
Homework 1 Part 1
An Introduction to Neural Networks

11-785: Introduction to Deep Learning (Spring 2022)

OUT: January 23, 2022
Early Submission Bonus Deadline: February 2, 2022, 11:59 PM, Eastern Time

DUE: February 17, 2022, 11:59 PM, Eastern Time

Version: 2.0.1

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

We encourage you to meet regularly with your study group to discuss and work on the homework. You
will not only learn more, you will also be more efficient that way. However, as noted above, the actual
code used to obtain the final submission must be entirely your own.

• Directions:

– You are required to do this assignment in the Python (version 3) programming language. Do not
use any auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted
and recommended to vectorize your computation using the Numpy library.

– We recommend that you look through all of the problems before attempting the first problem.
However we do recommend you complete the problems in order, as the difficulty increases, and
questions often rely on the completion of previous questions.

• Early submission bonus deadline:

– If you complete this assignment successfully and achieve full marks on Autolab before February
2, 2022, 11:59 PM, Eastern Time, you will receive 5 point bonus for this assignment.

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/

Homework objectives

If you complete this homework successfully, you would ideally have learned:

• How to write code to implement an MLP from scratch

– How to implement linear layers

– How to implement various activations

– How to implement batch norm

– How to chain these up to compose an MLP of any size

• Your code will be able to perform forward inference through the MLP

• How to write code to implement training of your MLP

– How to perform a forward pass through your network

– How to implement Mean Squared Error Loss and Cross-Entropy Loss functions

– How to implement backpropagation through the linear and activation layers

– How to compute loss derivatives for the network parameters (including weights, biases and batch
norm parameters)

– How to implement the Stochastic Gradient Descent (SGD) optimizer

2

Contents

1 Introduction 4

2 Installation 4

3 Setup and Submission 5

4 Scoring 6

5 Activation Functions [5 points] 7
5.1 Sigmoid [mytorch.nn.Sigmoid] . 8

5.1.1 Sigmoid Forward Equation . 8
5.1.2 Sigmoid Forward Example . 8
5.1.3 Sigmoid Backward Equation . 8

5.2 Tanh [mytorch.nn.Tanh] . 9
5.2.1 Tanh Forward Equation . 9
5.2.2 Tanh Forward Example . 9
5.2.3 Tanh Backward Equation . 9

5.3 ReLU [mytorch.nn.ReLU] . 9
5.3.1 ReLU Forward Equation . 9
5.3.2 ReLU Forward Example . 9
5.3.3 ReLU Backward Equation . 10

6 Loss Functions [5 points] 11
6.1 MSE Loss [mytorch.nn.MSELoss] . 12

6.1.1 MSE Loss Forward Equation . 12
6.1.2 MSE Loss Forward Example . 12
6.1.3 MSE Loss Backward Equation . 12

6.2 Cross-Entropy Loss [mytorch.nn.CrossEntropyLoss] . 13
6.2.1 Cross-Entropy Loss Forward Equation . 13
6.2.2 Cross-Entropy Loss Forward Example . 13
6.2.3 Cross-Entropy Loss Backward Equation . 13

7 Neural Network Layers [15 points] 15
7.1 Linear Layer [mytorch.nn.Linear] . 15

7.1.1 Linear Layer Forward Equation . 17
7.1.2 Linear Layer Forward Example . 17
7.1.3 Linear Layer Backward Equations . 17

8 Optimizers [mytorch.optim.SGD] [10 points] 18
8.1 SGD Equation (Without Momentum) . 19
8.2 SGD Equations (With Momentum) . 19
8.3 Testing SGD Equations . 20

9 Neural Network Models [45 points] 21
9.1 MLP (Hidden Layers = 0) [mytorch.models.MLP0] [10 points] 21

9.1.1 MLP Forward Equations (Hidden Layers = 0) . 22
9.1.2 MLP Backward Equations (Hidden Layers = 0) . 23

9.2 MLP (Hidden Layers = 1) [mytorch.models.MLP1] [15 points] 23
9.2.1 MLP Forward Equations (Hidden Layers = 1) . 25
9.2.2 MLP Backward Equations (Hidden Layers = 1) . 25

9.3 MLP (Hidden Layers = 4) [mytorch.models.MLP4] [20 points] 26
9.3.1 MLP Forward Equations (Hidden Layers = 4) . 26
9.3.2 MLP Backward Equations (Hidden Layers = 4) . 28

3

10 Regularization [20 points] 29
10.1 Batch Normalization [mytorch.nn.BatchNorm1d] . 29

10.1.1 Batch Normalization Forward Equations . 31
10.1.2 Batch Normalization Inference Equations . 31
10.1.3 Batch Normalization Backward Equations . 32

A Batch Normalization 33

1 Introduction

In this series of homework assignments, you will implement your own deep learning library from scratch.
Inspired by PyTorch, your library – MyTorch – will be used to create everything from multilayer perceptrons,
convolutional neural networks, to recurrent neural networks with gated recurrent units (GRU) and long-short
term memory (LSTM) structures. This is an ambitious undertaking, and we are here to help you through
the entire process. At the end of these work, you will understand forward propagation, loss calculation,
backward propagation, and gradient descent.

In this assignment, we will start by creating the core components of multilayer perceptrons: linear layers,
activations, loss functions, and batch normalization. You will implement these classes in MyTorch. The
autograder tests will compare the outputs of your MyTorch methods and class attributes with a reference
PyTorch solution. We have made the necessary components of these classes and class functions as explicit
as possible. You job is to specifically implement the mathematics into code, and understand how all the
components are related. You are required to use numpy and no other python library.

We are not intending to make the numpy restriction arbitrarily prohibitive. You can use os, sys, matplotlib,
and other functions needed to get familiar with your environment and what is going on. However, AutoLab
expects only numpy. Libraries like PyTorch, TensorFlow, and Keras are not allowed.

In looking at the mathematics, you will be coding the equations needed to build a simple Neural Network
Layer. This includes forward and backward propagation for the activations, loss functions, linear layers, and
batch normalization. If you have challenges going from math to code, consider the shapes involved and doing
what you can to make the operations possible.

Welcome, and we are grateful to be with you on this journey!

2 Installation

The culmination of all of the Homework Part 1’s will be your own custom deep learning library, along
with detailed examples, which we are calling MyTorch©. It is structured similarly to popular deep library
learning libraries like PyTorch and TensorFlow, and you can easily import and reuse modules of code for
your subsequent homeworks.

• Install python 3, numpy, ipython. In order to run the provided autograder, you need to install the
following libraries in python.

pip3 install numpy==1.18.5

pip3 install ipython==7.16.1

pip3 install notebook

Please check your installation versions with the list below.

