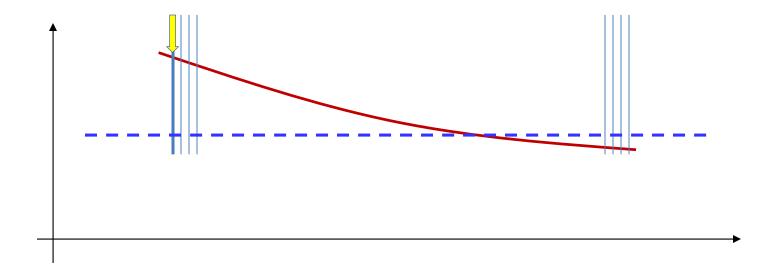




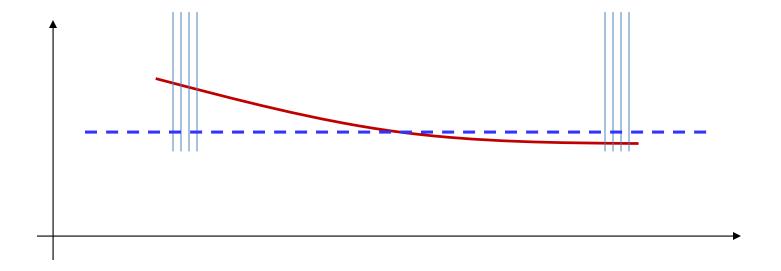




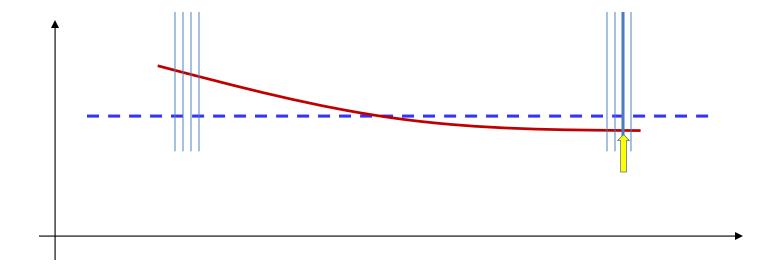
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior



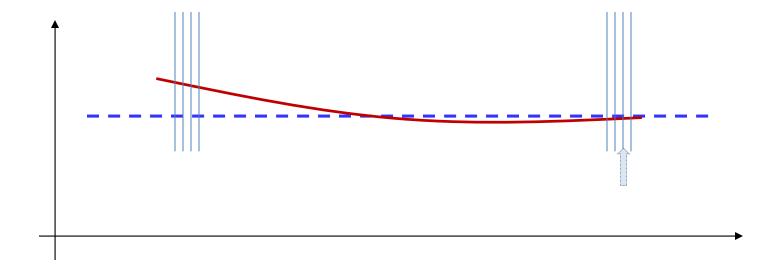
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

#### Incremental Update: Stochastic Gradient Descent

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For all t = 1:T
    - For every layer *k*:
      - Compute  $\nabla_{W_k} Div(Y_t, d_t)$
      - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y_t}, \mathbf{d_t})^T$$

Until Loss has converged

#### Story so far

- In any gradient descent optimization problem, presenting training instances incrementally can be more effective than presenting them all at once
  - Provided training instances are provided in random order
  - "Stochastic Gradient Descent"
- This also holds for training neural networks

#### **Explanations and restrictions**

- So why does this process of incremental updates work?
- Under what conditions?

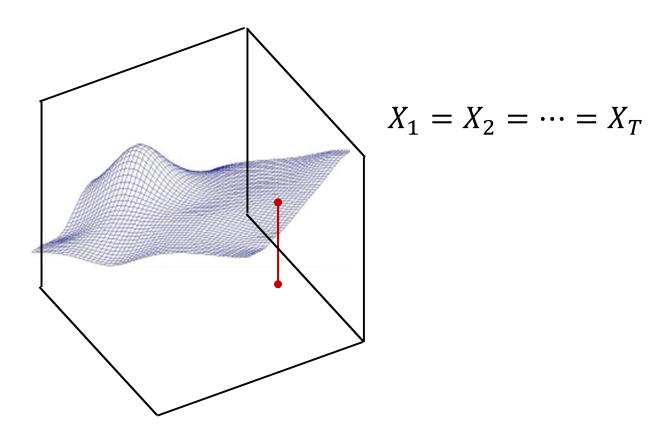
- For "why": first consider a simplistic explanation that's often given
  - Look at an extreme example

#### The expected behavior of the gradient

$$\frac{dE(W^{(1)}, W^{(2)}, ..., W^{(K)})}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{i} \frac{dDiv(Y(X_i), d_i; W^{(1)}, W^{(2)}, ..., W^{(K)})}{dw_{i,j}^{(k)}}$$

- The individual training instances contribute different directions to the overall gradient
  - The final gradient points is the average of individual gradients
  - It points towards the net direction

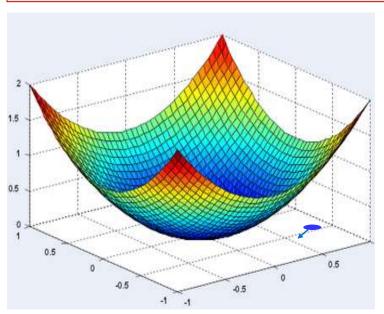
#### Extreme example

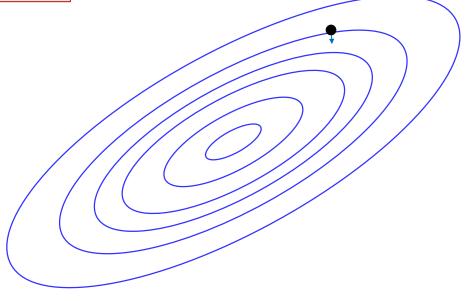


 Extreme instance of data clotting: all the training instances are exactly the same

#### The expected behavior of the gradient

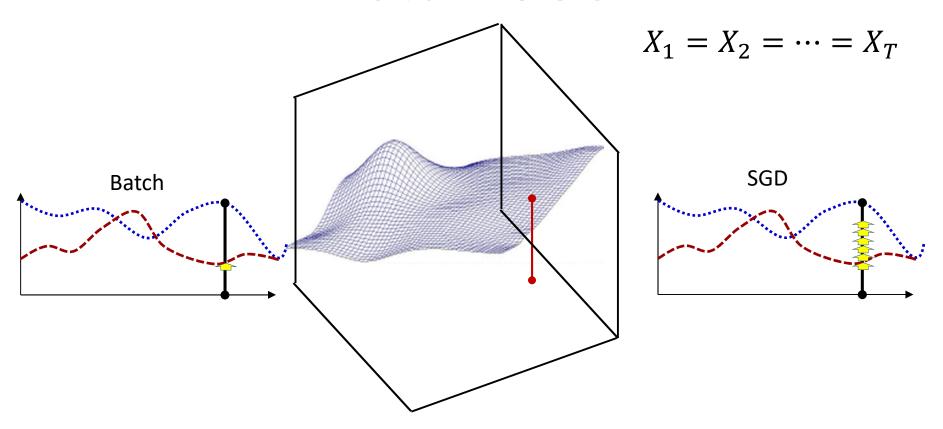
$$\frac{dE}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{i} \frac{dDiv(Y(X_i), d_i)}{dw_{i,j}^{(k)}} = \frac{dDiv(Y(X_i), d_i)}{dw_{i,j}^{(k)}}$$





