
Training Neural Networks:
Normalization, Regularization etc.

Intro to Deep Learning, Spring 2021

1

Recap
• We train a network by minimizing a “loss”

௑
௑

– Average divergence between true and desired outputs over “training” inputs
– Approximation to “true” risk – expected divergence between desired and true outputs

• We minimize it through gradient descent
– Iterative updates against the gradient of the loss w.r.t.

• Batch updates must process the entire training data before each update
– Incremental update algorithms, like SGD and minibatch update, speed it up by

updating using random individual inputs or subsets of the input
– Faster to converge, but greater variance may result in worse estimates

• Trend algorithms smooth out the variations in incremental update methods by
considering long-term trends in gradients.
– This can lead to faster, and better convergence

2

Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and
actual output of net for a given input

Output of net in
response to input

Desired output
in response to input

3

Quick Recap: Training networks by
gradient descent

Solved through
gradient descent as

Computed using
backpropagation

4

Recap: Incremental methods
• Batch methods that consider all training points before making an update

to the parameters can be terribly inefficient

• Online methods that present training instances incrementally make
quicker updates
– “Stochastic Gradient Descent” updates parameters after individual randomly-

chosen instances
– “Mini batch descent” updates them after minibatches of randomly-chosen

instances
– Require shrinking learning rates to converge

• Not absolute summable
• But square summable

• Online methods have greater variance than batch methods
– Potentially leading to worse model estimates

5

Recap: Trend Algorithms
• Trend algorithms smooth out the variations in incremental update

methods by considering long-term trends in gradients
– Leading to faster and more assured convergence

• Momentum and Nestorov’s method improve convergence by
smoothing updates with the mean (first moment) of the sequence
of derivatives

• Second-moment methods consider the variation (second moment)
of the derivatives
– RMS Prop only considers the second moment of the derivatives
– ADAM and its siblings consider both the first and second moments
– All of them typically provide considerably faster than simple gradient

descent

6

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

7

Tricks of the trade..

• To make the network converge better
– The Divergence
– Batch normalization
– Dropout
– Other tricks

• Gradient clipping
• Data augmentation
• Other hacks..

8

Training Neural Nets by Gradient Descent:
The Divergence

• The convergence of the gradient descent
depends on the divergence
– Ideally, must have a shape that results in a

significant gradient in the right direction outside
the optimum
• To “guide” the algorithm to the right solution

9

Total training loss:

Desiderata for a good divergence

• Must be smooth and not have many poor local optima
• Low slopes far from the optimum == bad

– Initial estimates far from the optimum will take forever to
converge

• High slopes near the optimum == bad
– Steep gradients

10

Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization
– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during
optimization
– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum
– But not too shallow: ideally quadratic in nature

11

Choices for divergence

• Most common choices: The L2 divergence and the KL divergence
• L2 is popular for networks that perform numeric prediction/regression
• KL is popular for networks that perform classification

12

Desired output: Desired output:

L2

KL

ଶ

1 2 3 4 0

Softmax

௜ ௜
ଶ

௜

௜ ௜

௜

௜ ௜

௜

L2 or KL?

• The L2 divergence has long been favored in most
applications

• It is particularly appropriate when attempting to
perform regression
– Numeric prediction

• The KL divergence is better when the intent is
classification
– The output is a probability vector

13

L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as
function of weights
– Setup: 2-dimensional input
– 100 training examples randomly generated

14

L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as
function of weights
– Setup: 2-dimensional input
– 100 training examples randomly generated

15

NOTE: L2 divergence is not convex while KL is convex

However, L2 also has a unique global minimum

A note on derivatives

• Note: For L2 divergence the derivative w.r.t.
the output of the network is:

• We literally “propagate” the error
backward
– Which is why the method is sometimes called

“error backpropagation”

16

Story so far

• Gradient descent can be sped up by
incremental updates

• Convergence can be improved using
smoothed updates

• The choice of divergence affects both the
learned network and results

17

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can affect training badly
18

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”
– Which may occur in each layer of the networkg badly

19

The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can be large!
– All covariate shifts can affect training badly

20

• “Move” all batches to a “standard” location of the space
– But where?
– To determine, we will follow a two-step process

Solution: Move all minibatches to a
“standard” location

21

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

Move all minibatches to a “standard” location

22

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

23

Move all minibatches to a “standard” location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

24

Move all minibatches to a “standard” location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

25

Move all minibatches to a “standard” location

• “Move” all batches to have a mean of 0 and unit
standard deviation
– Eliminates covariate shift between batches