Name Version

anaconda 2020.07

conda 4.8.3

4

ipython 7.16.1

python 3.8.3

numpy 1.18.5

notebook

3 Setup and Submission

• Extract the downloaded handout handout.tar by running the following command in the same directory

tar -xvf handout.tar

This will create a directory called handin with the following file structure.

Figure A: File Structure Tree, handin

• IMPORTANT:We have released autograder 2.0.1. You need to set the correct flags in hw1p1 autograder flags.py

so that your local autograder and Autolab can grade your work properly!

• Autograde your code by

– Step 1: Setting the correct flags in hw1p1 autograder flags.py according to the sections you
want to be graded. For example, if you only implement the sigmoid activation functions, set
DEBUG AND GRADE SIGMOID flag = True and everything else to False so that your work can be
graded properly.

– Step 2: Running local autograder by

Option 1: Executing in Terminal

Please confirm that you are in the ./autograde directory and execute the following in terminal:

python hw1p1_autograder.py

Option 2: Executing in Jupyter Notebook

5

Please confirm that you are in the ./autograde directory and launch jupyter notebook:

jupyter notebook

Then open hw1p1 autograder.ipynb and run the notebook.

• Hand-in your code by making sure that you have set the correct flags in hw1p1 autograder flags.py,
running the following command from the top level directory, then SUBMIT the created handin.tar
file to autolab:

tar -cvf handin.tar handin

• DO NOT:

– Import other external libraries other than numpy in your submission, as extra packages that do
not exist in autolab will cause submission failures. Libraries like PyTorch, TensorFlow, Keras

are not allowed.

– Add, move, or remove any files or change any filenames.

4 Scoring

The homework comprises several sections. You get points for each section. Within any individual section,
however, you are expected to pass all tests within the section to get the score for it. Sections do not have
partial credit. This is by design – you are required to verify all parts of your homework on the local autograder
before you submit it. Please see the IMPORTANT reminder regarding submission to autolab in Section
3.

The local autograder provided to you has is very detailed. You will be able to isolate and verify individual
components of the sections on it. Make sure you get full points on the local autograder for any section,
before submitting it to autolab.

To test any individual component on your local autograder, set the “DEBUG AND GRADE RELU flag” flag
for it to true. E.g. to test your implementation of RELU set “DEBUG AND GRADE RELU flag”.

6

5 Activation Functions [5 points]

In artificial neural networks, the activation function of a node defines the output of that node given an
input or set of inputs. A standard integrated circuit can be seen as a digital network of activation functions
that can be ”ON” (1) or ”OFF” (0), depending on input. This is similar to the linear perceptron in neural
networks. However, only nonlinear activation functions allow such networks to compute nontrivial problems
using only a small number of nodes, and such activation functions are called nonlinearities.[1] An extensive
list of activation functions including many new promising alternate activation functions that have been shown
to perform better than popular activation functions on benchmark problems is presented in.[2][3]

(Source: https://en.wikipedia.org/wiki/Activation function)

During forward propagation, pre-activation features are passed to the activation function to calculate their
post-activation values. As a non-linearity, activation functions allow for more complex relationships to
be estimated. Activation functions do not have parameters. Backward propagation helps us understand
how changes in pre-activation features affect post-activation values. The values calculated during backward
propagation are used to enable downstream computation, as seen in subsequent sections.

In this section, your task is to implement the forward and backward attribute functions of the Activation
class. Please consider the following class structure.

class Activation:

def forward(self, Z):

self.A = # TODO

return self.A

def backward(self):

dAdZ = # TODO

return dAdZ

As you can see, the Activation class has forward and backward attribute functions. In forward, we calculate A
and store its value for use in backward. The attribute function forward includes multiple components.

• As an argument, forward expects input Z.

• As an attribute, forward stores variable A.

• As an output, forward returns variable A.

In backward, we calculate the gradient changes needed for optimization. The attribute function backward

includes multiple components.

• As arguments, backward expects no inputs.

• As attributes, backward stores no variables.

• As an output, backward returns variable dAdZ.

To facilitate understanding, we have organized a table describing all relevant variables.

The activation function topology is visualized in Figure A, whose reference persists throughout this docu-
ment.

The following subsections provide: the equation needed for forward computation (Section 4.X.1), an example
forward computation (Section 4.X.2), and equations needed for backward computation (Section 4.X.3).

7

Table 1: Activation Function Components
Code Name Math Type Shape Meaning
N N scalar - number of observations
C C scalar - number of features
Z Z matrix N × C pre-activation features
A A matrix N × C post-activation values
Ones ι matrix C × 1 data constant for features
dAdZ ∂A/∂Z matrix N × C how changes in pre-activation features

affect post-activation values

Figure B: Activation Function Topology

5.1 Sigmoid [mytorch.nn.Sigmoid]

5.1.1 Sigmoid Forward Equation

Sigmoid(Z) = Sigmoid.forward(Z) (1)

= ς(Z) (2)

=
1

1 + e−Z
(3)

5.1.2 Sigmoid Forward Example

Figure C: Sigmoid Activation Forward Example

5.1.3 Sigmoid Backward Equation

sigmoid.backward() = ς(Z)− ς2(Z) (4)

= A−A2 (5)

8

5.2 Tanh [mytorch.nn.Tanh]

5.2.1 Tanh Forward Equation

tanh(Z) = Tanh.forward(Z) (6)

= tanh(Z) (7)

=
sinh(Z)

cosh(Z)
(8)

5.2.2 Tanh Forward Example

Figure D: Tanh Activation Forward Example

5.2.3 Tanh Backward Equation

tanh.backward() = 1− tanh2(Z) (9)

= 1−A2 (10)

5.3 ReLU [mytorch.nn.ReLU]

5.3.1 ReLU Forward Equation

relu(Z) = relu.forward(Z) (11)

= max(Z, 0) (12)

5.3.2 ReLU Forward Example

Figure E: ReLU Activation Forward Example

9

5.3.3 ReLU Backward Equation

relu.backward() =

{
1, max(Z, 0) > 0

0, max(Z, 0) ≤ 0
(13)

=

{
1, A > 0

0, A ≤ 0
(14)

Hint: Search and read the docs on np.max, np.maximum, and np.where.

10

6 Loss Functions [5 points]

In statistics, typically a loss function is used for parameter estimation, and the event in question is some
function of the difference between estimated and true values for an instance of data. The concept, as old as
Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century.[2] In the context
of economics, for example, this is usually economic cost or regret. In classification, it is the penalty for an
incorrect classification of an example. In actuarial science, it is used in an insurance context to model benefits
paid over premiums, particularly since the works of Harald Cramér in the 1920s.[3] In optimal control, the
loss is the penalty for failing to achieve a desired value. In financial risk management, the function is mapped
to a monetary loss.