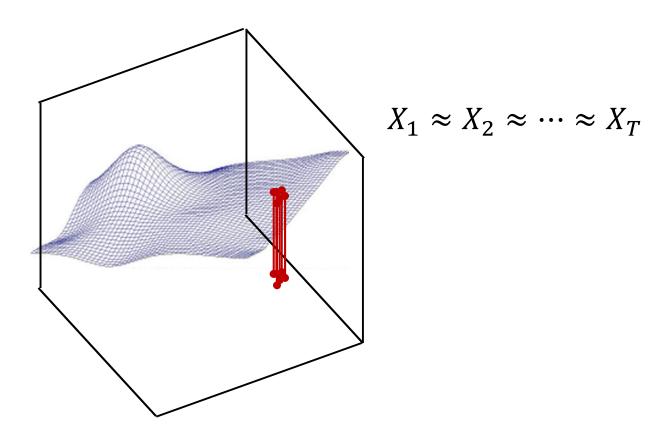
- The individual training instance contribute identical directions to the overall gradient
  - The final gradient points is simply the gradient for an individual instance

#### **Batch vs SGD**



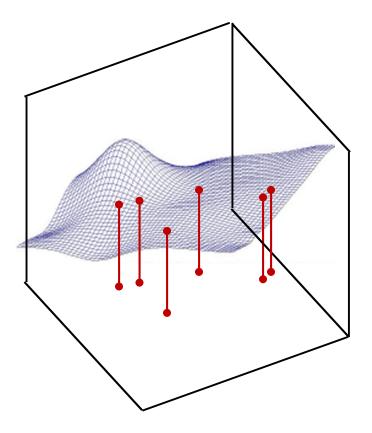
- Batch gradient descent operates over T training instances to get a single update
- SGD gets T updates for the same computation

## Clumpy data...



 Also holds if all the data are not identical, but are tightly clumped together

## Clumpy data...



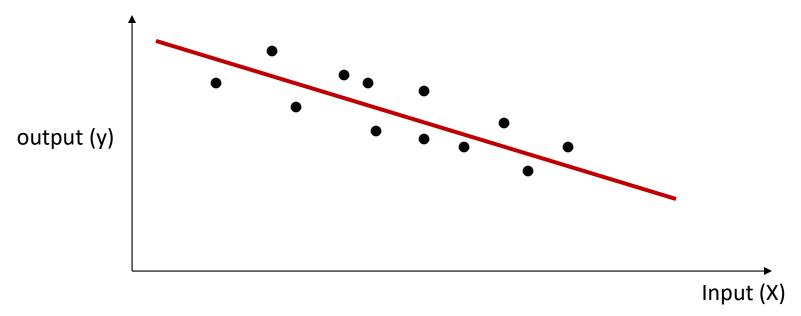
 As data get increasingly diverse, the benefits of incremental updates decrease, but do not entirely vanish

### When does it work

• What are the considerations?

And how well does it work?

## **Caveats: learning rate**



- Except in the case of a perfect fit, even an optimal overall fit will look incorrect to individual instances
  - Correcting the function for individual instances will lead to never-ending, non-convergent updates
  - We must shrink the learning rate with iterations to prevent this
    - Correction for individual instances with the eventual miniscule learning rates will not modify the function

## Incremental Update: Stochastic Gradient Descent

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$ ; j = 0
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For all t = 1:T
    - j = j + 1
    - For every layer *k*:
      - Compute  $\nabla_{W_k} Div(Y_t, d_t)$
      - Update

$$W_k = W_k - \eta_i \nabla_{W_k} \mathbf{Div}(Y_t, \mathbf{d_t})^T$$

Until Loss has converged

## Incremental Update: Stochastic Gradient Descent

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$ ; j = 0
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For all t = 1:T

Randomize input order

Learning rate reduces with j

- j = j + 1
- For every layer *k*:

- Compute  $\nabla_{W_k} Div(Y_t, d_t)$ 

- Update  $W_k = W_k - \frac{1}{\eta_j} \nabla_{W_k} \mathbf{Div}(\mathbf{Y_t}, \mathbf{d_t})^T$ 

Until Loss has converged

## **SGD** convergence

- SGD converges "almost surely" to a global or local minimum for most functions
  - Sufficient condition: step sizes follow the following conditions (Robbins and Munro 1951)

$$\sum_k \eta_k = \infty$$

Eventually the entire parameter space can be searched

$$\sum_k \eta_k^2 < \infty$$

- The steps shrink
- The fastest converging series that satisfies both above requirements is

$$\eta_k \propto \frac{1}{k}$$

- This is the optimal rate of shrinking the step size for strongly convex functions
- More generally, the learning rates are heuristically determined
- If the loss is convex, SGD converges to the optimal solution
- For non-convex losses SGD converges to a local minimum

### SGD convergence

- We will define convergence in terms of the number of iterations taken to get within  $\epsilon$  of the optimal solution
  - $\left| f(W^{(k)}) f(W^*) \right| < \epsilon$
  - Note: f(W) here is the optimization objective on the *entire* training data, although SGD itself updates after every training instance
- Using the optimal learning rate 1/k, for strongly convex functions,

$$|f(W^{(k)}) - f(W^*)| < \frac{1}{k} |f(W^{(0)}) - f(W^*)|$$

- Strongly convex → Can be placed inside a quadratic bowl, touching at any point
- Giving us the iterations to  $\epsilon$  convergence as  $O\left(\frac{1}{\epsilon}\right)$
- For generically convex (but not strongly convex) function, various proofs report an  $\epsilon$  convergence of  $\frac{1}{\sqrt{k}}$  using a learning rate of  $\frac{1}{\sqrt{k}}$ .

## **Batch gradient convergence**

 In contrast, using the batch update method, for strongly convex functions,

$$|f(W^{(k)}) - f(W^*)| < c^k |f(W^{(0)}) - f(W^*)|$$

- Giving us the iterations to  $\epsilon$  convergence as  $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
- For generic convex functions, iterations to  $\epsilon$  convergence is  $O\left(\frac{1}{\epsilon}\right)$
- Batch gradients converge "faster"
  - But SGD performs T updates for every batch update

## **SGD Convergence: Loss value**

#### If:

- f is  $\lambda$ -strongly convex, and
- at step t we have a noisy estimate of the subgradient  $\hat{g}_t$  with  $\mathbb{E}[\|\hat{g}_t\|^2] \leq G^2$  for all t,
- and we use step size  $\eta_t = \frac{1}{\lambda t}$

