11785 IDL Recitation 2
Network Optimization

Spring 2022
Rucha Khopkar, Urvil Kenia

Objective
Tricks for optimizing deep learning models which should be helpful for homework part 2’s, project, etc.

Topics

e Data Manipulation
e Model Tuning
® Ensembles

Data Manipulation

® Necessity of data
e Data Augmentation
e Data Normalization

Necessity of ‘quality’ data

It's obvious how important data is for deep learning. But we need clean large datasets for obtaining
high accuracies especially for tasks such as machine translation, sentiment analysis, etc.

The amount of data required also depends on the dimensionality of the data. The higher the
dimensionality, the higher is the amount of data needed. Data collected can also often be noisy,
unannotated, or downright unusable. There are various pre-processing techniques you can use to

obtain desired datasets.

arane kM o [N BN 0
automobile EE'E"HE.
e ekl NES ¥ EEE
« HEGHSEEEs P
o MRS SRS
« AE<SHsDAL S
o [N D O O N B
e SEREEORERER
we SR .
moc ol T A N R S S SR R

CIFAR-10

0

4

2

3

Lf

7

MNIST

Spectrograms

* 2-dim representation of audio signal

Raw Audio Sigmal

Data Augmentation

® Sometimes, it is not possible to obtain the amount of data required. In such cases, we can use
data augmentation techniques to generate more data and it also makes the model more
generalizable.
® You can use image augmentation techniques such as flipping, rotating, etc. and also frequency
original useful for all HWs).

original

ra

Ref: https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

Data Normalization

Datasets obtained may have different scales for different features. In such cases, we scale the data
which leads to faster convergence. It is also helpful when data is collected under varying conditions

such as lighting in an image, gain in speech data, etc.
Types of normalization techniques:

® Z-score normalization (standardization)
® Min-max scaling original data zero-centered data normalized data

e Standard scaling

.

Model Tuning

Choosing a Model
Learning Rate
Weight Initialization
Optimizer

Choosing a Model

® There are tons of models available for most deep learning tasks. HW2P2 alone can be done using
any one of the 15+ models such as Resnet, Alexnet, Mobilenet, etc.

e The best way to choose models is to read papers, DL blogs, Piazza (only for this course) and
understand the intricacies and relative performance for your task.

e Deeper and wider models tend to generally perform better (more parameters, duh!) but they can
cause overfitting. Most of the remaining slides are dedicated to solving the overfitting problem.

If I've learned anything from my
studies of Deep Learning, it's that
one can solve most problems by

Y Y Y just adding more layers
& a o

" . o o a 4 o o
R e C L p ® Q a
a " s * 5 gy o v &

a® » a
> > >
X X

X
Underfitting Just right! overfitting

Learning Rate

® LR is one of the most important hyperparameters while training models. It dictates the weight
updates and hence affects performance the most.
® You can experiment with different learning rates (also depends on the optimizer you select) as

well as use a LR scheduler.
e The LR scheduler effectively changes the LR across epochs based on a function or a fixed
schedule. Some students also change the LR manually (but that is not easy).

Too low Just right Too high

b " | h > ,

/’ / | e

e >
PV ol -
o | 0 @
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point “behaviors

Ref for LR schedulers: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html

Weight Initialization

e Another important trick to improve your performance is using weight initialization for your
hidden layers. This results in faster convergence as well as finding better minima.

® There are a number of initializations you can try, ex. Xavier, Kaiming, Uniform, Gaussian, etc.
Depending on the type of activation function (ReLU, Sigmoid, etc.) and hidden layer (linear,
CNN, RNN, etc.) the initialization strategy would vary.

e [nitializations also sometimes help resolve the issue of vanishing or exploding gradients.

e Note: PyTorch uses some initialization techniques for all of its layers, read them before applying
your own initialization strategies.

Ref: http://proceedings.mir.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d92ed0b5899

10

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899

Optimizer

Stochastic Gradient Descent (SGD) is one of
the first and most heavily used optimizers.
But now, there are many other optimizers
such as Nesterov Accelerated Gradient
(NAG), Adam, AdamW, Rmsprop, etc.
Generally, Adam converges faster in most
cases whereas SGD might converge slower
but can find a better minima.

The parameters for SGD need to be finely
tuned to achieve higher performance.
There is a suggested approach of initially
using Adam and then switching to SGD:
https://arxiv.org/abs/1712.07628.

—

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

T rri

11

https://arxiv.org/abs/1712.07628

Models Tuning

4. Regularization

Overfitting is a modeling error that occurs when a fusion is too closely fit to a limited set of data points.