(Source: https://en.wikipedia.org/wiki/Loss function)

During forward propagation, an input and target are passed to the loss function to calculate a loss value.
The input of the loss function is typically a model output, while the target is the ground truth values we
are estimating. The loss value is a scalar quantity used to evaluate the quality of the model predictions. To
improve a model, we need to know how changes in model outputs affect loss. The values calculated during
backward propagation are used to enable downstream computation, as seen in subsequent sections.

In this section, your task is to implement the forward and backward attribute functions of the Loss class.
Please consider the following class structure.

class Loss:

def forward(self, A, Y):

self.A = A

self.Y = Y

self. # TODO (store additional attributes as needed)

N = A.shape[0]

C = A.shape[1]

TODO

return L

def backward(self):

dLdA = # TODO

return dLdA

As you can see, the Loss class has forward and backward attribute functions. In forward, we calculate L and
store values need for backward. The attribute function forward include:

• As an argument, forward expects input A, and Y.

• As attributes, forward stores variable A, Y, and additional attributes as needed.

• As an output, forward returns variable L.

In backward, we calculate multiple gradient changes and store values needed for optimization. The attribute
function backward includes:

• As an argument, backward expects no inputs.

• As attributes, backward stores no variables.

• As an output, backward returns variable dLdA.

To facilitate understanding, we have organized a table describing all relevant variables.

11

Table 2: Loss Function Components
Code Name Math Type Shape Meaning
N N scalar - number of observations
C C scalar - number of features
A A matrix N × C model outputs
Y Y matrix N × C ground-truth values
L L scalar - loss value
dLdA ∂L/∂A matrix N × C how changes in model outputs affect loss
* ⊙ op - elementwise multiply (aka Hadamard Product)
@ · op - dot product

The loss function topology is visualized in Figure E, whose reference persists throughout this document.

Figure F: Loss Function Topology

The following subsections provide: the equation needed for forward computation (Section 5.X.1), an example
forward computation (Section 5.X.2), and equations needed for backward computation (Section 5.X.3).

6.1 MSE Loss [mytorch.nn.MSELoss]

6.1.1 MSE Loss Forward Equation

We first calculate the squared error between the model outputs and the ground-truth values. Then we sum
the squared error and calculate the per-component MSE loss.

OnesC :=

1...
1


C×1

(15)

= ιC (16)

OnesN :=

1...
1


N×1

(17)

= ιN (18)

SE = (A− Y)⊙ (A− Y) (19)

SSE = ιTN · SE(A, Y) · ιC (20)

MSE =
SSE(A, Y)

N · C
(21)

6.1.2 MSE Loss Forward Example

6.1.3 MSE Loss Backward Equation

MSELoss.backward() = A− Y (22)

12

Figure G: MSE Loss Example Mapping

6.2 Cross-Entropy Loss [mytorch.nn.CrossEntropyLoss]

6.2.1 Cross-Entropy Loss Forward Equation

OnesC :=

1...
1


C×1

(23)

= ιC (24)

OnesN :=

1...
1


N×1

(25)

= ιN (26)

softmax :=
exp(A)

exp(A) · ιC · ιTC
(27)

= σ(A) (28)

crossentropy := −Y ⊙ log(σ(A)) (29)

= H(A, Y) (30)

sum crossentropy := ιTN ·H(A, Y) · ιC (31)

= SCE(A, Y) (32)

loss :=
SCE(A, Y)

N
(33)

The matrix division in Equation 27 is element-wise (the formal symbol for the element-wise division operator
of two matrices is ⊘, but we use the simpler A over B notation here). Equation 27 is simply normalizing
each row of exp(A) by its sum, to compute the softmax for the row, which represents class probabilities for
one instance.

6.2.2 Cross-Entropy Loss Forward Example

6.2.3 Cross-Entropy Loss Backward Equation

xent.backward() = σ(A)− Y (34)

13

Figure H: Cross Entropy Loss Example Mapping

14

7 Neural Network Layers [15 points]

7.1 Linear Layer [mytorch.nn.Linear]

Linear layers use linear predictor functions to model relationships whose unknown parameters are estimated
from the data. Most commonly, the conditional mean of the output features given the values of the input
features is assumed to be an affine function of those values. Linear layers focus on the joint probability
distribution of all these variables.

In linear regression, the relationships are modeled using linear predictor functions whose unknown model
parameters are estimated from the data. Most commonly, the conditional mean of the response given
the values of the explanatory variables (or predictors) is assumed to be an affine function of those val-
ues. Multivariate regression focuses on the joint probability distribution of all of these variables. (Source:
https://en.wikipedia.org/wiki/Linear regression)

During forward propagation, input features are passed to the linear layer to calculate its output features.
These values are used to optimize the loss function. To improve the linear layer, we need to know how
changes in its output affect loss. This allows us to do backward propagation and calculate how changes in
the layer weights or bias affect loss. To enable downstream computation, backward propagation returns how
changes in the layer inputs affect loss.

In this section, your task is to implement the forward and backward attribute functions of the Linear class.
Please consider the following class structure.

class Linear:

def __init__(self, in_features, out_features):

self.W = np.zeros((out_features, in_features))

self.b = np.zeros((out_features, 1))

self.dLdW = np.zeros((out_features, in_features))

self.dLdb = np.zeros((out_features, 1))

def forward(self, A):

self.A = A

self.N = A.shape[0]

self.Ones = np.ones((self.N,1), dtype="f")

Z = # TODO

return Z

def backward(self, dLdZ):

dZdA = # TODO

dZdW = # TODO

dZdb = # TODO

dLdA = # TODO

dLdW = # TODO

dLdb = # TODO

self.dLdW = dLdW / self.N

self.dLdb = dLdb / self.N

return dLdA

As you can see, the Linear class has initialization, forward, and backward attribute functions. Immedi-
ately once the class is instantiated, the code in init is run. The initialization phase using init

15

includes:

• As arguments, Linear will be specified using in feature and out feature.

• As attributes, Linear will be initialized with W, dLdW, b, and dLdb.

In forward, we calculate Z and store values needed for backward. The attribute function forward in-
cludes:

• As an argument, forward expects input A.

• As an attribute, forward stores variables A, N, and Ones.

• As an output, forward returns variable Z.

In backward, we calculate multiple gradient changes and store values needed for optimization. The attribute
function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, backward stores variables dLdW and dLdb.

• As an output, backward returns variable dLdA.

To facilitate understanding, we have organized a table describing all relevant variables.