Then for any T > 1:

$$\mathbb{E}[f(w_T) - f(w^*)] \le \frac{17G^2(1 + \log(T))}{\lambda T}$$

## **SGD Convergence**

- We can bound the expected difference between the loss over our data using the optimal weights  $w^*$  and the weights  $w_T$  at any single iteration to  $\mathcal{O}\left(\frac{\log(T)}{T}\right)$  for strongly convex loss or  $\mathcal{O}\left(\frac{\log(T)}{\sqrt{T}}\right)$  for convex loss
- Averaging schemes can improve the bound to  $\mathcal{O}\left(\frac{1}{T}\right)$  and  $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$
- Smoothness of the loss is not required

# SGD Convergence and weight averaging

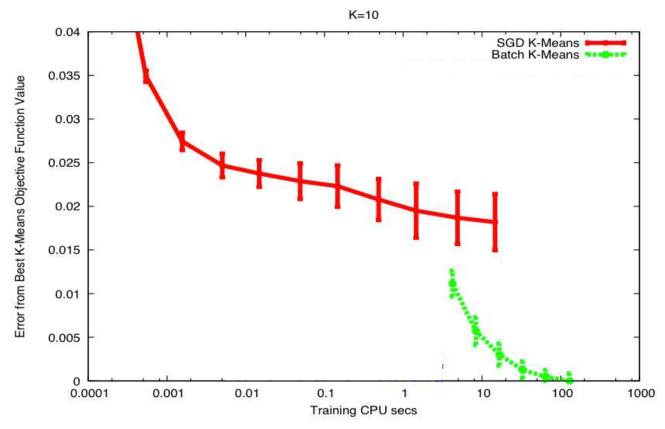
Polynomial Decay Averaging:

$$\overline{w}_t^{\gamma} = \left(1 - \frac{\gamma + 1}{t + \gamma}\right) \overline{w}_{t-1}^{\gamma} + \frac{\gamma + 1}{t + \gamma} w_t$$

With  $\gamma$  some small positive constant, e.g.  $\gamma = 3$ 

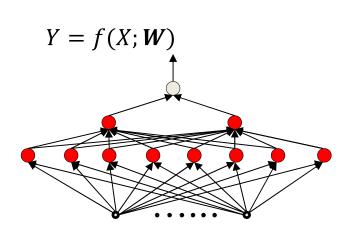
Achieves  $\mathcal{O}\left(\frac{1}{T}\right)$  (strongly convex) and  $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$  (convex) convergence

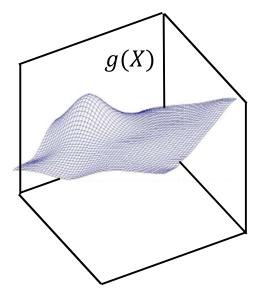
## SGD example



- A simpler problem: K-means
- Note: SGD converges faster
  - But to a poorer minimum
- Also note the rather large variation between runs
  - Let's try to understand these results..

## **Recall: Modelling a function**

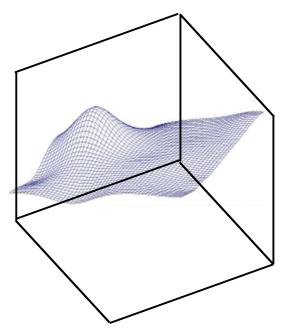


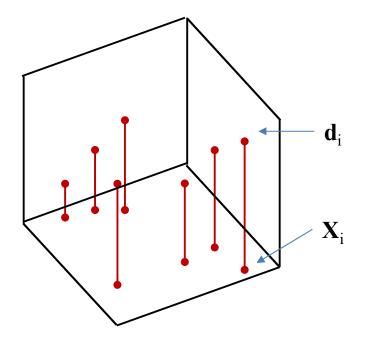


• To learn a network f(X; W) to model a function g(X) we minimize the expected divergence

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E[div(f(X; W), g(X))]$$

## Recall: The *Empirical* risk





In practice, we minimize the empirical risk (or loss)

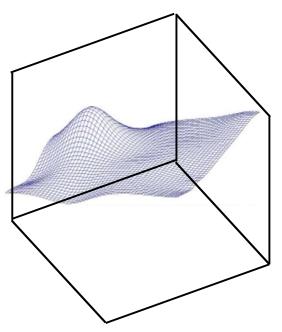
$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

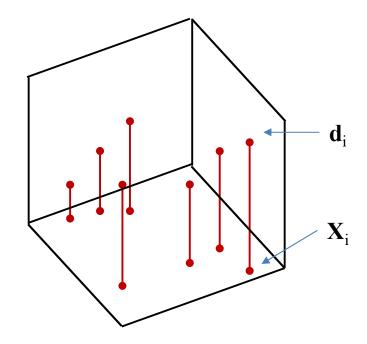
$$\widehat{W} = \underset{W}{\operatorname{argmin}} Loss(W)$$

The expected value of the empirical risk is actually the expected divergence

$$E[Loss(W)] = E[div(f(X; W), g(X))]$$

## Recall: The *Empirical* risk





• In practice, we minimize the *empirical risk* (or loss)

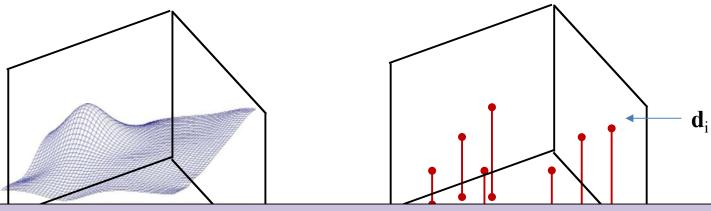
$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence

Though there is no guarantee that minimizing it will minimize the expected divergence

$$E[Loss(W)] = E[div(f(X; W), g(X))]$$

## Recall: The *Empirical* risk



The variance of the empirical risk: var(Loss) = 1/N var(div)

The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that minimizes the empirical risk will differ significantly from the W that minimizes the expected divergence

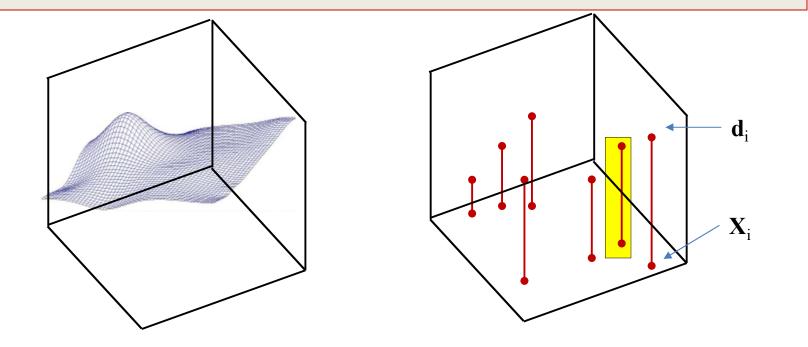
$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence

Though there is no guarantee that minimizing it will minimize the expected divergence

