
Training Neural Networks: 
Normalization, Regularization etc.

Intro to Deep Learning, Spring 2021
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Recap
• We train a network by minimizing a “loss”

௑
௑

– Average divergence between true and desired outputs over “training” inputs
– Approximation to “true” risk – expected divergence between desired and true outputs

• We minimize it through gradient descent
– Iterative updates against the gradient of the loss w.r.t.

• Batch updates must process the entire training data before each update
– Incremental update algorithms, like SGD and minibatch update, speed it up by 

updating using random individual inputs or subsets of the input  
– Faster to converge, but greater variance may result in worse estimates

• Trend algorithms smooth out the variations in incremental update methods by 
considering long-term trends in gradients.
– This can lead to faster, and better convergence
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Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual 

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and 
actual output of net for a given input 

Output of net in 
response to input 

Desired output
in response to input 
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Quick Recap: Training networks by 
gradient descent

Solved through
gradient descent as

Computed using
backpropagation
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Recap: Incremental methods
• Batch methods that consider all training points before making an update 

to the parameters can be terribly inefficient

• Online methods that present training instances incrementally make 
quicker updates
– “Stochastic Gradient Descent” updates parameters after individual randomly-

chosen instances
– “Mini batch descent” updates them after minibatches of randomly-chosen 

instances
– Require shrinking learning rates to converge

• Not absolute summable
• But square summable

• Online methods have greater variance than batch methods
– Potentially leading to worse model estimates
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Recap: Trend Algorithms
• Trend algorithms smooth out the variations in incremental update 

methods by considering long-term trends in gradients
– Leading to faster and more assured convergence

• Momentum and Nestorov’s method improve convergence by 
smoothing updates with the mean (first moment) of the sequence 
of derivatives

• Second-moment methods consider the variation (second moment)
of the derivatives
– RMS Prop only considers the second moment of the derivatives
– ADAM and its siblings consider both the first and second moments
– All of them typically provide considerably faster than simple gradient 

descent
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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Tricks of the trade..

• To make the network converge better
– The Divergence
– Batch normalization
– Dropout
– Other tricks

• Gradient clipping
• Data augmentation
• Other hacks..
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Training Neural Nets by Gradient Descent: 
The Divergence

• The convergence of the gradient descent 
depends on the divergence
– Ideally, must have a shape that results in a 

significant gradient in the right direction outside 
the optimum
• To “guide” the algorithm to the right solution
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Total training loss:



Desiderata for a good divergence

• Must be smooth and not have many poor local optima
• Low slopes far from the optimum == bad

– Initial estimates far from the optimum will take forever to 
converge

• High slopes near the optimum == bad
– Steep gradients
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Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization
– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during 
optimization
– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum
– But not too shallow: ideally quadratic in nature

11



Choices for divergence

• Most common choices: The L2 divergence and the KL divergence
• L2 is popular for networks that perform numeric prediction/regression
• KL is popular for networks that perform classification
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L2 or KL?

• The L2 divergence has long been favored in most 
applications

• It is particularly appropriate when attempting to 
perform regression
– Numeric prediction

• The KL divergence is better when the intent is 
classification
– The output is a probability vector
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated
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NOTE:  L2 divergence is not convex while KL is convex

However, L2 also has a unique global minimum



A note on derivatives

• Note: For L2 divergence the derivative w.r.t. 
the output of the network is:

• We literally “propagate” the error 
backward
– Which is why the method is sometimes called 

“error backpropagation”
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Story so far

• Gradient descent can be sped up by 
incremental updates

• Convergence can be improved using 
smoothed updates

• The choice of divergence affects both the 
learned network and results
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can affect training badly
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”
– Which may occur in each layer of the networkg badly
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can be large!
– All covariate shifts can affect training badly
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• “Move” all batches to a “standard” location of the space
– But where?
– To determine, we will follow a two-step process

Solution: Move all minibatches to a 
“standard” location
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• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches

Move all minibatches to a “standard” location
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• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Move all minibatches to a “standard” location



• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Move all minibatches to a “standard” location



• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Move all minibatches to a “standard” location



(Mini)Batch Normalization

• “Move” all batches to have a mean of 0 and unit standard 
deviation
– Eliminates covariate shift between batches

• Then move the entire collection to the appropriate location
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Batch normalization

• Batch normalization is a covariate adjustment unit that happens 
after the weighted addition of inputs but before the application of 
activation
– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+
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Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location
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A better picture for batch norm
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A note on derivatives
• The minibatch loss is the average of the divergence between the actual 

and desired outputs of the network for all inputs in the minibatch

௧ ௧ ௧ ௧

௧

• The derivative of the minibatch loss w.r.t. network parameters is the 
average of the derivatives of the divergences for the individual training 
instances w.r.t. parameters