Table 3: Linear Layer Components
Code Name Math Type Shape Meaning
N N scalar - number of observations
in features C0 scalar - number of input features
out features C1 scalar - number of output features
A A matrix N × C0 data input to be weighted
Z Z matrix N × C1 data output from the layer
Ones ι matrix N × 1 data constant for bias
W W matrix C1 × C0 weight parameters
b b matrix C1 × 1 bias parameters
dLdZ ∂L/∂Z matrix N × C1 how changes in outputs affect loss
dZdA ∂Z/∂A matrix C0 × C1 how changes in inputs affect outputs
dZdW ∂Z/∂W matrix N × C0 how changes in weights affect outputs
dZdb ∂Z/∂b matrix N × 1 how changes in bias affect outputs
dLdA ∂L/∂A matrix N × C0 how changes in inputs affect loss
dLdW ∂L/∂W matrix C1 × C0 how changes in weights affect loss
dLdb ∂L/∂b matrix C1 × 1 how changes in bias affect loss

The linear layer topology is visualized in Figure I, whose reference persists throughout this document.

Figure I: Linear Layer Topology

16

7.1.1 Linear Layer Forward Equation

Z = A ·WT + ι · bT ∈ RN×C1 (35)

7.1.2 Linear Layer Forward Example

Figure J: Linear Layer Example Mapping

7.1.3 Linear Layer Backward Equations

To implement backward propagation, we use the following rules:

For any linear equation of the kind Z = AX + c, the derivative of Z with respect to A is X. The derivative
of Z with respect to X is AT . (We will explain the rationale behind this in class). Also the derivative with
respect to a transpose is the transpose of the derivative, so the derivative of Z with respect to X is AT but
the derivative of Z with respect to XT is A.

Applying this logic to the linear forward equation above, the derivative of Z with respect to A is WT , while
the derivative of Z with respect to W is A. Similarly, the derivative of Z with respect to b is ι. You can
plug these equations into the formulae below to verify that the sizes match.

∂L

∂A
=

(
∂L

∂Z

)
·
(
∂Z

∂A

)T

∈ RN×C0 (36)

∂L

∂W
=

(
∂L

∂Z

)T

·
(

∂Z

∂W

)
∈ RC1×C0 (37)

∂L

∂b
=

(
∂L

∂Z

)T

·
(
∂Z

∂b

)
∈ RC1×1 (38)

17

8 Optimizers [mytorch.optim.SGD] [10 points]

Stochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an objective
function with suitable smoothness properties (e.g. differentiable or subdifferentiable). It can be regarded as
a stochastic approximation of gradient descent optimization, since it replaces the actual gradient (calculated
from the entire data set) by an estimate thereof (calculated from a randomly selected subset of the data).
Especially in high-dimensional optimization problems this reduces the computational burden, achieving faster
iterations in trade for a lower convergence rate.

(Source: https://en.wikipedia.org/wiki/Stochastic gradient descent)

To recap, we have seen how to do forward propagation, loss calculation, and backward propagation for the
core classes used in neural networks. Forward propagation is used for estimation, loss calculation tells us
valuate the quality of our estimates, and backward propagation informs us on how changes in parameters
affect loss.

The last step is to improve our model using the information we learned on how changes in parameters affect
loss. To do this, we perform stochastic gradient descent or SGD. There are many optimization methods
to choose from, but SGD is used here because it is popular and straightforward to implement. Because
parameter gradients tell us which direction makes the model worse, we move opposite the direction of the
gradient to update parameters. The learning rate, lr, is a hyperparemeter scaling the updates. Momentum
incorporates information from previous updates, scaled by hyperparameter µ. For reference, µ = 0 means
no momentum.

In this section, your task is to implement the step attribute function of the SGD class. Please consider the
following class structure.

class SGD:

def __init__(self, model, lr=0.1, momentum=0):

self.l = model.layers

self.L = len(model.layers)

self.lr = lr

self.mu = momentum

self.v_W = [np.zeros(self.l[i].W.shape) for i in range(self.L)]

self.v_b = [np.zeros(self.l[i].b.shape) for i in range(self.L)]

def step(self):

for i in range(self.L):

if self.mu == 0:

self.l[i].W = # TODO

self.l[i].b = # TODO

else:

self.v_W[i] = # TODO

self.v_b[i] = # TODO

self.l[i].W = # TODO

self.l[i].b = # TODO

return None

As you can see, SGD has initialization and a step attribute function. Immediately once the class is instan-

18

tiated, the code in init is run. The initialization phase using init includes:

• As arguments, SGD will be specified using model, lr, and momentum.

• As attributes, SGD stores the variables l, lr, and momentum.

• Also as attributes, SGD initializes lists of variables v W and v b.

In step, we update W and b of each of the model layers, and store values needed for momentum. The attribute
function step includes:

• As arguments, step expects no inputs.

• As attributes, step stores variables v W[i] and v b[i] at each layer i.

• Also as attributes, step updates variables l[i].W and l[i].b.

• As an output, forward returns no values.

To facilitate understanding, we have organized a table describing all relevant variables.

Table 4: SGD Optimizer Components

Code Name Math Type Shape Meaning
model - object - model with layers attribute
l - object - layers attribute selected from the model
L L scalar - number of layers in the model
lr λ scalar - learning rate hyperparameter to scale affect of new gradients
momentum µ scalar - momentum hyperparameter to scale affect of prior gradients
v W - list L list of momentum weight parameters, one for each layer
v b - list L list of momentum bias parameters, one for each layer
v W[i] vWi

matrix Ci+1 × Ci weight parameter for layer i momentum
v b[i] vbi matrix Ci+1 × 1 bias parameter for layer i momentum
l[i].W Wi matrix Ci+1 × Ci weight parameter for a layer
l[i].b bi matrix Ci+1 × 1 bias parameter for a layer

8.1 SGD Equation (Without Momentum)

W := W − λ
∂L

∂W
(39)

b := b− λ
∂L

∂b
(40)

8.2 SGD Equations (With Momentum)

vW := µvW +
∂L

∂W
(41)

vb := µvb +
∂L

∂b
(42)

W := W − λvW (43)

b := b− λvb (44)

19

8.3 Testing SGD Equations

Testing SGD is a little different than in other sections. We must create a pseudo model, with all the attributes
we expect to use. This example shows what a typical model initialization would look like. In later sections,
you will implement forward and backward, but you do not need to implement these to test SGD.

class PseudoModel:

def __init__(self):

self.layers = [mytorch.nn.Linear(3,2)]

self.f = [mytorch.nn.ReLU()]

def forward(self, A):

return NotImplemented

def backward(self):

return NotImplemented

Create Example Model

pseudo_model = PseudoModel()

pseudo_model.layers[0].W = np.ones((3,2))

pseudo_model.layers[0].dLdW = np.ones((3,2))/10

pseudo_model.layers[0].b = np.ones((3,1))

pseudo_model.layers[0].dLdb = np.ones((3,1))/10

print("W\n\n", pseudo_model.layers[0].W)

print("W\n\n", pseudo_model.layers[0].b)

Test Example Models

optimizer = SGD(pseudo_model, lr=1)

optimizer.step()

print("W\n\n", pseudo_model.layers[0].W)

print("W\n\n", pseudo_model.layers[0].b)

20

9 Neural Network Models [45 points]

An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except
for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised
learning technique called backpropagation for training.[2][3] Its multiple layers and non-linear activation
distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.

