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Objective

Tricks for optimizing deep learning models which should be helpful for homework part 2’s, project, etc.

Topics

● Data Manipulation
● Model Tuning
● Ensembles
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Data Manipulation
● Necessity of data
● Data Augmentation
● Data Normalization
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Necessity of ‘quality’ data

It’s obvious how important data is for deep learning.  But we need clean large datasets for obtaining 
high accuracies especially for tasks such as machine translation, sentiment analysis,  etc.

The amount of data required also depends on the dimensionality of the data. The higher the 
dimensionality, the higher is the amount of data needed. Data collected can also often be noisy, 
unannotated, or downright unusable. There are various pre-processing techniques you can use to 
obtain desired datasets.

CIFAR-10 MNIST 4



Data Augmentation

● Sometimes, it is not possible to obtain the amount of data required. In such cases, we can use 
data augmentation techniques to generate more data and it also makes the model more 
generalizable.

● You can use image augmentation techniques such as flipping, rotating, etc. and also frequency 
and time masking for speech data (useful for all HWs).original

noisyoriginal

hflip

vflip rotation

Ref: https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html 5

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html


Data Normalization

Datasets obtained may have different scales for different features. In such cases, we scale the data 
which leads to faster convergence. It is also helpful when data is collected under varying conditions 
such as lighting in an image, gain in speech data, etc.

Types of normalization techniques:

● Z-score normalization (standardization)
● Min-max scaling
● Standard scaling
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Model Tuning
● Choosing a Model
● Learning Rate
● Weight Initialization
● Optimizer
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Choosing a Model

8

● There are tons of models available for most deep learning tasks. HW2P2 alone can be done using 
any one of the 15+ models such as Resnet, Alexnet, Mobilenet, etc.

● The best way to choose models is to read papers, DL blogs, Piazza (only for this course) and 
understand the intricacies and relative performance for your task.

● Deeper and wider models tend to generally perform better (more parameters, duh!) but they can 
cause overfitting. Most of the remaining slides are dedicated to solving the overfitting problem.



Learning Rate

● LR is one of the most important hyperparameters while training models. It dictates the weight 
updates and hence affects performance the most.

● You can experiment with different learning rates (also depends on the optimizer you select) as 
well as use a LR scheduler.

● The LR scheduler effectively changes the LR across epochs based on a function or a fixed 
schedule. Some students also change the LR manually (but that is not easy).

9Ref for LR schedulers: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Weight Initialization

● Another important trick to improve your performance is using weight initialization for your 
hidden layers. This results in faster convergence as well as finding better minima.

● There are a number of initializations you can try, ex. Xavier, Kaiming, Uniform, Gaussian, etc. 
Depending on the type of activation function (ReLU, Sigmoid, etc.) and  hidden layer (linear, 
CNN, RNN, etc.) the initialization strategy would vary.

● Initializations also sometimes help resolve the issue of vanishing or exploding gradients.
● Note: PyTorch uses some initialization techniques for all of its layers, read them before applying 

your own initialization strategies.
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Ref: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899


Optimizer

● Stochastic Gradient Descent (SGD) is one of 
the first and most heavily used optimizers. 
But now, there are many other optimizers 
such as Nesterov Accelerated Gradient 
(NAG), Adam, AdamW, Rmsprop, etc.

● Generally, Adam converges faster in most 
cases whereas SGD might converge slower 
but can find a better minima.

● The parameters for SGD need to be finely 
tuned to achieve higher performance.

● There is a suggested approach of initially 
using Adam and then switching to SGD: 
https://arxiv.org/abs/1712.07628.
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Models Tuning

4. Regularization

Overfitting is a modeling error that occurs when a fusion is too closely fit to a limited set of data points.



Models Tuning

• L1/L2 Regularization

It involves adding an extra element to the loss function, which punishes our model for being too complex or, in simple 

words, for using too high values in the weight matrix (usually, lambda is 1e-4 or 1e-5)



Models Tuning

• Dropout



Models Tuning

• Dropout

Two problems resolved:

• Overfitting: disable some outputs so that the layers cannot overfit the data. Or we can see dropout is like 

generating many models, have different “overfitting” effect but some of them are opposite. We average them and 

can prevent overfitting in general

• Generalization: let model abandon some specific features with probability and decrease co-adaptation between 

the neurons



Models Tuning

• Batch-Norm

Wildly successful and simple technique for accelerating training and learning better neural network representations

Motivation: The general motivation of BatchNorm is the non-stationary of unit activity during training that requires 

downstream units to adapt to a non-stationary input distribution. This co-adaptation problem, which the paper 

authors refer to as ICS (internal covariate shift), significantly slows learning.