௜,௝
(௞)

௧ ௧ ௧ ௧

௜,௝
(௞)

௧

• In conventional training, both, the output of the network in response to an 
input, and the derivative of the divergence for any input are independent 
of other inputs in the minibatch

• If we use Batch Norm, the above relation gets a little complicated
33



A note on derivatives
• The outputs are now functions of and 

which are functions of the entire minibatch

• The Divergence for each depends on all the 
within the minibatch
– Training instances within the minibatch are no longer 

independent
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The actual divergence with BN
• The actual divergence for any minibatch with terms explicity written

௧ ௧ ஻ ௧ ௧ᇲஷ௧ ஻
ଶ

௧ ௧ᇲஷ௧ ஻ ௧ ௧ᇲஷ௧ ௧ ௧

௧

• We need the derivative for this function

• To derive the derivative lets consider the dependencies at a single neuron
– Shown pictorially in the following slide
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Batchnorm is a vector function over 
the minibatch

• Batch normalization is really a vector function applied over all the inputs from a 
minibatch
– Every 𝑧௜ affects every 𝑧̂௝

– Shown on the next slide

• To compute the derivative of the minibatch loss w.r.t any ௜, we must consider all 
௝ in the batch

36
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Or more explicitly

• The computation of mini-batch normalized ’s is a vector function
– Invoking mean and variance statistics across the minibatch

• The subsequent shift and scaling is individually applied to each to compute the 
corresponding 37
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Or more explicitly

• The computation of mini-batch normalized ’s is a vector function
– Invoking mean and variance statistics across the minibatch

• The subsequent shift and scaling is individually applied to each to compute the 
corresponding 38
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Batch normalization: Forward pass
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Propogating the derivative

• We now have  ௗ௅௢௦௦

ௗ௨೔
for every ௜

• We must propagate the derivative through the first stage of BN
– Which is a vector operation over the minibatch 43
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The first stage of batchnorm

• The complete dependency figure for the first “normalization” stage of 
Batchnorm
– Which computes the centered “ ”s from the “ ”s for the minibatch

• Note : inputs and outputs are different instances in a minibatch
– The diagram represents BN occurring at a single neuron

• Let’s complete the figure and work out the derivatives 44
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The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.
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The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.
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The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• From the highlighted relation
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• From the highlighted relation
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• From the highlighted relation
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• From the highlighted equation
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• From the highlighted equations
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “through” line ( )
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The first stage of Batchnorm

• The derivative for the “cross” lines ( )
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The first stage of Batchnorm

• The derivative for the “cross” lines ( )
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The first stage of Batchnorm

• The derivative for the “cross” lines ( )
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The first stage of Batchnorm

• The derivative for the “cross” lines ( )
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The first stage of Batchnorm

• The derivative for the “cross” lines ( )
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The first stage of Batchnorm
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The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.
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The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.
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Batch normalization: 
Backpropagation

+

ଵ

ଶ

ே

ேିଵ
Batch normalization

 

The rest of backprop continues from డ௅௢
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Batch normalization: Inference

• On test data, BN requires 𝜇஻ and 𝜎஻
ଶ.

• We will use the average over all training minibatches

𝜇஻ே =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜇஻(𝑏𝑎𝑡𝑐ℎ)

௕௔௧௖௛

𝜎஻ே
ଶ =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ)

௕௔௧

• Note: these are neuron-specific
– 𝜇஻(𝑏𝑎𝑡𝑐ℎ) and 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+  

ଶ

ே

ேିଵ
௜

௜ ஻ே

஻ே
ଶ  ௜ ௜

Batch normalization
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Batch normalization

• Batch normalization may only be applied to some layers 
– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance
– Anecdotal evidence that BN eliminates the need for dropout
– To get maximum benefit from BN, learning rates must be increased 

and learning rate decay can be faster
• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+
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Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy,  JMLR 
2015
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Story so far

• Gradient descent can be sped up by incremental 
updates

• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned 
network and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization
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The problem of data 
underspecification

• The figures shown to illustrate the learning 
problem so far were fake news..
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Learning the network

• We attempt to learn an entire function from just 
a few snapshots of it
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General approach to training

• Define a divergence between the actual network output 
for any parameter value and the desired output
– Typically L2 divergence or KL divergence

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

௜ ௜
ଶ

௜
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Overfitting

• Problem:  Network may just learn the values at 
the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs
98



Data under-specification

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015
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Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015