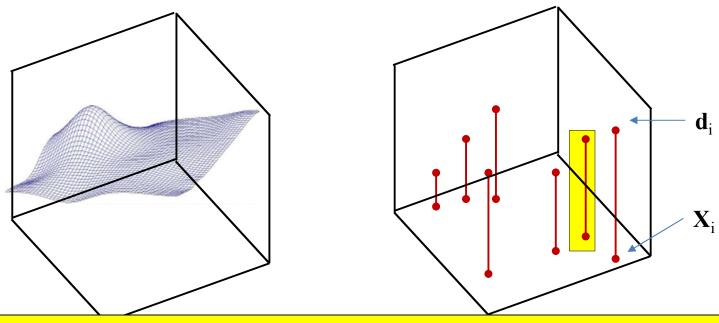
$$E[Loss(W)] = E[div(f(X; W), g(X))]$$

#### **SGD**



- At each iteration, **SGD** focuses on the divergence of a *single* sample  $div(f(X_i; W), d_i)$
- The expected value of the sample error is **still** the expected divergence  $E\left[div(f(X;W),g(X))\right]$

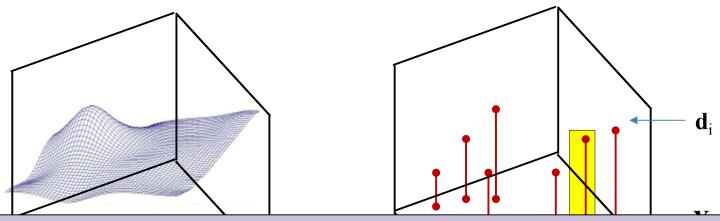
#### **SGD**



The sample divergence is also an unbiased estimate of the expected error

- At each iteration, **SGD** focuses on the divergence of a *single* sample  $div(f(X_i; W), d_i)$
- The expected value of the sample error is **still** the expected divergence  $E\left[div(f(X;W),g(X))\right]$

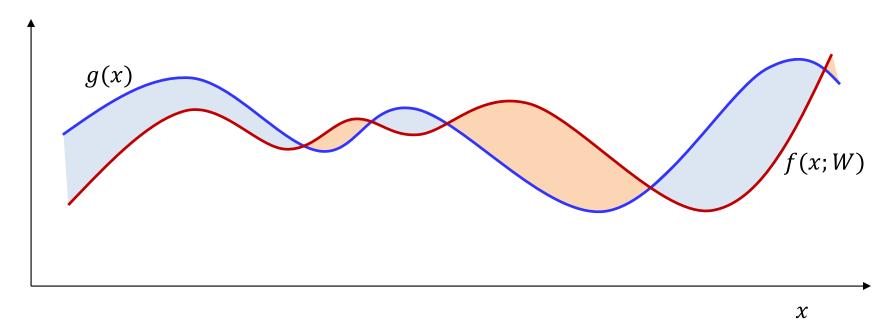
#### **SGD**



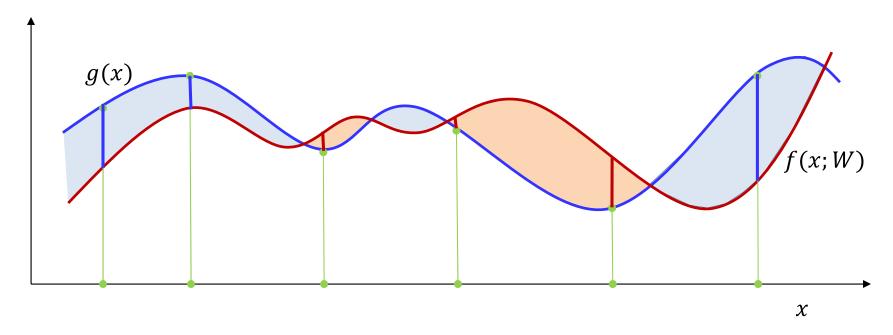
The variance of the sample divergence is the variance of the divergence itself: var(div). This is N times the variance of the empirical average minimized by batch update

The sample divergence is also an unbiased estimate of the expected error

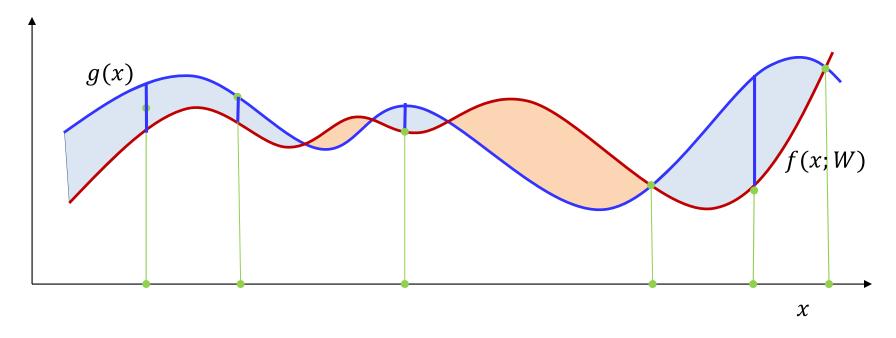
- At each iteration, **SGD** focuses on the divergence of a *single* sample  $div(f(X_i; W), d_i)$
- The expected value of the sample error is **still** the expected divergence  $E\left[div(f(X;W),g(X))\right]$



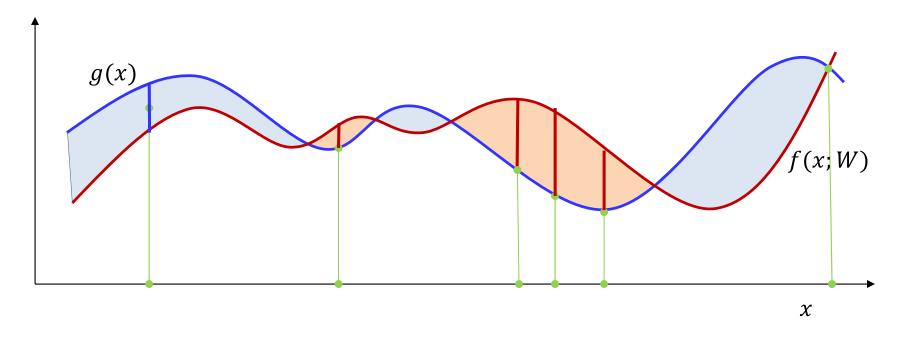
- The blue curve is the function being approximated
- The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
  - The divergence is a function of the error
  - We want to find the W that minimizes the average divergence



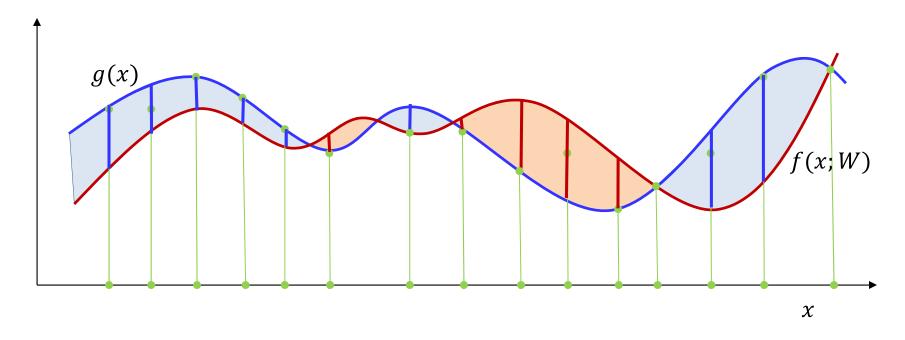
Sample estimate approximates the shaded area with the average length of the lines