(Source: https://en.wikipedia.org/wiki/Multilayer perceptron)

9.1 MLP (Hidden Layers = 0) [mytorch.models.MLP0] [10 points]

In this subsection, your task is to implement the forward and backward attribute functions of the MLP0
class. Please consider the following class structure.

class MLP0:

def __init__(self):

self.layers = [mytorch.nn.Linear(2, 3)]

self.f = [mytorch.nn.ReLU()]

def forward(self, A0):

Z0 = #TODO

A1 = #TODO

return A1

def backward(self, dLdA1):

dA1dZ0 = # TODO

dLdZ0 = # TODO

dLdA0 = # TODO

return None

As you can see, MLP0 has initialization, forward, and backward attribute functions. Immediately once the
class is instantiated, the code in init is run. The initialization phase using init includes:

• As arguments, MLP0 expects no inputs.

• As attributes, MLP0 stores lists of objects layers and f.

• In layers, the Linear class arguments will be specified using in feature and out feature.

– Linear Layer 0 has in feature = 2 and out feature = 3.

• Also in layers, Linear attributes are automatically defined for W, dLdW, b, and dLdb.

• In activations, the ReLU class has no arguments

In forward, we calculate A1. Our layer and activation objects automatically store variables needed for
backward. The attribute function forward includes:

• As an argument, forward expects input A0.

• No new attributes are defined in forward.

• As an output, forward returns variable A1.

21

In backward, we calculate multiple gradient changes. Our layer and activation objects also automatically
store values needed for optimization. The attribute function backward includes:

• As an argument, backward expects input dLdA1.

• No new attributes are defined in backward.

• As an output, backward returns no values.

The MLP0 topology is visualized in Figure J. The network is displayed vertically to fit on the page.

Figure K: MLP 0 Example Topology (Hidden Layers = 0)

9.1.1 MLP Forward Equations (Hidden Layers = 0)

Z0 = A0W
T
0 + ιbT0 ∈ RN×C1 (45)

A1 = f0(Z0) ∈ RN×C1 (46)

22

9.1.2 MLP Backward Equations (Hidden Layers = 0)

∂A1

∂Z0
=

∂

∂Z0
f0(Z0) ∈ RN×C1 (47)

∂L

∂Z0
=

∂L

∂A1
⊙ ∂A1

∂Z0
∈ RN×C1 (48)

∂L

∂A0
=

∂L

∂Z0
·
(
∂Z0

∂A0

)T

∈ RN×C0 (49)

∂L

∂W0
=

(
∂L

∂Z0

)T

·
(
∂Z0

∂W0

)
∈ RC1×C0 (50)

∂L

∂b0
=

(
∂L

∂Z0

)T

·
(
∂Z0

∂b0

)
∈ RC1×1 (51)

(52)

9.2 MLP (Hidden Layers = 1) [mytorch.models.MLP1] [15 points]

In this section, your task is to implement the forward and backward attribute functions of the MLP1 class.
Please consider the following class structure.

class MLP1:

def __init__(self):

self.layers = # TODO

self.f = [mytorch.nn.ReLU(),

mytorch.nn.ReLU()]

def forward(self, A0):

Z0 = # TODO

A1 = # TODO

Z1 = # TODO

A2 = # TODO

return A2

def backward(self, dLdA2):

dA2dZ1 = # TODO

dLdZ1 = # TODO

dLdA1 = # TODO

dA1dZ0 = # TODO

dLdZ0 = # TODO

dLdA0 = # TODO

return None

We do not provide an object summary or reference table here. Using what you have learned so far, we
encourage you to make an object summary and reference table yourself. Though it takes time, it will aid the
debugging process and help make clear your understanding of the relevant components. If you ask for help,
we will likely ask to see the reference table you have created before attempting to diagnose your issue.

The MLP1 topology is visualized in Figure K. The network is displayed vertically to fit on the page. You
must use the diagram to deduce what the model specification is for the linear layers.

23

Figure L: MLP 1 Example Topology (Hidden Layers = 1)

24

9.2.1 MLP Forward Equations (Hidden Layers = 1)

Z0 = A0W
T
0 + ιbT0 ∈ RN×C1 (53)

A1 = f0(Z0) ∈ RN×C1 (54)

Z1 = A1W
T
1 + ιbT1 ∈ RN×C2 (55)

A2 = f1(Z1) ∈ RN×C2 (56)

9.2.2 MLP Backward Equations (Hidden Layers = 1)

∂A2

∂Z1
=

∂

∂Z1
f1(Z1) ∈ RN×C2 (57)

∂L

∂Z1
=

∂L

∂A2
⊙ ∂A2

∂Z1
∈ RN×C2 (58)

∂L

∂A1
=

∂L

∂Z1
·
(
∂Z1

∂A1

)T

∈ RN×C1 (59)

∂L

∂W1
=

(
∂L

∂Z1

)T

·
(
∂Z1

∂W1

)
∈ RC2×C1 (60)

∂L

∂b1
=

(
∂L

∂Z1

)T

·
(
∂Z1

∂b1

)
∈ RC1×1 (61)

∂A1

∂Z0
=

∂

∂Z0
f0(Z0) ∈ RN×C1 (62)

∂L

∂Z0
=

∂L

∂A1
⊙ ∂A1

∂Z0
∈ RN×C1 (63)

∂L

∂A0
=

∂L

∂Z0
·
(
∂Z0

∂A0

)T

∈ RN×C0 (64)

∂L

∂W0
=

(
∂L

∂Z0

)T

·
(
∂Z0

∂W0

)
∈ RC1×C0 (65)

∂L

∂b0
=

(
∂L

∂Z0

)T

·
(
∂Z0

∂b0

)
∈ RC1×1 (66)

(67)

25

9.3 MLP (Hidden Layers = 4) [mytorch.models.MLP4] [20 points]

In this section, your task is to implement the forward and backward attribute functions of the MLP4 class.
Please consider the following class structure.

class MLP4:

def __init__(self):

self.layers = # TODO

self.f = [mytorch.nn.ReLU(),

mytorch.nn.ReLU(),

mytorch.nn.ReLU(),

mytorch.nn.ReLU(),

mytorch.nn.ReLU()]

def forward(self, A):

L = len(self.layers)

for i in range(L):

Z = # TODO

A = # TODO

return A

def backward(self, dLdA):

L = len(self.layers)

for i in reversed(range(L)):

dAdZ = # TODO

dLdZ = # TODO

dLdA = # TODO

return None

We also do not provide an object summary or reference table here. Using what you have learned so far, we
encourage you to make an object summary and reference table yourself. Though it takes time, it will aid the
debugging process and help make clear your understanding of the relevant components. If you ask for help,
we will likely ask to see the reference table you have created before attempting to diagnose your issue.