26

Move all minibatches to a “standard” location

(Mini)Batch Normalization

• “Move” all batches to have a mean of 0 and unit standard
deviation
– Eliminates covariate shift between batches

• Then move the entire collection to the appropriate location
27

Batch normalization

• Batch normalization is a covariate adjustment unit that happens
after the weighted addition of inputs but before the application of
activation
– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+

28

Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location
29

+

௝ ௝

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
 ௜ ௜

Batch normalization

Covariate shift to
origin

Shift to new
location in space

Neuron-specific terms

Minibatch mean

Minibatch standard deviatiation

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

ଵ

+

௝ ௝

௝ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Minibatch size Minibatch mean

Batch normalization

Minibatch standard deviation

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

30

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+

௝ ௝

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Normalize minibatch to
zero-mean unit variance

Shift to right
position

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

31

A better picture for batch norm

+

ଵ

ଶ

ே

ேିଵ

Batch normalization

+

ଵ

ଶ

ே

ேିଵ

+

32

A note on derivatives
• The minibatch loss is the average of the divergence between the actual

and desired outputs of the network for all inputs in the minibatch

௧ ௧ ௧ ௧

௧

• The derivative of the minibatch loss w.r.t. network parameters is the
average of the derivatives of the divergences for the individual training
instances w.r.t. parameters

௜,௝
(௞)

௧ ௧ ௧ ௧

௜,௝
(௞)

௧

• In conventional training, both, the output of the network in response to an
input, and the derivative of the divergence for any input are independent
of other inputs in the minibatch

• If we use Batch Norm, the above relation gets a little complicated
33

A note on derivatives
• The outputs are now functions of and

which are functions of the entire minibatch

• The Divergence for each depends on all the
within the minibatch
– Training instances within the minibatch are no longer

independent
34

The actual divergence with BN
• The actual divergence for any minibatch with terms explicity written

௧ ௧ ஻ ௧ ௧ᇲஷ௧ ஻
ଶ

௧ ௧ᇲஷ௧ ஻ ௧ ௧ᇲஷ௧ ௧ ௧

௧

• We need the derivative for this function

• To derive the derivative lets consider the dependencies at a single neuron
– Shown pictorially in the following slide

35

Batchnorm is a vector function over
the minibatch

• Batch normalization is really a vector function applied over all the inputs from a
minibatch
– Every 𝑧௜ affects every 𝑧̂௝

– Shown on the next slide

• To compute the derivative of the minibatch loss w.r.t any ௜, we must consider all
௝ in the batch

36

ଵ

ଶ

஻

ଵ

ଶ

஻

Or more explicitly

• The computation of mini-batch normalized ’s is a vector function
– Invoking mean and variance statistics across the minibatch

• The subsequent shift and scaling is individually applied to each to compute the
corresponding 37

ଵ

ଶ

஻

𝑢௜ =
𝑧௜ − 𝜇஻

𝜎஻
ଶ + 𝜖 𝑧̂௜ = 𝛾𝑢௜ + 𝛽

Or more explicitly

• The computation of mini-batch normalized ’s is a vector function
– Invoking mean and variance statistics across the minibatch

• The subsequent shift and scaling is individually applied to each to compute the
corresponding 38

ଵ

ଶ

஻

𝑢௜ =
𝑧௜ − 𝜇஻

𝜎஻
ଶ + 𝜖 𝑧̂௜ = 𝛾𝑢௜ + 𝛽

We can compute
ௗ௅௢௦௦

ௗ௨೔
individually

for each ௜ because
the processing after
the computation of

௜ is independent for
each ௜

Batch normalization: Forward pass

+

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
39

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
40

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Batch normalization

Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
41

Batch normalization:
Backpropagation

42

+

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ

 ௜ ௜

Batch normalization

Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Propogating the derivative

• We now have ௗ௅௢௦௦

ௗ௨೔
for every ௜

• We must propagate the derivative through the first stage of BN
– Which is a vector operation over the minibatch 43

ଵ

ଶ

஻

Derivatives computed
for every u

The first stage of batchnorm

• The complete dependency figure for the first “normalization” stage of
Batchnorm
– Which computes the centered “ ”s from the “ ”s for the minibatch

• Note : inputs and outputs are different instances in a minibatch
– The diagram represents BN occurring at a single neuron

• Let’s complete the figure and work out the derivatives 44

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Batch norm stage 1

The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.

45

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Batch norm stage 1

The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.

46

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Already computed

Batch norm stage 1

The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.