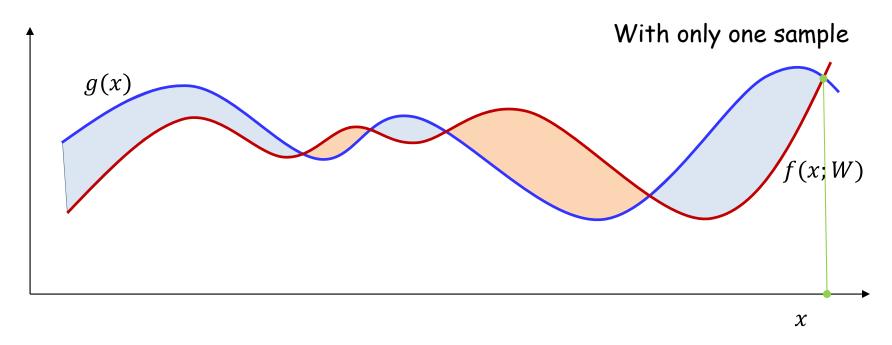
- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples



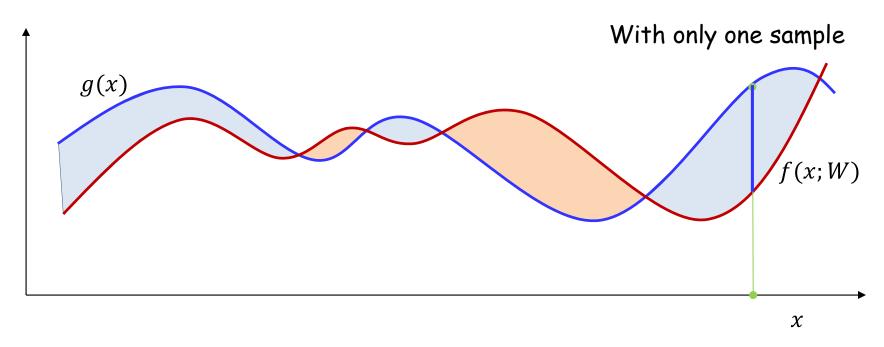
- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples



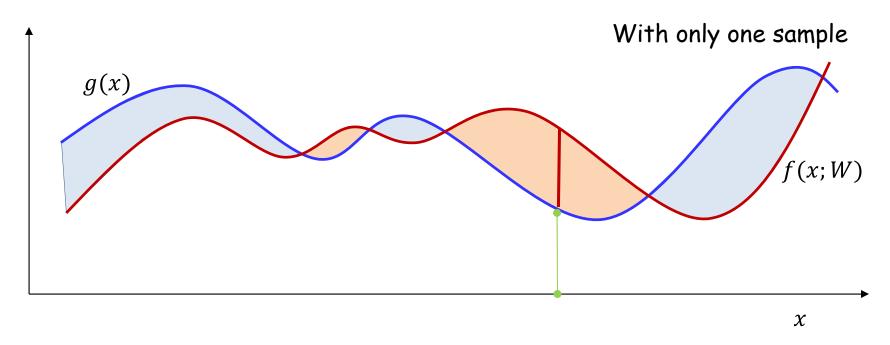
- Having more samples makes the estimate more robust to changes in the position of samples
  - The variance of the estimate is smaller



- Having very few samples makes the estimate swing wildly with the sample position
  - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

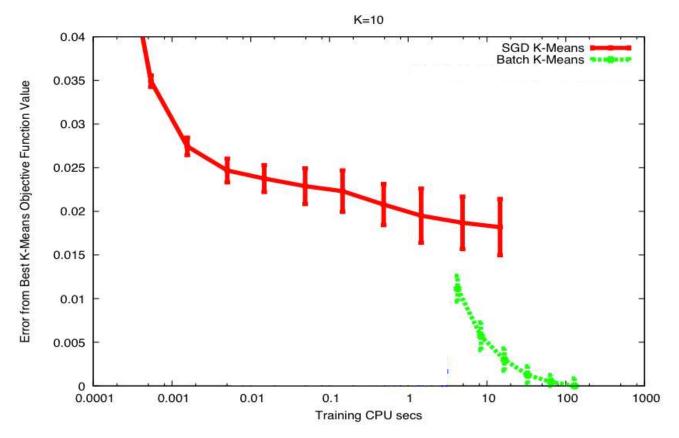


- Having very few samples makes the estimate swing wildly with the sample position
  - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly



- Having very few samples makes the estimate swing wildly with the sample position
  - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

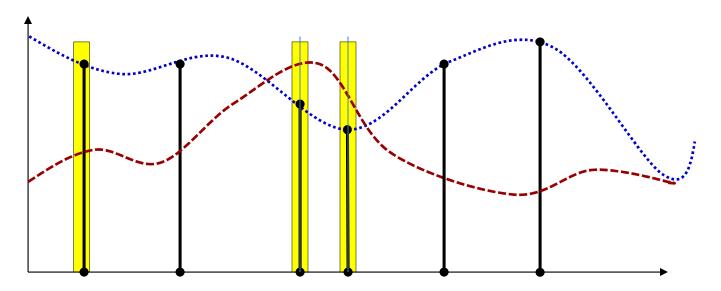
## SGD example



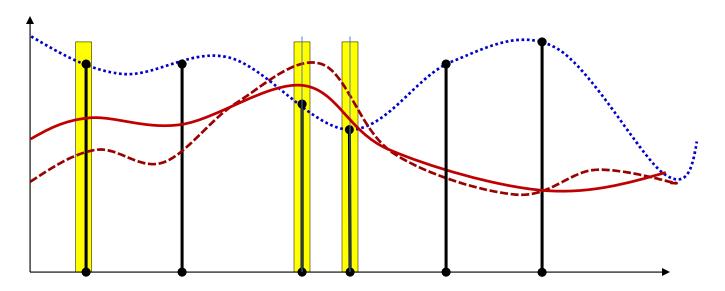
- A simpler problem: K-means
- Note: SGD converges faster
- But also has large variation between runs

#### SGD vs batch

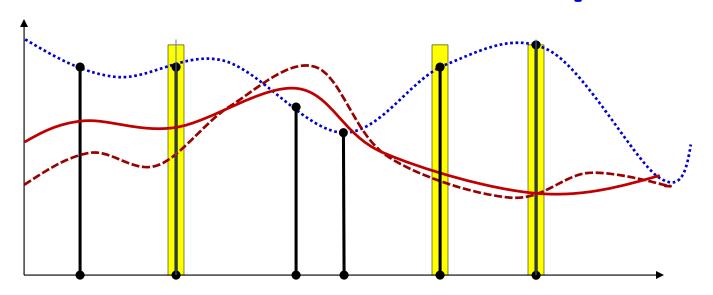
- SGD uses the gradient from only one sample at a time, and is consequently high variance
- But also provides significantly quicker updates than batch
- Is there a good medium?



