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Code Walkthrough

Code & Images from:
https://nlp.seas.harvard.edu/2018/04/03/attention.html 
https://princeton-nlp.github.io/cos484/readings/the-annotated-transformer.pdf

Highly recommended!

https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://princeton-nlp.github.io/cos484/readings/the-annotated-transformer.pdf












Common Questions



Transformer Self-Attention
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Multi-head Attention

● A single key, query, value matrix combination defines one 
attention head
○ Multiple KQVs define multiple attention heads
○ Results from all attention heads are concatenated as the final output

● Multiple attention heads allows the model to simultaneously attend to 
the same input sequence in different ways

● Heads are only differentiated by different random initialization of their 
underlying matrices
○ Attention heads can collapse into attending similar things

https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/2010.11929.pdf

Attention Maps



Positional Encodings

● Without positional encoding, the model won’t be able to distinguish the same token on 
different positions. Remember, a Transformer processes the entire input context 
parallelly.

● Naive ways of positional encodings do not work
○ Raw index of words: the magnitude of embedding increases over timestep and can dominate 

the resulting embedding
○ Fraction of length of input sentences: word at the same index in different-lengthed sentences 

will have different embeddings
● Frequency-based Positional Encoding

○ At each time t, you get a positional vector that is the same dimension as the word embedding 
itself. This vector is added to the word embedding.

○ P(t + T) = M(T) P(t). The relationship between P(t+T) and P(t) does NOT change with t.
○ The series is chaotic: it has a cyclic orbit, but it never exactly repeats



Positional Embeddings

● Positional encodings are fixed functions. Positional embeddings are learned.

https://theaisummer.com/positional-embeddings/

Cosine Similarity of different positional embeddings/encodings



Benefits of Eliminating Recurrence

✅
● Massively improved parallelism
● Less restrictions on informations available for enrichment at each timestep

❌

● Vanishing/exploding gradient
● Bottleneck



RNN vs Transformer: Memory

● LSTM has pretty good memory. According to a study 
(https://arxiv.org/pdf/1805.04623), it can remember 200 tokens of context on average 
and sharply distinguish 50 nearby tokens.

● Transformers use a very large context (384 tokens for BERT) in a sliding-window 
manner. As such, past information is available explicitly.
○ The attention matrices themselves can also be thought of as memory



RNN vs Transformer: Time Series Prediction

From 
https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/

● We found RNN to be very difficult to train even after we’ve added LSTM (long/short 
memory). I believe that the main reason for our challenge was the model’s inability to 
decide which information to save or discard when the input stream grew larger.

● RNN was not parallelizable and so training took significantly longer compared to CNN, 
which is based on aggregating the scores of independent learning paths and thus can 
be easily parallelized. 

● The use of transformer architecture with attention mechanism enables the network to 
detect similar sequences, even though the specific image representations may be 
somewhat different. This in turn helps the models learn faster and generalize features 
better.

https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/


Masked Self-Attention Decoder

● Decoder is sequential.  Each word is produced using previously decoded words as input
● When decoding at timestep t, the decoder should only attend to the t words that was 

already decoded
● In practice, we mask the attention score of timestep t + 1 and later to be 0, or mask the 

attention energy (attention score before applying SoftMax) to be -inf
● Full encoder context is always available



Transformer-based 
Models



Transformer variants

Generally, the Transformer architecture can be used in three different ways

● Encoder-Decoder: The full Original Transformer architecture is used. This is typically 
used in sequence-to-sequence modeling tasks like machine translation

● Encoder only: Only the encoder is used and the outputs are utilized as a representation 
for the input sequence. This is usually used for classification or sequence labeling 
problems.

● Decoder only: Only the decoder is used, and the encoder-decoder cross-attention 
module is also removed. It can be used for sequence generation, such as language 
modeling.

From https://arxiv.org/pdf/2106.04554.pdf



Encoder only models

● Bert
● RoBERTa
● BigBird
● etc…



Encoder Only

Bert

Self-supervised pretraining

with masked language modelling



Decoder only models

These models rely on the decoder part of the original transformer and use an attention 
mask so that at each position, the model can only look at the tokens before the 
attention heads.

GPT models are one of the most famous ones.





Encoder-Decoder

● Vanilla Transformer
● Bart
● T5
● etc…





Vision Transformers

● ViT
● Swin Transformer
● ViViT
● Image Transformer
● etc…





Great variety of Transformer variants

There is a great variety of transformers model for different modalities such as: Text, images, 
Audio, Multimodal. Depending on the tasks, many architectures have been proposed for 
various tasks like text classification, question answering, image classification, object 
detection, speech recognition, visual question answering, etc…

Many pretrained transformer based models are available here: 
https://huggingface.co/models

https://huggingface.co/models


Q & A