AValues . aValues 0 aValues -
0 . L
- v e 8 LI nos e
" .. e o o Ao ."9. o« 'l »
.... ,». » . t‘c. .._"‘ l !,‘q v
. *%e .. ofe .‘ s !'L
. L * N v | |\ \
. .o.. ‘..- .1.?....0 ‘_7,,."‘.. P
Time Time Timc:e
Underfitted Good Fit/Robust Overfitted
s y=a+wex +wyx?+

y=a+ wyx

y=a+wyx +wx? + wyx

wox3 + wax® + o+ wypatt

Training Vs. Test Set Error

Optrmum Model Complexity

Test Set

Model Complexity

-

Models Tuning

* L1/L2 Regularization

It involves adding an extra element to the loss function, which punishes our model for being too complex or, in simple

words, for using too high values in the weight matrix (usually, lambda is 1e-4 or 1e-5)

L1 Norm Loss = Error(y,7) + AXN, [w;|
L2 Norm Loss = Error(y,y) + 7\2?’:1 wiz

A =0.001 A=0.01 :

Data term only:
all #, non-zero

Regularized estimate:
some #, may be zero

A 4

AN

Models Tuning
* Dropout

For each training batch, you turn off some neurons with a probability.

Motivation: With unlimited computation, the best way to “regularize” a fixed-sized model to average the predictions of

all possible settings of the parameters. Practically, it’s computationally prohibitive. So dropout provides a method to

use O(n) neural network to approximate O(2") different architectures with shared O(n?) parameters.

Implementation:

* Train Time: Mask some neuron with a probability

* Test Time: No parameters masked at test time but need to multiply with the dropout probability to approximate the
expected output

* Hyper-parameter: dropout rate, usually from 0.1 to 0.5

PW
Present with Always
probability p present

(a) At training time (b) At test time

Models Tuning

* Dropout

Two problems resolved:

* Overfitting: disable some outputs so that the layers cannot overfit the data. Or we can see dropout is like
generating many models, have different “overfitting” effect but some of them are opposite. We average them and
can prevent overfitting in general

* Generalization: let model abandon some specific features with probability and decrease co-adaptation between

the neurons

AN AKX A EASA 2 A A A L

With dropout

i 0

§ | B
\\Y A

,J-{:_"'{‘My. . \

[200000 400000 600000 800000 1000000
Number of weight updates

a) Standard Neural Net (b) After applying dropout.

Models Tuning

e« Batch-Norm

Wildly successful and simple technique for accelerating training and learning better neural network representations

Motivation: The general motivation of BatchNorm is the non-stationary of unit activity during training that requires
downstream units to adapt to a non-stationary input distribution. This co-adaptation problem, which the paper

authors refer to as ICS (internal covariate shift), significantly slows learning.

ICS: In neural networks, the output of the first layer feeds into the second layer, the output of the second layer feeds
into the third, and so on. When the parameters of a layer change, so does the distribution of inputs to subsequent
layers.

These shifts in input distributions can be problematic for neural networks, especially deep neural networks that could

have a large number of layers.

Models Tuning

Batch normalized network
B Nﬂ-r

..lll..l‘...ll...'

Standard Network q L m
T P
i=1

m

£
* B Y @B 23 (X - u)’
1
W Loss " i=1
i‘i — X‘__UB

VoR +e€

L

N

Loss

LR & R Y
EEARRRREERRR R R NERNENHN,]

Learning Rate=0.1 Learning Rate=0.5
100 2I
g g
g 3 Yi ¢ %+
o ©
- T
O —— Standard 0 —— Standard
g —— Standard + BatchNorm & —— Standard + BatchNorm
o o
£ £
< =
e B
= [
0 Sk 10k 15k

Steps Steps

Models Tuning

e Batch-Norm

Benefits:
a) BN enables higher training rate: Normally, large learning rates may increase the scale of layer parameters, which
then amplify the gradient during back propagation and lead to the model explosion. However, with Batch

Normalization, BP through a layer is unaffected by the scale of its parameters

OBN((aW)u) O0BN(Wu
BN(Wu) = BN((aW)u) (au) = a(u)
a) Faster Convergence.
b) BN regularizes the models: a training example is seen in conjunction with other examples in the mini-batch, and
the training network no longer producing deterministic values for a given training example. In our experiments, we

found this effect to be advantageousto the generalization of the network.

Models Tuning

* Early Stop e Gradient Clipping
Literally, just stop the training when you see the Once the gradient is over the threshold, clip and keep
validation score decreases, where overfitting begins them to the threshold value. It is important for RNN.