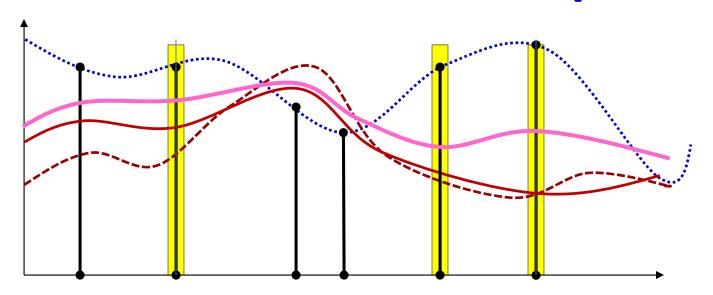
- Alternative: adjust the function at a small, randomly chosen subset of points
  - Keep adjustments small
  - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
  - Keep adjustments small
  - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
  - Keep adjustments small
  - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
  - Keep adjustments small
  - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

# Incremental Update: Mini-batch update

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$ ; j = 0
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For t = 1:b:T
    - j = j + 1
    - For every layer k:

$$-\Delta W_k = 0$$

- For t' = t: t+b-1
  - For every layer k:
    - » Compute  $\nabla_{W_k}Div(Y_t, d_t)$
    - »  $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
- Update
  - For every layer k:

$$W_k = W_k - \eta_i \Delta W_k$$

Until *Err* has converged

# Incremental Update: Mini-batch update

- Given  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$ ; j = 0
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For t = 1:b:T
    - j = j + 1

Mini-batch size

- For every layer k:
  - $-\Delta W_k = 0$

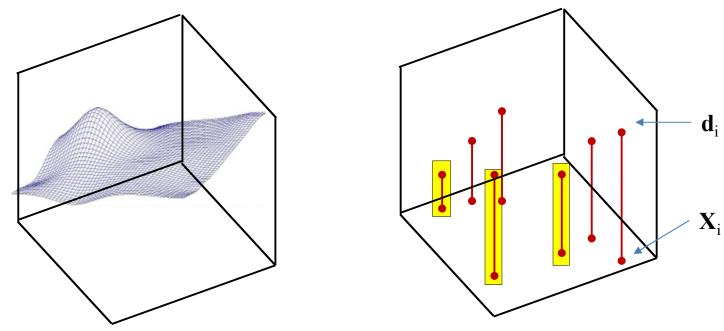
Shrinking step size

- For t' = t: t+b-1
  - For every layer k:
    - » Compute  $\nabla_{W_k}Div(Y_t, d_t)$
- Update
  - For every layer k:

$$W_k = W_k + \eta_j \Delta W_k$$

Until <u>Err</u> has converged

#### **Mini Batches**



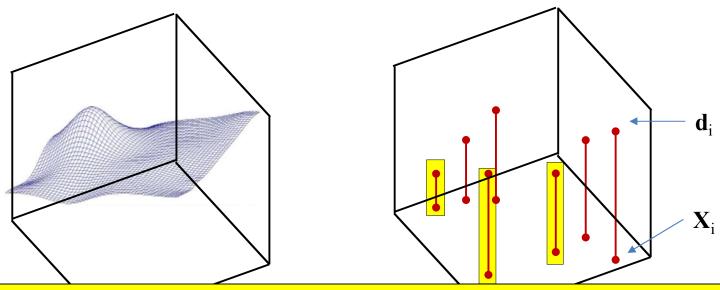
• Mini-batch updates compute and minimize a batch loss

$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence

$$E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]$$

#### **Mini Batches**



The minibatch loss is also an unbiased estimate of the expected loss

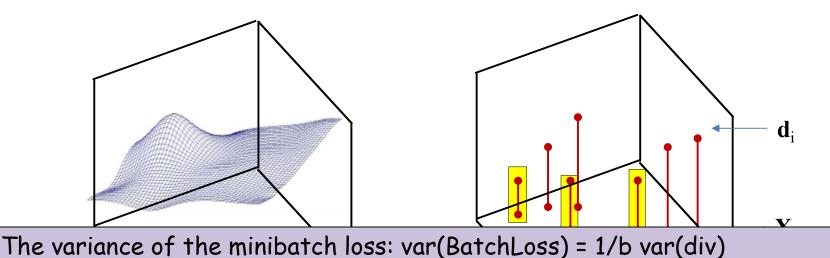
• Mini-batch updates compute and minimize a batch loss

$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence

$$E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]$$

#### **Mini Batches**



The minibatch loss is also an unbiased estimate of the expected error

This will be much smaller than the variance of the sample error in SGD

Mini-batch updates compute and minimize a batch loss

$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

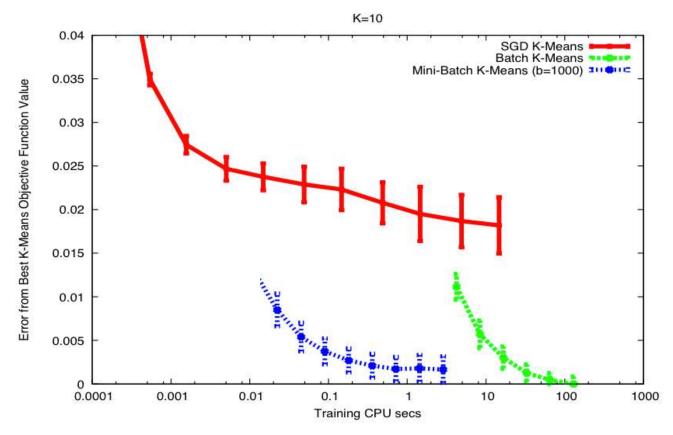
• The expected value of the batch loss is also the expected divergence

$$E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]$$

# Minibatch convergence

- For convex functions, convergence rate for SGD is  $O\left(\frac{1}{\sqrt{k}}\right)$ .
- For *mini-batch* updates with batches of size b, the convergence rate is  $\mathcal{O}\left(\frac{1}{\sqrt{bk}} + \frac{1}{k}\right)$ 
  - Apparently an improvement of  $\sqrt{b}$  over SGD
  - But since the batch size is b, we perform b times as many computations per iteration as SGD
  - We actually get a degradation of  $\sqrt{b}$
- However, in practice
  - The objectives are generally not convex; mini-batches are more effective with the right learning rates
  - We also get additional benefits of vector processing

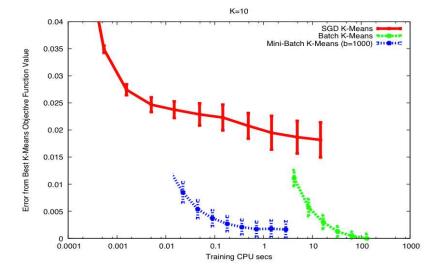
## SGD example



- Mini-batch performs comparably to batch training on this simple problem
  - But converges orders of magnitude faster

#### **Measuring Loss**

- Convergence is generally defined in terms of the overall training loss
  - Not sample or batch loss



- Infeasible to actually measure the overall training loss after each iteration
- More typically, we estimate is as
  - Divergence or classification error on a held-out set
  - Average sample/batch loss over the past N samples/batches