47

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Must compute for every i,j pair

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

48

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

49

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

50

ଵ

஻
ଶ

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

஻

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

51

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

52

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

53

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted relation

54

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

55

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

56

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

57

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted relation

58

ଵ

஻
ଶ

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

஻

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

59

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

60

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

61

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted relation

62

ଵ

஻
ଶ

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

஻

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

63

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

64

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

65

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

66

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equation

67

ଵ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

஻
ଶ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

68

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

69

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

70

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

71

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

72

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

73

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

74

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

75

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

஻
ଶ

஻
௜ ஻

஻

௜ୀଵ

௜

஻

௜ୀଵ

஻

஻

௜ୀଵ

஻ ஻ ஻ ஻

76

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

77

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

0

Batch norm stage 1

The first stage of Batchnorm

• From the highlighted equations

78

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

79

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

80

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “through” line ()

81

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “cross” lines ()

82

ଵ

஻
ଶ

஻

ଶଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

ଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “cross” lines ()

83

ଵ

஻
ଶ

ଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

஻

ଶ

ଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “cross” lines ()

84

ଵ

஻
ଶ

஻

ଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

ଶ

ଵ

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “cross” lines ()

85

ଵ

஻
ଶ

஻

ଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

ଶ

ଵ

This is identical to the equation for , without the first “through” term

Batch norm stage 1

The first stage of Batchnorm

• The derivative for the “cross” lines ()

86

ଵ

஻
ଶ

஻

ଶ

஻ ஻௜
௜ ஻

஻
ଶ

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ

ଶ

ଵ

Batch norm stage 1

The first stage of Batchnorm

௝

௜

஻
ଶ

஻
ଶ

௜ ஻
ଶ

஻
ଶ ଷ

ଶൗ

஻
ଶ

௜ ஻
ଶ

஻
ଶ ଷ

ଶൗ

87

ଵ

஻
ଶ

஻

ଶଶ

஻ ஻

ଵ

Batch norm stage 1

The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.

88

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Batch norm stage 1

The first stage of Batchnorm

• The complete derivative of the mini-batch loss w.r.t.

௜ ஻
ଶ ௜ ஻

ଶ ௝
௝ ஻

ଶ ଷ
ଶൗ ௝

௜ ஻
ଶ

௝

89

௝

௜

஻
ଶ

஻
ଶ

௜ ஻
ଶ

஻
ଶ ଷ

ଶൗ

஻
ଶ

௜ ஻
ଶ

஻
ଶ ଷ

ଶൗ

௜ ௝

௝

௜
௝

Batch normalization:
Backpropagation

+

ଵ

ଶ

ே

ேିଵ
Batch normalization

The rest of backprop continues from డ௅௢

డ௭೔ 90

௜ ஻
ଶ ௜ ஻

ଶ ௝
௝ ஻

ଶ ଷ
ଶൗ ௝

௜ ஻
ଶ

௝

Batch normalization: Inference

• On test data, BN requires 𝜇஻ and 𝜎஻
ଶ.

• We will use the average over all training minibatches

𝜇஻ே =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜇஻(𝑏𝑎𝑡𝑐ℎ)

௕௔௧௖௛

𝜎஻ே
ଶ =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ)

௕௔௧

• Note: these are neuron-specific
– 𝜇஻(𝑏𝑎𝑡𝑐ℎ) and 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+

ଶ

ே

ேିଵ
௜

௜ ஻ே

஻ே
ଶ ௜ ௜

Batch normalization

91

Batch normalization

• Batch normalization may only be applied to some layers
– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance
– Anecdotal evidence that BN eliminates the need for dropout
– To get maximum benefit from BN, learning rates must be increased

and learning rate decay can be faster
• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+

92

Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy, JMLR
2015

93

Story so far

• Gradient descent can be sped up by incremental
updates

• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned
network and results

• Covariate shift between training and test may cause
problems and may be handled by batch normalization

94

The problem of data
underspecification

• The figures shown to illustrate the learning
problem so far were fake news..

95

Learning the network

• We attempt to learn an entire function from just
a few snapshots of it

96

General approach to training

• Define a divergence between the actual network output
for any parameter value and the desired output
– Typically L2 divergence or KL divergence

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

௜ ௜
ଶ

௜

97

Overfitting

• Problem: Network may just learn the values at
the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs
98

Data under-specification

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

99

Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

100

Find the function!