The MLP4 topology is visualized in Figure L. The network is displayed vertically to fit on the page. You
must use the diagram to deduce what the model specification is for the linear layers.

9.3.1 MLP Forward Equations (Hidden Layers = 4)

Zi = AiWi + ιbi ∈ RN×Ci+1 (68)

Ai+1 = fi(Zi) ∈ RN×Ci+1 (69)

26

Figure M: MLP 4 Example Topology (Hidden Layers = 4)

27

9.3.2 MLP Backward Equations (Hidden Layers = 4)

∂Ai+1

∂Zi
=

∂

∂Zi
fi(Zi) ∈ RN×Ci+1 (70)

∂L

∂Zi
=

∂L

∂Ai+1
⊙ ∂Ai+1

∂Zi
∈ RN×Ci+1 (71)

∂L

∂Ai
=

∂L

∂Zi
·
(
∂Zi

∂Ai

)T

∈ RN×Ci (72)

∂L

∂Wi
=

(
∂L

∂Zi

)T

·
(
∂Zi

∂Wi

)
∈ RCi+1×Ci (73)

∂L

∂bi
=

(
∂L

∂Zi

)T

·
(
∂Zi

∂bi

)
∈ RCi+1×1 (74)

(75)

28

10 Regularization [20 points]

10.1 Batch Normalization [mytorch.nn.BatchNorm1d]

In this section, your task is to implement the forward and backward attribute functions of the BatchNorm1d
class.

The appendix has very detailed information necessary to complete the forward and backward functions of
batch norm. Please consider the following class structure.

class BatchNorm1d:

def __init__(self, num_features, alpha=0.9):

self.alpha = alpha

self.eps = 1e-8

self.Z = None

self.NZ = None

self.BZ = None

self.BW = np.ones((1, num_features))

self.Bb = np.zeros((1, num_features))

self.dLdBW = np.zeros((1, num_features))

self.dLdBb = np.zeros((1, num_features))

self.M = np.zeros((1, num_features))

self.V = np.ones((1, num_features))

inference parameters

self.running_M = np.zeros((1, num_features))

self.running_V = np.ones((1, num_features))

def forward(self, Z, eval=False):

"""

The eval parameter is to indicate whether we are in the

training phase of the problem or are we in the inference phase.

So see what values you need to recompute when eval is True.

"""

if eval:

TODO

return # TODO

self.Z = Z

self.N = # TODO

self.M = np.mean # TODO

self.V = np.var # TODO

self.NZ = # TODO

self.BZ = # TODO

self.running_M = # TODO

self.running_V = # TODO

29

return self.BZ

def backward(self, dLdBZ):

self.dLdBW = # TODO

self.dLdBb = # TODO

dLdNZ = # TODO

dLdV = # TODO

dLdM = # TODO

dLdZ = # TODO

return dLdZ

As you can see, BatchNorm has initialization, forward, and backward attribute functions. Immediately once
the class is instantiated, the code in init is run. The initialization phase using init includes:

• As arguments, BatchNorm expects num features and alpha.

• As attributes, BatchNorm stores alpha, eps, Z, NZ, BZ, BW, dLdBW, Bb, dLdBb, M, V, running M,

running V.

In forward, we differentiate the training phase and the inference phase by the variable eval. We calculate
all necessary variables and keep track of the running mean and variance (useful for inference). The attribute
function forward includes:

• As arguments, forward expects input Z and eval.

• As attributes, forward stores Z, N, M, V, NZ, BZ, running M, running V.

• As an output, forward returns BZ. Pay attention to the difference in calculation between the training
and inference phase.

In backward, we calculate multiple gradients needed for optimization. The attribute function backward

includes:

• As an argument, backward expects input dLdBZ.

• As attributes, backward stores dLdBW, dLdBb.

• As an output, backward returns dLdZ.

To facilitate understanding, we have organized a table describing all relevant variables.

30

Table 5: Activation Function Components

Code Name Math Type Shape Meaning
N N scalar - number of observations
num features C scalar - number of features (same for input and output)
alpha α scalar - the coefficient used for running M and running V computations
eps ϵ scalar - the noise added to the variance
Z Z matrix N × C data input to the BN layer

NZ Ẑ matrix N × C normalized input data

BZ Z̃ matrix N × C data output from the BN layer
M µ matrix 1× C Per feature mean
V σ2 matrix 1× C Per feature variance
running M E[Z] matrix 1× C Running average of per feature mean
running V V ar[Z] matrix 1× C Running average of per feature variance
BW W matrix 1× C Weight parameters
Bb b matrix 1× C Bias parameters
dLdBW ∂L/∂W matrix 1× C how changes in weights affect loss
dLdBb ∂L/∂b matrix 1× C how changes in bias affect loss
dLdZ ∂L/∂Z matrix N × C how changes in inputs affect loss

dLdNZ ∂L/∂Ẑ matrix N × C how changes in Ẑ affect loss

dLdBZ ∂L/∂Z̃ matrix N × C how changes in Z̃ affect loss
dLdV ∂L/∂(σ2) matrix 1× C how changes in (σ2) affect loss
dLdM ∂L/∂µ matrix 1× C how changes in µ affect loss

10.1.1 Batch Normalization Forward Equations

µj =
1

N

N∑
i=1

Zij j = 1, ..., C (76)

σ2
j =

1

N

N∑
i=1

(Zij − µj)
2 j = 1, ..., C (77)

Ẑi =
Zi − µ√
σ2 + ϵ

i = 1, ..., N (78)

Z̃ = W ⊙ Ẑ + b ∈ RN×C (79)

µj and σ2
j refer to the jth element of µ and σ2. Zi refers to the ith sample. Zij refers to the element at the

ith row and jth column of Z.

10.1.2 Batch Normalization Inference Equations

E[Z] = α ∗ E[Z] + (1− α) ∗ µ (80)

V ar[Z] = α ∗ V ar[Z] + (1− α) ∗ σ2 (81)

During training (and only during training), your forward method should be maintaining a running average
of the mean and variance. These running averages should be used during inference. (Check the Inference
section of appendix under Batch Norm for why we use them). You will need to manually pass the eval value
when using batch norm in your network.