#### **Training and minibatches**

- In practice, training is usually performed using minibatches
  - The mini-batch size is a hyper parameter to be optimized
- Convergence depends on learning rate
  - Simple technique: fix learning rate until the error plateaus,
     then reduce learning rate by a fixed factor (e.g. 10)
  - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

# Story so far

- SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
  - Provided they are provided in random order
- For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations
  - Otherwise the learning will continuously "chase" the latest sample
- SGD estimates have higher variance than batch estimates
- Minibatch updates operate on batches of instances at a time
  - Estimates have lower variance than SGD
  - Convergence rate is theoretically worse than SGD
  - But we compensate by being able to perform batch processing

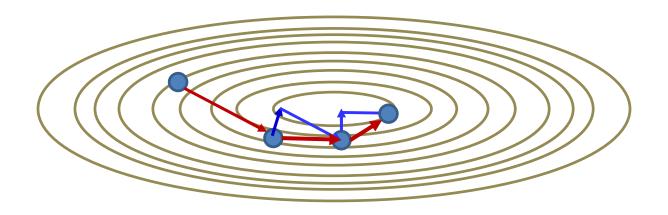
#### **Training and minibatches**

- Convergence depends on learning rate
  - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
  - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

# Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
  - Divergences...
  - Activations
  - Normalizations

#### **Recall: Momentum**

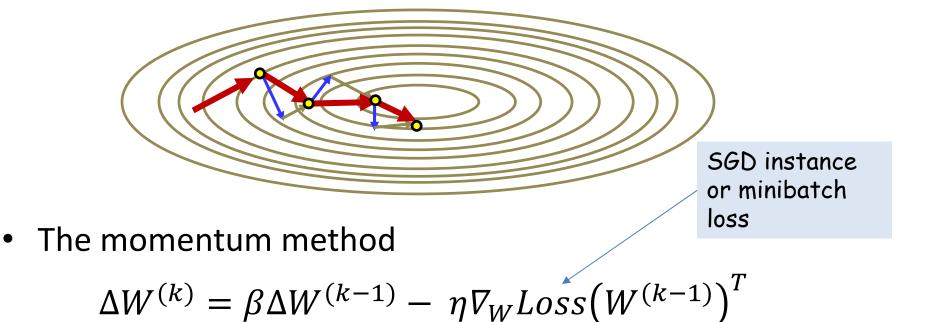


The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})$$

Updates using a running average of the gradient

#### Momentum and incremental updates



- Incremental SGD and mini-batch gradients tend to have high variance
- Momentum smooths out the variations
  - Smoother and faster convergence

## Momentum: Mini-batch update

- Given  $(X_1, d_1)$ ,  $(X_2, d_2)$ ,...,  $(X_T, d_T)$
- Initialize all weights  $W_1, W_2, ..., W_K$ ;  $j = 0, \Delta W_k = 0$
- Do:
  - Randomly permute  $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
  - For t = 1:b:T
    - j = j + 1
    - For every layer k:

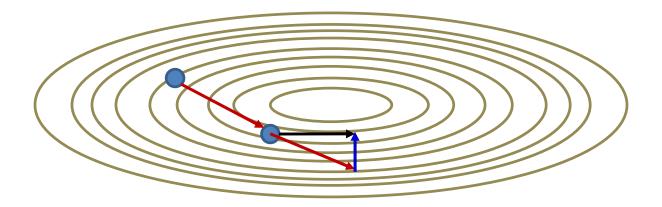
$$-\nabla_{W_{\nu}}Loss=0$$

- For t' = t : t+b-1
  - For every layer k:
    - » Compute  $\nabla_{W_k}Div(Y_t, d_t)$
    - »  $\nabla_{W_k} Loss += \frac{1}{b} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$
- Update
  - For every layer k:

$$\Delta W_k = \beta \Delta W_k - \eta_j (\nabla_{W_k} Loss)^T$$
$$W_k = W_k + \Delta W_k$$

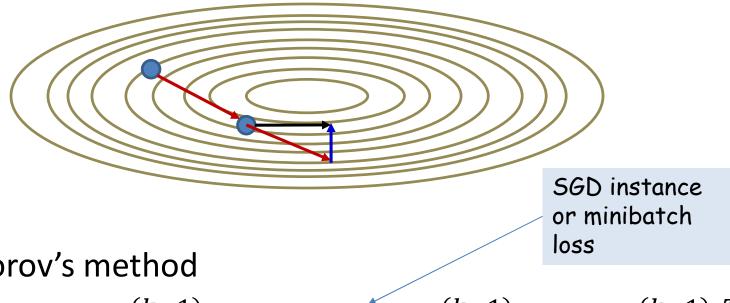
Until <u>Loss</u> has converged

#### **Nestorov's Accelerated Gradient**



- At any iteration, to compute the current step:
  - First extend the previous step
  - Then compute the gradient at the resultant position
  - Add the two to obtain the final step
- This also applies directly to incremental update methods
  - The accelerated gradient smooths out the variance in the gradients

#### **Nestorov's Accelerated Gradient**



Nestorov's method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)} + \beta \Delta W^{(k-1)})^T$$

$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

## **Nestorov: Mini-batch update**

```
Given (X_1, d_1), (X_2, d_2), ..., (X_T, d_T)
Initialize all weights W_1, W_2, ..., W_K; j = 0, \Delta W_k = 0
Do:
  - Randomly permute (X_1, d_1), (X_2, d_2), ..., (X_T, d_T)
  - For t = 1: b: T
          • j = j + 1
          • For every layer k:
                 -W_k = W_k + \beta \Delta W_k
                 - \nabla_{W_{\nu}} Loss = 0
          • For t' = t : t+b-1
                  For every layer k:
                          » Compute \nabla_{W_k}Div(Y_t, d_t)
                         » \nabla_{W_k} Loss += \frac{1}{h} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)

    Update

                  – For every layer k:
                                   W_k = W_k - \eta_i \nabla_{W_k} Loss^T
```

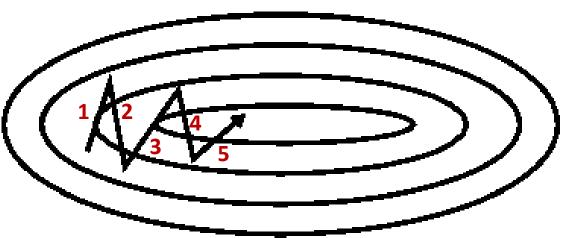
 $\Delta W_k = \beta \Delta W_k - \eta_i \nabla_{W_k} Loss^T$ 

Until <u>Loss</u> has converged

# Still higher-order methods

- Momentum and Nestorov's method improve convergence by normalizing the *mean* of the derivatives
- More recent methods take this one step further by also considering their variance
  - RMS Prop
  - Adagrad
  - AdaDelta
  - ADAM: very popular in practice
  - **—** ...
- All roughly equivalent in performance

# **Smoothing the trajectory**



| Step | X component | Y component |
|------|-------------|-------------|
| 1    | 1           | +2.5        |
| 2    | 1           | -3          |
| 3    | 2           | +2.5        |
| 4    | 1           | -2          |
| 5    | 1.5         | 1.5         |

- Observation: Steps in "oscillatory" directions show large total movement
  - In the example, total motion in the vertical direction is much greater than in the horizontal direction
  - Can happen even when momentum or Nestorov are used
- Improvement: Dampen step size in directions with high motion
  - Second order term

#### Normalizing steps by second moment



- Modify usual gradient-based update:
  - Scale updates in every component in inverse proportion to the total movement of that component in recent past
    - According to their variation (not just their average)
- This will change the relative update sizes for the individual components
  - In the above example it would scale down Y component
  - And scale up X component (in comparison)
- We will see two popular methods that embody this principle...