Need “smoothing” constraints

• Need additional constraints that will “fill in”
the missing regions acceptably
– Generalization

101

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth
– The “overfit” model has fast changes

x

y

102

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances

instead

x

y

103

The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances

instead

x

y

104

Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes
in output

105

The individual perceptron

• Using a sigmoid activation
– As increases, the response becomes steeper

106

ି௪௫

Smoothness through weight
manipulation

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large

• Constraining the weights to be low will force slower
perceptrons and smoother output response

x

y

107

Smoothness through weight
manipulation

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large

• Constraining the weights to be low will force slower
perceptrons and smoother output response

x

y

108

Objective function for neural
networks

• Conventional training: minimize the loss:

Desired output of network:

Error on i-th training input:

ଵ ଶ ௄

Training loss:

109

భ మ ಼

Smoothness through weight
constraints

• Regularized training: minimize the loss while also minimizing the
weights

• is the regularization parameter whose value depends on how
important it is for us to want to minimize the weights

• Increasing assigns greater importance to shrinking the weights
– Make greater error on training data, to obtain a more acceptable network

110

భ మ ಼

Regularizing the weights

ଵ ଶ ௄ ௧ ௧

௧

௞ ி
ଶ

௞

• Batch mode:

௞ ௐೖ ௧ ௧
𝑇

௧

௞

• SGD:
௞ ௐೖ ௧ ௧

𝑇
௞

• Minibatch:

௞ ௐೖ ఛ ఛ
𝑇

௧ା௕ିଵ

ఛୀ௧

௞

• Update rule:
௞ ௞ ௞

111

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ + 𝛻ௐೖ
𝐷𝑖𝑣 𝑌௧, 𝑑௧

𝑇

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝ ∆𝑊௞ + 𝜆𝑊௞

• Until has converged 112

Smoothness through network structure

• Smoothness constraints can also be imposed through the network
structure

• For a given number of parameters deeper networks impose more
smoothness than shallow ones
– Each layer works on the already smooth surface output by the previous layer113

• Typical results (varies with initialization)
• 1000 training points – orders of magnitude more than you

usually get
• All the training tricks known to mankind 114

Minimal correct architectures are
hard to train

But depth and training data help

• Deeper networks seem to learn better, for
the same number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more
conventional regularization methods

• Training with more data is also better  115

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

Story so far

• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network
and results

• Covariate shift between training and test may cause
problems and may be handled by batch normalization

• Data underspecification can result in overfitted models and
must be handled by regularization and more constrained
(generally deeper) network architectures

116

Regularization..

• Other techniques have been proposed to
improve the smoothness of the learned
function
– L1 regularization of network activations
– Regularizing with added noise..

• Possibly the most influential method has been
“dropout”

117

A brief detour.. Bagging

• Popular method proposed by Leo Breiman:
– Sample training data and train several different classifiers
– Classify test instance with entire ensemble of classifiers
– Vote across classifiers for final decision
– Empirically shown to improve significantly over training a single

classifier from combined data

• Returning to our problem….
118

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a

Input

Output

119

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a
– Also turn off inputs similarly

Input

Output

X1 Y1

120

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the failure of a Bernoulli

random number generator with success probability a

Input

Output

X1 Y1

121

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the failure of a Bernoulli

random number generator with success probability a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3

122

Dropout

• During training: Backpropagation is effectively performed only over the remaining
network
– The effective network is different for different inputs
– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input

123

Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks
– Obtained by choosing different subsets of nodes
– Dropout samples over all 2N possible networks
– Effectively learns a network that averages over all possible

networks
• Bagging

Input

Output
X1 Y1

Input

Output
X2 Y2

Output
X3 Y3

Input

Output

X1 Y1

124

Dropout as a mechanism to increase
pattern density

• Dropout forces the neurons to
learn “rich” and redundant
patterns

• E.g. without dropout, a non-
compressive layer may just
“clone” its input to its output
– Transferring the task of learning

to the rest of the network
upstream

• Dropout forces the neurons to
learn denser patterns
– With redundancy

125

The forward pass
• Input: dimensional vector ௝

• Set:
– ଴ , is the width of the 0th (input) layer

– ௝
(଴)

௝ ; ଴
(௞ୀଵ…ே)

଴

• For layer
Mask takes value 1 with prob. , 0 with prob
– ௞ିଵ

– ௝
(௞ିଵ)

௝
(௞ିଵ)

௞ିଵ

– For ௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• Output:

– ௝
(ே)

ே

126

Backward Pass
• Output layer (N) :

–
೔ ೔

(ಿ)

–
೔
(ೖ)

೔
(ೖ)