Without clipping With clipping
. > .
4 :
~_ ABOUT,TO OVER-FIT ™ -
e 5
—— "] \ n "\';’
w V

imgfiip.com

J(w,b)

Efficient Training

Mixed Precision Training (Pytorch > 1.6.0)

combine FP32 and FP16 during training while achieving same

accuracy as FP32 training

Why?
faster training (2-3x)
less memory usage
larger batch size, larger model, larger input

How? ...and loss of information?
FP32 master copy of weights

Weights ——->|
€ F16 FWD [Z%s Activations
Activations —|

float2half

PE—

F16 <2°_Weights
Activation Grad BWDACY |6 o8
Activation Grad

Weight Grad __ F16 BWD-Weight %— Activations
Activation Grad
32 . 32 .
Master-Weights (F32) Weight Update Updated Master-Weights

Figure 1: Mixed precision training iteration for a layer.

loss scaling

Become zero in FP16 FP16 denorms

FP16 Representable range

32
16 —_—
8

4

1

V4

s

16

32

64

1128

1256

vs12

0 75:60-45-40-38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 5 42 0 2 4 6 8 10 1218 16

Percentage of all activation gradient values

log,(magnitude)

Speak in Pytorch....

Creates model and optimizer in default precision
model = Net().cuda()
optimizer = optim.SGD(model.parameters(), ...)

once at the beginning of training.
scaler = GradScaler() |OSS Scaler

for epoch in epochs:
for input, target in data:

optimizer.zero_grad()

Runs the forward pass with autocasting.
autocast fp32 to fp16
output = model(input)
loss = loss_fn(output, target)

Scales loss. Calls backward() on scaled loss to create scaled gradients.
Backward passes under autocast are not recommended.
Backward ops run in the same dtype autocast chose for corresponding forward ops.

scaler.scale(loss) .backward() | SCQ |e |OSS

scaler.step() first unscale} the gradients of the optimizer's assigned params.
If these gradients do not c§ntain infs or NaNs, optimizer.step() is then called,
otherwise, optimizer.step()|is skipped.

scaler.step(optimizer) Sklp nans and infs

Updates the scale for next Jteration.
scaler.update()

Ref

[1] Mixed Precision Paper
[2] Pytorch Mixed Precision Tutorial

Efficient Training

* Want to train the model even faster? with more than 1 gpu :)

e DataParallel

model = nn.DataParallel(model)

* single-process multi-thread parallelism

* split batch data on each card

* replicate forward pass on each card

* but...GPU memory is imbalanced across cards

¢ DistributedDataParallel

* multi-process parallelism

* broadcast happens at DDP construction rather than each forward

def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355

initialize the process group

dist.init_process_group(“gloo", rank=rank, world_size=world_size)

def cleanup():
dist.destroy_process_group()

def demo_basic(rank, world_size):

print(£"Running basic DDP example on rank {rank}.")
setup(rank, world_size)

create model and move it to GPU with id rank
model = ToyModel().to(rank)
ddp_model = DDP(model, device_ids=[rank])

loss_£fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()

outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(rank)
loss_fn(outputs, labels).backward()
optimizer.step()

cleanup()

def run_demo(demo_£n, world_size):

mp. spawn (demo_£n,
args=(world_size,),
nprocs=world_size,
join=True)

Ref
[1] Pytorch Parallel Tutorial

Ensemble

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In
contrast to ordinary machine learning approaches which try to learn one hypothesis from training data, ensemble

methods try to construct a set of hypotheses and combine them to use.

Bagging: considers homogeneous weak learners,

Bagging Boosting
[

learns them independently from each other in parallel
and combines them following some kind of
deterministic averaging process. Decrease variance.
Boosting: considers homogeneous weak learners,

learns them sequentially in a very adaptative way

(a base model depends on the previous ones) and
Parallel Qe uenﬁa[combines them following a deterministic strategy.
q

Decrease bias.

Ensembles

Bootstrap aggregating or
Bagging is a ensemble
meta-algorithm combining
predictions from multiple-

decision trees through a influence o
majority voting mechanism
A
S -
Jr/‘ Ba . "« -
| N mng

Decision
Trees

A graphical
representation of
possible solutions to
a decision based on
certain conditions

Refer to paper. Author

| 4 Boosting
% ‘t;_‘ ’.:;‘";:

X/
Bagging-based algorithm
where only a subset of
features are selected at
random to build a forest

or collection of decision
trees

Develop of ensembles

Models are built sequentially
by minimizing the errors from
previous models while
increasing (or boosting)
igh-performing

models

Optimized Gradient Boosting
algorithm through parallel
processing, tree-pruning,
handling missing values and
regularization to avoid

overfitting/bias
éo)
éiem
Qstin

Gradient Boostin
employs gradien
descent algorithm to
minimize errors in
sequential models

Ensembles

* Bagging: Voting-based algorithm. Train different models in isolation and use average voting or weighted voting

method to get resulit.