ICS: In neural networks, the output of the first layer feeds into the second layer, the output of the second layer feeds 

into the third, and so on. When the parameters of a layer change, so does the distribution of inputs to subsequent 

layers.

These shifts in input distributions can be problematic for neural networks, especially deep neural networks that could 

have a large number of layers.



Models Tuning



Models Tuning

• Batch-Norm



Models Tuning

• Early Stop

Literally, just stop the training when you see the 

validation score decreases, where overfitting begins

• Gradient Clipping

Once the gradient is over the threshold, clip and keep 

them to the threshold value. It is important for RNN.



Efficient Training
• Mixed Precision Training (Pytorch > 1.6.0)

• combine FP32 and FP16 during training while achieving same 
accuracy as FP32 training

• Why?
• faster training (2-3x)
• less memory usage
• larger batch size, larger model, larger input

• How? …and loss of information?
• FP32 master copy of weights

• loss scaling

• Speak in Pytorch….

loss scaler

autocast fp32 to fp16

scale loss

skip nans and infs

• Ref
• [1] Mixed Precision Paper
• [2] Pytorch Mixed Precision Tutorial



Efficient Training
• Want to train the model even faster? with more than 1 gpu :)

• DataParallel

• single-process multi-thread parallelism
• split batch data on each card
• replicate forward pass on each card
• but…GPU memory is imbalanced across cards

• DistributedDataParallel
• multi-process parallelism
• broadcast happens at DDP construction rather than each forward

• Ref
• [1] Pytorch Parallel Tutorial



Ensemble
Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In 

contrast to ordinary machine learning approaches which try to learn one hypothesis from training data, ensemble 

methods try to construct a set of hypotheses and combine them to use.

Bagging: considers homogeneous weak learners, 

learns them independently from each other in parallel 

and combines them following some kind of 

deterministic averaging process. Decrease variance.

Boosting: considers homogeneous weak learners, 

learns them sequentially in a very adaptative way

(a base model depends on the previous ones) and 

combines them following a deterministic strategy.

Decrease bias.



Ensembles

Refer to paper. Author

Develop of ensembles



Ensembles
• Bagging: Voting-based algorithm. Train different models in isolation and use average voting or weighted voting 

method to get result.

Model1

Model2

Model3



Ensembles
• XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions 

XGBoost as a boosting method is a category of ensemble methods. Rather than training all of the models 

in isolation of one another, boosting trains models in succession, with each new model being trained to 

correct the errors made by the previous ones. Models are added sequentially until no further 

improvements can be made, that’s why it is called additive model.

Refer to paper. Author Tianqi Chen joined CMU in 2020!



Ensembles

• XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions

Refer to paper. Author Tianqi Chen joined CMU in 2020!



More Hints for your Homework
• Always keep this in mind: “Practice make perfect!” Besides the theory behind different algorithms and different 

tricks, Deep Learning is kind like an experimental topic. If you wonder what tricks can achieve best results or 

which parameters suit the model well, just give it try!

• Remember to shuffle the data set: if not, your performance will be pretty bad.

• Note: Do not shuffle the test set.

• Choose learning rate wisely: too large LR will not converge while too small can hardly get rid of local optima
• Choose batch size: according to the property of SGD, smaller batch size leads to better convergence rate. But 

smaller batch size would deteriorate the performance of BN layer and running speed. In general, different batch 

size wouldn’t cause too much difference. Larger batch size tends to have better performance but will occupy

more memory in GPU. (if you have cuda out of memory error, try smaller bs)

• Try self-ensemble: average the parameters of your model at different training epochs.

• Tricky things come when using BatchNorm and Dropout together. (Paper)

• Don’t forget optimize.zero_grad()

• Use LR_scheduler in the iterations loop.

• Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory



More and More Hints for your Homework
• DataLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory = True (colab will 

gradually restrict the num_workers from 8 to 4 to 2 and then only 1) :-(

• Try to use torch.backends.cudnn.benchmark = True to autotune cudnn kernel choice （this code can be put at the beginning)

• Max out the batch size for each GPU to amortize compute.

• Do not forget bias = False in weight layers before BatchNorms, it is a noop that bloats model.

• Try to use for p in model.parameters(): p.grad = None instead of model.zero_grad()

• Try every tricks or models that you can find in the papers or post!

• Always Remember to save your model state after each iterations!!!!!!!!!!!!!!!! 

(Use model.state_dict())

Thanks to Jacob Li (TA in 20Fall) for some hints!



Good Luck!

There are so many tricks or 

architectures waiting for 

you to explore and use 

them in your Kaggle 

Competitions. Just try your 

best and reach to the top!