# **RMS Prop**

- Notation:
  - Updates are by parameter
  - Derivative of loss w.r.t any individual parameter w is shown as  $\partial_w D$ 
    - Batch or minibatch loss, or individual divergence for batch/minibatch/SGD
  - The **squared** derivative is  $\partial_w^2 D = (\partial_w D)^2$ 
    - Short-hand notation represents the squared derivative, not the second derivative
  - The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as  $E\left[\partial_w^2 D\right]$
- Modified update rule: We want to
  - scale down updates with large mean squared derivatives
  - scale up updates with small mean squared derivatives

#### **RMS Prop**

• This is a variant on the *basic* mini-batch SGD algorithm

#### Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

#### **RMS Prop**

This is a variant on the basic mini-batch SGD algorithm

#### Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

Note similarity to RPROP

The magnitude of the derivative is being normalized out

# RMS Prop (updates are for each weight of each layer)

- Do:
  - Randomly shuffle inputs to change their order
  - Initialize: k = 1; for all weights w in all layers,  $E[\partial_w^2 D]_k = 0$
  - For all t = 1:B:T (incrementing in blocks of B inputs)
    - For all weights in all layers initialize  $(\partial_w D)_k = 0$
    - For b = 0: B 1
      - Compute
        - » Output  $Y(X_{t+b})$
        - » Compute gradient  $\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
        - » Compute $(\partial_w D)_k += \frac{1}{B} \frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
    - update: for all  $w \in \{w_{\{ij\}}^k \forall i, j, k\}$

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

- k = k + 1
- Until loss has converged

Typical values:

$$\gamma = 0.9 \\
\eta = 0.001$$

# **ADAM: RMSprop with momentum**

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the momentum-augmented gradient
  - Considers both first and second moments

#### Procedure:

- Maintain a running estimate of the mean derivative for each parameter
- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the inverse of the root mean squared derivative

$$m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k$$

$$v_k = \gamma v_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\widehat{v}_k + \epsilon}} \widehat{m}_k$$

## **ADAM: RMSprop with momentum**

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient

#### **Procedure:**

- Maintain a running estimate of the mean derivative for each parameter
- Maintain a running estimate of the mean squared value parameter
- Scale update of the parameter by the inverse of the derivative

not dominate in early  $m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k$ iterations  $v_k = \gamma v_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$ 

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \widehat{m}_k$$

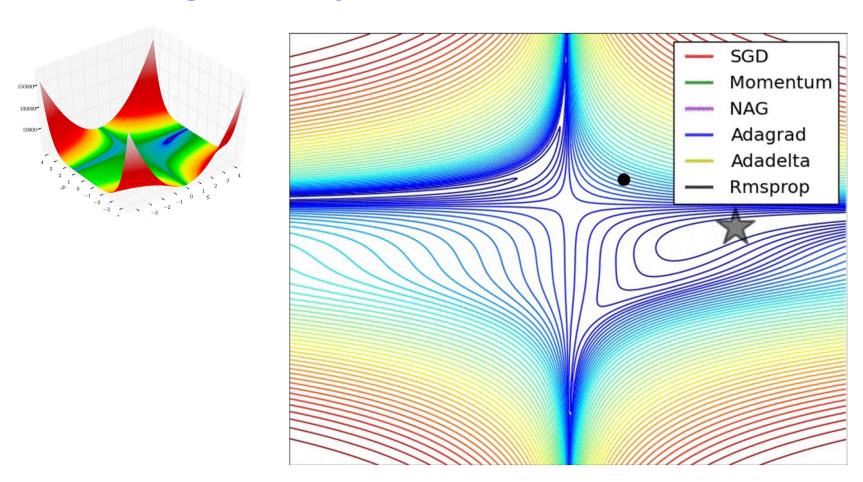
**Ensures that the** 

 $\delta$  and  $\gamma$  terms do

#### Other variants of the same theme

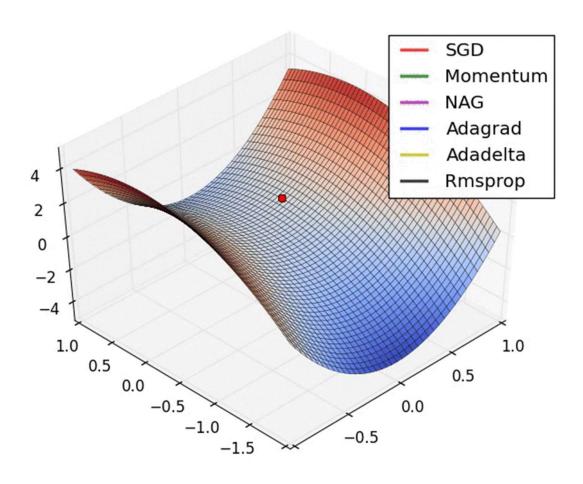
- Many:
  - Adagrad
  - AdaDelta
  - AdaMax
  - **—** ...
- Generally no explicit learning rate to optimize
  - But come with other hyper parameters to be optimized
  - Typical params:
    - RMSProp:  $\eta = 0.001$ ,  $\gamma = 0.9$
    - ADAM:  $\eta = 0.001$ ,  $\delta = 0.9$ ,  $\gamma = 0.999$

#### Visualizing the optimizers: Beale's Function



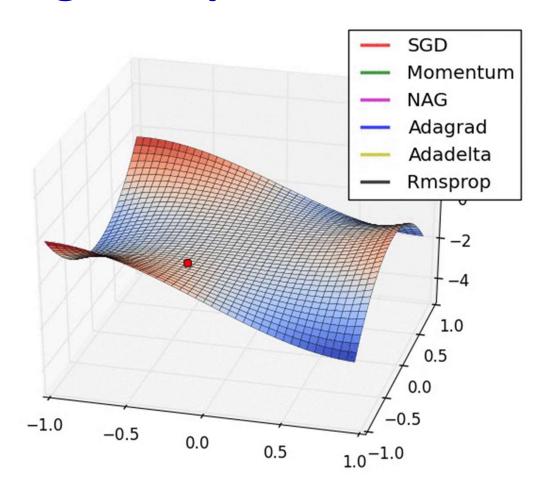
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

#### Visualizing the optimizers: Long Valley



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

#### Visualizing the optimizers: Saddle Point



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

# Story so far

- Gradient descent can be sped up by incremental updates
  - Convergence is guaranteed under most conditions
    - Learning rate must shrink with time for convergence
  - Stochastic gradient descent: update after each observation. Can be much faster than batch learning
  - Mini-batch updates: update after batches. Can be more efficient than SGD
- Convergence can be improved using smoothed updates
  - RMSprop and more advanced techniques