[X JoX T] test data
00000
Fold 1 Fold2 Fold3 Fold 4 — — 00000 — classifier 1 — ..OQ
Cross o Y L
| | | | | Run 1 " validation eoo00 o
Tor Model1
| | | | | Run 2 Sampling
® 20000 ¥
| | | | | Run3 00?0 00000
'YX X L — 00000 — classifier 2 —
09000 e ensemble
| | | | | Run 4 00000 — 0cecee = classifier
Q0 Model2
.. o0 QO Bagging Classifier
training set test set ' _ seine
training sample : : l
00000
0000 predictions
— 00000 — classifier n —
00000
Model3

bootstrap samples

Bagging Classifier Process Flow

Ensembles

XGBoost as a boosting method is a category of ensemble methods. Rather than training all of the models
in isolation of one another, boosting trains models in succession, with each new model being trained to
correct the errors made by the previous ones. Models are added sequentially until no further

improvements can be made, that's why it is called additive model.

Original Train Dataset

Updated Weights in dataset

Updated Weights in dataset

XGBoost Classifier 1

XGBoost Classifier 2

4

XGBoost Classifier 3

5+

XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions

Final Classifier

Refer to paper. Author Tiangi Chen joined CMU in 2020!

Ensembles

* XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions

Pseudocode:
Algorithin 2: Exact Greedy Algorithin for Split Finding
@ Inltlallze fO ()C), Imput: 7, instance setofcurrentnode
_ . Input: d, featuredimension
2 Form =1to M: im0
a. Compute the 15t derivative and 2nd G= Lo H=Zierh,
.]] For k = I to m do:
derivative of loss function over each sample; G,=0, H, =0

For j insorted(l, by xy) do:

b. Recursively use “Greedy Algorithm for Split Go= Gy +gy Hy= Hy+hy

Finding” to generate the base learner; Gp=G—G,, Hp=H—H,
i 6t , 6k _ 6%
c. Add the base learner to models. SCOte = MAX(SCOre, & 45 Havs e

End

End

Output: Split withmax score

Refer to paper. Author Tiangi Chen joined CMU in 2020!

More Hints for your Homework

Always keep this in mind: “Practice make perfect!” Besides the theory behind different algorithms and different
tricks, Deep Learning is kind like an experimental topic. If you wonder what tricks can achieve best results or
which parameters suit the model well, just give it try!

Remember to shuffle the data set: if not, your performance will be pretty bad.

Note: Do not shuffle the test set.

Choose learning rate wisely: too large LR will not converge while too small can hardly get rid of local optima

Choose batch size: according to the property of SGD, smaller batch size leads to better convergence rate. But
smaller batch size would deteriorate the performance of BN layer and running speed. In general, different batch

size wouldn’t cause too much difference. Larger batch size tends to have better performance but will occupy

more memory in GPU. (if you have cuda out of memory error, try smaller bs)

Try self-ensemble: average the parameters of your model at different training epochs.
Tricky things come when using BatchNorm and Dropout together. (Paper)

Don’t forget optimize.zero_grad()

Use LR_scheduler in the iterations loop.

Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory

More and More Hints for your Homework

* Dataloader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory = True (colab will
gradually restrict the num_workers from 8 to 4 to 2 and then only 1) :~(

* Tryto use torch.backends.cudnn.benchmark = True to autotune cudnn kernel choice (this code can be put at the beginning)

* Max out the batch size for each GPU to amortize compute.

* Do not forget bias = False in weight layers before BatchNorms, it is a noop that bloats model.

* Tryto use for p in model.parameters(): p.grad = None instead of model.zero_grad()

* Try every tricks or models that you can find in the papers or post!

« Always Remember to save your model state after each iterations!!!!!11111111HHI
(Use model.state_dict()) ot
= =
Before DDL, get an Forget to save model

extremely %’ood ;esult, and Colab collapses

'

§\ 34 74\/{..

S

I will reach the fop in leaderboard!

I am unbeatable!!!! Lette aure e

Thanks to Jacob Li (TAin 20Fall) for some hints!

Other course students: Wow, you are taking 11785! You
must be good at Deep Learning!
Me

Good Luck!

There are so many tricks or
architectures waiting for
you to explore and use
them in your Kaggle
Competitions. Just try your

best and reach to the top!