• For layer
– For

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

௞ାଵ
௝

డ஽௜௩

డ௭ೕ
ೖశభ

•
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

•
డ஽௜௩

డ௪೔ೕ
(ೖశభ) ௜

௞ డ஽௜௩

డ௭ೕ
ೖశభ for ௞ାଵ

127

Testing with Dropout
• Dropout effectively trains ே networks
• On test data the “Bagged” output, in principle, is the ensemble average over all ே

networks and is thus the statistical expectation of the output over all networks

௝
(௞)

௞

– Explicitly showing the network as a function of the outputs of individual neurons in the net

• We cannot explicitly compute this expectation

• Instead we will use the following approximation

௝
(௞)

௝
(௞)

– Where 𝐸[𝑦௝
(௞)

] is the expected output of the jth neuron in the kth layer over all networks in
the ensemble

– I.e. approximate the expectation of a function as the function of expectations

• We require ௝
(௞) to compute this

128

What each neuron computes

• Each neuron actually has the following activation:

௜
(௞)

௝௜
(௞)

௝
(௞ିଵ)

௝

௜
(௞)

– Where is a Bernoulli variable that takes a value 1 with probability a

• may be switched on or off for individual sub networks, but over
the ensemble, the expected output of the neuron is

௜
௞ a ௝௜

(௞)
௝
(௞ିଵ)

௝

௜
(௞)

• During test time, we will use the expected output of the neuron
– Consists of simply scaling the output of each neuron by a

129

Dropout during test: implementation

• Instead of multiplying every output by , multiply
all weights by 130

Input

Output

X1 Y1

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑧௜
(௞)

= ෍ 𝑤௝௜
(௞)

𝑦௝
(௞ିଵ)

+

௝

𝑏௜
(௞)

 = ෍ 𝑤௝௜
(௞)a𝜎 𝑧௝

(௞ିଵ)
+

௝

𝑏௜
(௞)

 = ෍ a𝑤௝௜
(௞)

𝜎 𝑧௝
(௞ିଵ)

+

௝

𝑏௜
(௞)

𝒊
(𝒌) a 𝒊

(𝒌)

Dropout : alternate implementation

• Alternately, during training, replace the activation
of all neurons in the network by a
– This does not affect the dropout procedure itself

– We will use as the activation during testing, and not
modify the weights

Input

Output

X1 Y1

131

Inference with dropout (testing)
• Input: dimensional vector
• Set:

– ଴ , is the width of the 0th (input) layer

– ௝
(଴)

௝ ; ଴
(௞ୀଵ…ே)

଴

• For layer
– For ௞

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴ ௝
(௞)

• ௝
(௞)

௞ ௝
(௞)

• Output:

– ௝
(ே)

ே

132

Dropout: Typical results

• From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout
– 2-4 hidden layers with 1024-2048 units 133

Variations on dropout

• Zoneout: For RNNs
– Randomly chosen units remain unchanged across a time transition

• Dropconnect
– Drop individual connections, instead of nodes

• Shakeout
– Scale up the weights of randomly selected weights

• 𝑤 → 𝛼 𝑤 + 1 − 𝛼 𝑐

– Fix remaining weights to a negative constant
• 𝑤 → −𝑐

• Whiteout
– Add or multiply weight-dependent Gaussian noise to the signal on

each connection

134

Story so far
• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network and
results

• Covariate shift between training and test may cause problems and
may be handled by batch normalization

• Data underspecification can result in overfitted models and must be
handled by regularization and more constrained (generally deeper)
network architectures

• “Dropout” is a stochastic data/model erasure method that
sometimes forces the network to learn more robust models

135

Other heuristics: Early stopping

• Continued training can result in over fitting to
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to

terminate training when performance on validation
set degrades significantly

error

epochs

training

validation

136

Additional heuristics: Gradient
clipping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

137

Loss

w

Additional heuristics: Data
Augmentation

• Available training data will often be small
• “Extend” it by distorting examples in a variety of

ways to generate synthetic labelled examples
– E.g. rotation, stretching, adding noise, other distortion

138

Other tricks

• Normalize the input:
– Normalize entire training data to make it 0 mean, unit

variance
– Equivalent of batch norm on input

• A variety of other tricks are applied
– Initialization techniques

• Xavier, Kaiming, SVD, etc.
• Key point: neurons with identical connections that are identically

initialized will never diverge

– Practice makes man perfect

139

Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data
– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.)
• Choose optimization algorithm

– E.g. ADAM

• Perform a grid search for hyper parameters (learning rate, regularization
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required

140

In closing

• Have outlined the process of training neural
networks
– Some history
– A variety of algorithms
– Gradient-descent based techniques
– Regularization for generalization
– Algorithms for convergence
– Heuristics

• Practice makes perfect..

141