31

10.1.3 Batch Normalization Backward Equations

∂L

∂Ẑ
=

∂L

∂Z̃

∂Z̃

∂Ẑ
=

∂L

∂Z̃
⊙W (82)(

∂L

∂b

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂β

)
ij

=

N∑
i=1

(
∂L

∂Z̃

)
ij

j = 1, ..., C (83)

(
∂L

∂W

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂W

)
ij

=

N∑
i=1

(
∂L

∂Z̃
⊙ Ẑ

)
ij

j = 1, ..., C (84)

(
∂L

∂σ2
)j =

N∑
i=1

(
∂L

∂Ẑ

∂Ẑ

∂σ2

)
ij

j = 1, ..., C (85)

All other useful derivatives with derivations for batch norm can be found in the Appendix.

32

Appendix

A Batch Normalization

Batch Normalization (commonly referred to as “BatchNorm”) is a wildly successful and simple technique
for accelerating training and learning better neural network representations. The general motivation of
BatchNorm is the non-stationarity of unit activity during training that requires downstream units to adapt
to a non-stationary input distribution. This co-adaptation problem, which the paper authors refer to as
internal covariate shift, significantly slows learning.

Just as it is common to whiten training data (standardize and de-correlate the covariates), we can invoke
the abstraction of a neural network as a hierarchical set of feature filters and consider the activity of each
layer to be the covariates for the subsequent layer and consider whitening the activity over all training
examples after each update. Whitening layer activity across the training data for each parameter update is
computationally infeasible, so instead we make some (large) assumptions that end up working well anyway.
The main assumption we make is that the activity of a given unit is independent of the activity of all other
units in a given layer. That is, for a layer l with m units, individual unit activities (consider each a random
variable) x = {x(1), . . . ,x(m)} are independent of each other – {x(1) ⊥ . . .x(k) . . . ⊥ x(m)}.

Under this independence assumption, the covariates are not correlated and therefore we only need to nor-
malize the individual unit activities. Since it is not practical in neural network optimization to perform
updates with a full-batch gradient, we typically use an approximation of the “true” full-batch gradient over
a subset of the training data. We make the same approximation in our normalization by approximating the
mean and variance of the unit activities over this same subset of the training data.

For a training set X with n examples, we partition it into n/m batches B of size N . Consider µ to be the
mean and σ2 the variance of a unit’s activity over one batch of the training data (size N). For an arbitrary
unit k, we compute the batch statistics µ and σ2 and normalize as follows (σ2 is added with ϵ = 1e− 8 such
that we do not divide by zero):

µj =
1

N

N∑
i=1

Zij j = 1, ..., C (86)

(σ2
j) =

1

N

N∑
i=1

(Zij − µj)
2 j = 1, ..., C (87)

Ẑi =
Zi − µ√
σ2 + ϵ

i = 1, ..., N (88)

(89)

where µj and σ2
j refer to the jth element of µ and σ2. Zi refers to the ith sample. Zij refers to the element

at the ith row and jth column of Z.

A significant issue posed by simply normalizing individual unit activity across batches is that it limits the set
of possible network representations. A way around this is to introduce a set of learnable parameters for each
unit that ensure the BatchNorm transformation can be learned to perform an identity transformation. To
do so, these per-unit learnable parameters W and b for the kth unit, rescale and reshift the normalized unit
activity. Thus the output of the BatchNorm transformation for the data samples, Z̃ is given as follows,

Z̃ ←W ⊙ Ẑ + b (90)

33

We can now derive the analytic partial derivatives of the BatchNorm transformation. Let L be the train-
ing loss over the batch and ∂L

∂Z̃
the derivative of the loss with respect to the output of the BatchNorm

transformation for Z.

∂L

∂Ẑ
=

∂L

∂Z̃

∂Z̃

∂Ẑ
=

∂L

∂Z̃
⊙W (91)(

∂L

∂b

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂β

)
ij

=

N∑
i=1

(
∂L

∂Z̃

)
ij

j = 1, ..., C

(92)(
∂L

∂W

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂W

)
ij

=

N∑
i=1

(
∂L

∂Z̃
⊙ Ẑ

)
ij

j = 1, ..., C

(93)(
∂L

∂σ2

)
j

=

N∑
i=1

(
∂L

∂Ẑ

∂Ẑ

∂σ2

)
ij

(94)

=

N∑
i=1

(
∂L

∂Ẑ

∂

∂σ2

[
(Z − µ)(σ2 + ϵ)−

1
2

])
ij

(95)

= −1

2

N∑
i=1

(
∂L

∂Ẑ
⊙ (Z − µ)⊙ (σ2 + ϵ)−

3
2

)
ij

j = 1, ..., C

(96)

∂L

∂µ
=

N∑
i=1

∂L

∂Ẑi

∂Ẑi

∂µ
(97)

where Ẑi refers to the ith sample in Ẑ.

Solve for ∂Ẑi

∂µ

∂Ẑi

∂µ
=

∂

∂µ

[
(Zi − µ)(σ2 + ϵ)−

1
2

]
(98)

= −(σ2 + ϵ)−
1
2 + (Zi − µ)⊙ ∂

∂µ

[
(σ2 + ϵ)−

1
2

]
(99)

= −(σ2 + ϵ)−
1
2 + (Zi − µ)⊙ ∂

∂µ

(1

N

N∑
i=1

(Zi − µ)
2
+ ϵ

)− 1
2

 (100)

= −(σ2 + ϵ)−
1
2 (101)

− 1

2
(Zi − µ)⊙

(1

N

N∑
i=1

(Zi − µ)
2
+ ϵ

)− 3
2

∂

∂µ

(
1

N

N∑
i=1

(Zi − µ)
2

)
= −(σ2 + ϵ)−

1
2 − 1

2
(Zi − µ)⊙

(
σ2 + ϵ

)− 3
2

(
− 2

N

N∑
i=1

(Zi − µ)

)
(102)

Now sub this expression for ∂Ẑi

∂µ into ∂L
∂µ =

∑N
i=1

∂L
∂Ẑi

∂Ẑi

∂µ

∂L

∂µ
= −

N∑
i=1

∂L

∂Ẑi

(σ2 + ϵ)−
1
2 − 1

2

N∑
i=1

∂L

∂Ẑi

⊙ (Zi − µ)⊙
(
σ2 + ϵ

)− 3
2

(
− 2

N

N∑
i=1

(Zi − µ)

)
(103)

34

Notice that part of the expression in the second term is just ∂L
∂σ2

∂L

∂µ
= −

N∑
i=1

∂L

∂Ẑi

(σ2 + ϵ)−
1
2 +

∂L

∂σ2

(
− 2

N

N∑
i=1

(Zi − µ)

)

= −
N∑
i=1

∂L

∂Ẑi

(σ2 + ϵ)−
1
2 − 2

N

∂L

∂σ2

N∑
i=1

(Zi − µ)

Now for the grand finale, let’s solve for ∂L
∂Z . For clarity, we present the derivation for ∂L

∂Zi
for one data sample

Zi.