100
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Need “smoothing” constraints

• Need additional constraints that will “fill in” 
the missing regions acceptably
– Generalization

101



Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth
– The “overfit” model has fast changes

x

y

102



Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes 
in output
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The individual perceptron

• Using a sigmoid activation
– As increases, the response becomes steeper

106
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Smoothness through weight 
manipulation

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response

x

y
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Smoothness through weight 
manipulation

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response

x

y
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Objective function for neural 
networks

• Conventional training: minimize the loss:

Desired output of network: 

Error on i-th training input:    

ଵ ଶ ௄

Training loss:

109

భ మ ಼



Smoothness through weight 
constraints

• Regularized training: minimize the loss while also minimizing the 
weights

• is the regularization parameter whose value depends on how 
important it is for us to want to minimize the weights

• Increasing assigns greater importance to shrinking the weights
– Make greater error on training data, to obtain a more acceptable network

110
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Regularizing the weights

ଵ ଶ ௄ ௧ ௧

௧

௞ ி
ଶ

௞

• Batch mode:

௞ ௐೖ ௧ ௧
𝑇

௧

௞

• SGD:
௞ ௐೖ ௧ ௧

𝑇
௞

• Minibatch:

௞ ௐೖ ఛ ఛ
𝑇

௧ା௕ିଵ

ఛୀ௧

௞

• Update rule:
௞ ௞ ௞
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ + 𝛻ௐೖ
𝐷𝑖𝑣 𝑌௧, 𝑑௧

𝑇

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝ ∆𝑊௞ + 𝜆𝑊௞

• Until has converged 112



Smoothness through network structure

• Smoothness constraints can also be imposed through the network 
structure

• For a given number of parameters deeper networks impose more 
smoothness than shallow ones
– Each layer works on the already smooth surface output by the previous layer113



• Typical results (varies with initialization)
• 1000 training points – orders of magnitude more than you 

usually get
• All the training tricks known to mankind 114

Minimal correct architectures are 
hard to train



But depth and training data help

• Deeper networks seem to learn better, for 
the same number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more 
conventional regularization methods

• Training with more data is also better  115

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances



Story so far

• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network 
and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization

• Data underspecification can result in overfitted models and 
must be handled by regularization and more constrained 
(generally deeper) network architectures
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Regularization..

• Other techniques have been proposed to 
improve the smoothness of the learned 
function
– L1 regularization of network activations
– Regularizing with added noise..

• Possibly the most influential method has been 
“dropout”
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A brief detour..  Bagging

• Popular method proposed by Leo Breiman:
– Sample training data and train several different classifiers
– Classify test instance with entire ensemble of classifiers
– Vote across classifiers for final decision
– Empirically shown to improve significantly over training a single 

classifier from combined data

• Returning to our problem….
118



Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a

Input

Output
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Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a
– Also turn off inputs similarly

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the failure of a Bernoulli 

random number generator with success probability a

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the failure of a Bernoulli 

random number generator with success probability a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3
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Dropout

• During training: Backpropagation is effectively performed only over the remaining 
network
– The effective network is different for different inputs
– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input
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Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks
– Obtained by choosing different subsets of nodes
– Dropout samples over all 2N possible networks
– Effectively learns a network that averages over all possible 

networks
• Bagging

Input

Output
X1 Y1

Input

Output
X2 Y2

Output
X3 Y3

Input

Output

X1 Y1
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Dropout as a mechanism to increase 
pattern density

• Dropout forces the neurons to 
learn “rich” and redundant 
patterns

• E.g. without dropout, a non-
compressive layer may just 
“clone” its input to its output
– Transferring the task of learning 

to the rest of the network 
upstream

• Dropout forces the neurons to 
learn denser patterns
– With redundancy
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The forward pass
• Input: dimensional vector ௝

• Set:
– ଴ ,  is the width of the 0th (input) layer

– ௝
(଴)

௝ ;       ଴
(௞ୀଵ…ே)

଴

• For layer 
# Mask takes value 1 with prob. , 0 with prob 
– ௞ିଵ

– ௝
(௞ିଵ)

௝
(௞ିଵ)

௞ିଵ

– For ௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• Output:

– ௝
(ே)

ே
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Backward Pass
• Output layer (N) :

–
೔ ೔

(ಿ)

–
೔
(ೖ)

೔
(ೖ)

• For layer 
– For 

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

௞ାଵ
௝

డ஽௜௩

డ௭ೕ
ೖశభ

•
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

•
డ஽௜௩

డ௪೔ೕ
(ೖశభ) ௜

௞ డ஽௜௩

డ௭ೕ
ೖశభ for ௞ାଵ
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Testing with Dropout
• Dropout effectively trains ே networks
• On test data the “Bagged” output, in principle, is the ensemble average over all ே

networks and is thus the statistical expectation of the output over all networks

௝
(௞)