∂L

∂Zi
=

∂L

∂Ẑi

∂Ẑ

∂Zi
(104)

=
∂L

∂Ẑi

[
∂Ẑi

∂Zi
+

∂Ẑi

∂σ2

∂σ2

∂Zi
+

∂Ẑ

∂µ

∂µ

∂Zi

]
(105)

=
∂L

∂Ẑi

∂Ẑi

∂Zi
+

∂L

∂Ẑi

∂Ẑi

∂σ2

∂σ2

∂Zi
+

∂L

∂Ẑi

∂Ẑi

∂µ

∂µ

∂Zi
(106)

=
∂L

∂Ẑi

∂Ẑi

∂Zi
+

∂L

∂σ2

∂σ2

∂Zi
+

∂L

∂µ

∂µ

∂Zi
(107)

=
∂L

∂Ẑi

[
∂

∂Zi

(
(Zi − µ)(σ2 + ϵ)−

1
2

)]
+

∂L

∂σ2

∂σ2

∂Zi
+

∂L

∂µ

∂µ

∂Zi
(108)

=
∂L

∂Ẑi

[
(σ2 + ϵ)−

1
2

]
+

∂L

∂σ2

∂σ2

∂Zi
+

∂L

∂µ

∂µ

∂Zi
(109)

=
∂L

∂Ẑi

[
(σ2 + ϵ)−

1
2

]
+

∂L

∂σ2

 ∂

∂Zi

 1

N

N∑
j=1

(Zj − µ)2

+
∂L

∂µ

∂µ

∂Zi
(110)

=
∂L

∂Ẑi

[
(σ2 + ϵ)−

1
2

]
+

∂L

∂σ2

[
2

N
(Zi − µ)

]
+

∂L

∂µ

∂µ

∂Zi
(111)

=
∂L

∂Ẑi

[
(σ2 + ϵ)−

1
2

]
+

∂L

∂σ2

[
2

N
(Zi − µ)

]
+

∂L

∂µ

 ∂

∂Zi

 1

N

N∑
j=1

Zj

 (112)

=
∂L

∂Ẑi

[
(σ2 + ϵ)−

1
2

]
+

∂L

∂σ2

[
2

N
(Zi − µ)

]
+

∂L

∂µ

[
1

N

]
(113)

In summary, we have derived the following quantities required in the forward and backward computation for
BatchNorm:

Forward

µj =
1

N

N∑
i=1

Zij j = 1, ..., C (114)

σ2
j =

1

N

N∑
i=1

(Zij − µj)
2 j = 1, ..., C (115)

Ẑi =
Zi − µ√
σ2 + ϵ

i = 1, ..., N (116)

Z̃ = W ⊙ Ẑ + b ∈ RN×C (117)

35

µj and σ2
j refer to the jth element of µ and σ2. Zi refers to the ith sample. Zij refers to the element at the

ith row and jth column of Z.

Backward

∂L

∂Ẑ
=

∂L

∂Z̃

∂Z̃

∂Ẑ
=

∂L

∂Z̃
⊙W (118)(

∂L

∂b

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂β

)
ij

=

N∑
i=1

(
∂L

∂Z̃

)
ij

j = 1, ..., C (119)

(
∂L

∂W

)
j

=

N∑
i=1

(
∂L

∂Z̃

∂Z̃

∂W

)
ij

=

N∑
i=1

(
∂L

∂Z̃
⊙ Ẑ

)
ij

j = 1, ..., C (120)

(
∂L

∂σ2

)
j

=

N∑
i=1

(
∂L

∂Ẑ

∂Ẑ

∂σ2

)
ij

j = 1, ..., C (121)

Inference

E[Z] = α ∗ E[Z] + (1− α) ∗ µ (122)

V ar[Z] = α ∗ V ar[Z] + (1− α) ∗ σ2 (123)

We cannot calculate the mean and variance during inference, hence we need to maintain an estimate of
the mean and variance to use when calculating the norm of Z (Ẑ) at test time. You need to calculate the
running average at training time, because you really want to find an estimate for the overall covariate shifts
over the entire data. Running averages give you an estimate of the overall covariate shifts. At test time
you typically have only one test instance, so if you use the test data itself to compute means and variances,
you’ll wipe the data out (mean will be itself, var will be inf). Thus, you use the global values (obtained as
running averages) from the training data at test time. The running mean is defined as E[Z] and the running
variance is defined as V ar[Z] above.

36

	 Introduction
	 Installation
	Setup and Submission
	Scoring
	 Activation Functions [5 points]
	 Sigmoid [mytorch.nn.Sigmoid]
	 Sigmoid Forward Equation
	 Sigmoid Forward Example
	 Sigmoid Backward Equation

	 Tanh [mytorch.nn.Tanh]
	 Tanh Forward Equation
	 Tanh Forward Example
	 Tanh Backward Equation

	 ReLU [mytorch.nn.ReLU]
	 ReLU Forward Equation
	ReLU Forward Example
	 ReLU Backward Equation

	 Loss Functions [5 points]
	 MSE Loss [mytorch.nn.MSELoss]
	 MSE Loss Forward Equation
	 MSE Loss Forward Example
	 MSE Loss Backward Equation

	 Cross-Entropy Loss [mytorch.nn.CrossEntropyLoss]
	 Cross-Entropy Loss Forward Equation
	 Cross-Entropy Loss Forward Example
	 Cross-Entropy Loss Backward Equation

	 Neural Network Layers [15 points]
	 Linear Layer [mytorch.nn.Linear]
	 Linear Layer Forward Equation
	 Linear Layer Forward Example
	 Linear Layer Backward Equations

	 Optimizers [mytorch.optim.SGD] [10 points]
	 SGD Equation (Without Momentum)
	 SGD Equations (With Momentum)
	Testing SGD Equations

	 Neural Network Models [45 points]
	 MLP (Hidden Layers = 0) [mytorch.models.MLP0] [10 points]
	 MLP Forward Equations (Hidden Layers = 0)
	 MLP Backward Equations (Hidden Layers = 0)

	 MLP (Hidden Layers = 1) [mytorch.models.MLP1] [15 points]
	 MLP Forward Equations (Hidden Layers = 1)
	 MLP Backward Equations (Hidden Layers = 1)

	 MLP (Hidden Layers = 4) [mytorch.models.MLP4] [20 points]
	 MLP Forward Equations (Hidden Layers = 4)
	 MLP Backward Equations (Hidden Layers = 4)

	 Regularization [20 points]
	 Batch Normalization [mytorch.nn.BatchNorm1d]
	 Batch Normalization Forward Equations
	 Batch Normalization Inference Equations
	 Batch Normalization Backward Equations

	Batch Normalization