௞

– Explicitly showing the network as a function of the outputs of individual neurons in the net

• We cannot explicitly compute this expectation

• Instead we will use the following approximation

௝
(௞)

௝
(௞)

– Where 𝐸[𝑦௝
(௞)

] is the expected output of the jth neuron in the kth layer over all networks in 
the ensemble 

– I.e. approximate the expectation of a function as the function of expectations

• We require ௝
(௞) to compute this
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What each neuron computes

• Each neuron actually has the following activation:

௜
(௞)

௝௜
(௞)

௝
(௞ିଵ)

௝

௜
(௞)

– Where is a Bernoulli variable that takes a value 1 with probability a

• may be switched on or off for individual sub networks, but over 
the ensemble, the expected output of the neuron is 

௜
௞ a ௝௜

(௞)
௝
(௞ିଵ)

௝

௜
(௞)

• During test time, we will use the expected output of the neuron
– Consists of simply scaling the output of each neuron by a
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Dropout during  test: implementation

• Instead of multiplying every output by , multiply 
all weights by 130

Input

Output

X1 Y1

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑧௜
(௞)

= ෍ 𝑤௝௜
(௞)

𝑦௝
(௞ିଵ)

+

௝

𝑏௜
(௞)

         = ෍ 𝑤௝௜
(௞)a𝜎 𝑧௝

(௞ିଵ)
+

௝

𝑏௜
(௞)

         = ෍ a𝑤௝௜
(௞)

𝜎 𝑧௝
(௞ିଵ)

+

௝

𝑏௜
(௞)

𝒊
(𝒌) a 𝒊

(𝒌)



Dropout : alternate implementation

• Alternately, during training, replace the activation 
of all neurons in the network by a
– This does not affect the dropout procedure itself

– We will use as the activation during testing, and not 
modify the weights

Input

Output

X1 Y1
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Inference with dropout (testing)
• Input: dimensional vector 
• Set:

– ଴ ,  is the width of the 0th (input) layer

– ௝
(଴)

௝ ;       ଴
(௞ୀଵ…ே)

଴

• For layer 
– For ௞

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴ ௝
(௞)

• ௝
(௞)

௞ ௝
(௞)

• Output:

– ௝
(ே)

ே
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Dropout: Typical results

• From Srivastava et al., 2013.  Test error for different 
architectures on MNIST with and without dropout
– 2-4 hidden layers with 1024-2048 units 133



Variations on dropout

• Zoneout: For RNNs
– Randomly chosen units remain unchanged across a time transition

• Dropconnect
– Drop individual connections, instead of nodes

• Shakeout
– Scale up the weights of randomly selected weights

• 𝑤 → 𝛼 𝑤 + 1 − 𝛼 𝑐

– Fix remaining weights to a negative constant
• 𝑤 → −𝑐

• Whiteout
– Add or multiply weight-dependent Gaussian noise to the signal on 

each connection 
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Story so far
• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network and 
results

• Covariate shift between training and test may cause problems and 
may be handled by batch normalization

• Data underspecification can result in overfitted models and must be 
handled by regularization and more constrained (generally deeper) 
network architectures

• “Dropout” is a stochastic data/model erasure method that 
sometimes forces the network to learn more robust models
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Other heuristics: Early stopping

• Continued training can result in over fitting to 
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to 

terminate training when performance on validation 
set degrades significantly

error

epochs

training

validation
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Additional heuristics: Gradient 
clipping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

137
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Additional heuristics: Data 
Augmentation

• Available training data will often be small
• “Extend” it by distorting examples in a variety of 

ways to generate synthetic labelled examples
– E.g. rotation, stretching, adding noise, other distortion
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Other tricks

• Normalize the input:
– Normalize entire training data to make it 0 mean, unit 

variance
– Equivalent of batch norm on input

• A variety of other tricks are applied
– Initialization techniques

• Xavier, Kaiming, SVD, etc.
• Key point:  neurons with identical connections that are identically 

initialized will never diverge

– Practice makes man perfect
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Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data
– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.) 
• Choose optimization algorithm

– E.g. ADAM

• Perform a grid search for hyper parameters (learning rate, regularization 
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required
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In closing

• Have outlined the process of training neural 
networks
– Some history
– A variety of algorithms
– Gradient-descent based techniques
– Regularization for generalization
– Algorithms for convergence
– Heuristics

• Practice makes perfect..
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