Generative Adversarial
Networks

Lecture 2

Introduction To Deep Learning (11-785 / 685 / 485) Spring 2022

Fuyu Tang, Roshan Ram, Ameya Mahabaleshwarkar

Overview

GANs Quick Recap

GAN Training

Issues with GAN Training

Remedies for GAN Training Issues
GAN Architectures & Recent Progress

Discriminative models learn the conditional probability P(Y | X)

Generative models understand the joint probability P(X, Y) = P(X|Y) . P(Y)
o GANs model P(X), the distribution of training data
o Once sufficiently trained, GANs can generate new data from P(X)

Generative networks are used to generate samples from an unlabeled

distribution P(X) given samples X, . .., X . For example:

o Generate images given sample images
o Generate music given sample music
o Generate realistic text given sample corpus

http://www.youtube.com/watch?v=p5U4NgVGAwg

GAN Framework

Training set V Discriminator
d / N Real
al o 1‘
—> {
Random / — E— | Fake
n0|§e %]
Generator ﬁake image

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

GAN Training

Description Notation
Training samples @

Latent noise vector z
Discriminator D(x;04)
Generator G(z;0,)
Probability distribution of real data P
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(2)
Discriminator output for fake data D(G(2))

Discriminator output for real data

D(zx)

GAN Training

Description Notation Discriminator objective:

Training samples T

Tatent Mot Goctor z e maximize output for real data D(z)
g:‘:;zr:ramr g((:”g;‘)) e minimize output for fake data D(G(z))
Probability distribution of real data Pata OR.

Probability distribution of fake data By

Probability distribution of latent noise vector | P, e maximize output for real data D(z)
Generator output - generated fake data G(z)

Discriminator output for fake data D(G(z)) e maximize output for 1 — D(G(z2))
Discriminator output for real data D(z)

Generator objective:

e minimize output for fake data 1 — D(G(z))

Since log is a monotonically increasing function:
Discriminator objective:

e maximize output for real data log (D(z))

e maximize output for log (1 — D(G(z)))
Generator objective:

e minimize output for fake data log (1 — D(G(2)))

GAN Training

Description Notation
Training samples i
Latent noise vector z
Discriminator D(z;04)
Generator G(z;0,)
Probability distribution of real data Piata
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(z)
Discriminator output for fake data D(G(z))
Discriminator output for real data D(x)

For one data point:

Discriminator objective:

e maxp(log (D(z)) +log (1 — D(G(z2))))
Generator objective:

e ming(log (1 — D(G(2))))

For the entire distribution:

Discriminator objective:

e maxp B, p,.,.x) 108 D(x)] + E.p.(z)[1 — log D(G(2))]
Generator objective:

e ming E,.p,(z)[1 — log D(G(2))]

Which stays same after adding a constant,

e ming E;..p,,,.(x)[l0g D(z)] + E..p,(z)[1 — log D(G(2))]

GAN Training

GAN objective:
e ming maxp E;p,.,.(2) 108 D(z)] + E.np,(z)[1 — log D(G(2))]

e ming maxp Pyata(z)(log D(z)) + Py(z)(1 — log D(x))

Description Notation
Training samples i
Latent noise vector z
Discriminator D(z;04)
Generator G(z;0y,)
Probability distribution of real data Pt
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(z)
Discriminator output for fake data D(G(z))
Discriminator output for real data D(x)

Jointly optimizing min-max is complicated, so we first find the current best

D by taking the derivative of GAN objective:

Paata(x) Py(z) _
= dl)t(z) & l—JD(;t) =0

o P I’datu(z)
. D('L) T Paata(@)+P,(z)

Substituting this value in the GAN objective for Generator loss:

® EyrPyora(x)llog 1(,.‘&@—] +E,up, () [log TrprteteZ] —2.1og 2

3 ata (Z)+Py(x)) ’j(ldnta(x)+19(z))

Kullback-Leibler(KL) and Jensen-Shannon(JS) divergences are given by:

o KL(P1||P2) = Ezp,(x)llog 5]
o JSD(P\||P;) = AKL(P||Bt2) + LK L(P,|| Btz

This makes the Generator loss:

o 2.JSD(Pugtal|Py) — 2.l0g2

GAN Training Algorithm (ian Goodfeliow et al.)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(!), ..., (™} from noise prior p,(z).
e Sample minibatch of m examples {m(l), v ,m("‘)} from data generating distribution
Paaa ().

e Update the discriminator by ascending its stochastic gradient:

m

ng% Z [logD (:z:(i)) +log (1 -D (G (z(i))))] .

end for
e Sample minibatch of m noise samples {z(*), ..., 2™} from noise prior py(z).
e Update the generator by descending its stochastic gradient:

v, ;nglog (1-p(c (=0))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Qualitative Effects of JS-Divergence

e The KL-divergence DL(p, q) penalizes the generator if it misses some modes of images: the penalty is high where
p(x) > 0 but g(x) — 0. Nevertheless, it is acceptable that some images do not look real. The penalty is low when p(x)
— 0 but gq(x) > 0. (Poorer quality but more diverse samples)

0.4 1 |
i—~n
0.3 =9 o754

\
\ — DulPliQ)
I\ — oalllp)

0.2 4

0.1+

0.0 1

T T Tt
-4-3-2-10 1 2 3 4 -4-3-2-10 1 2 3 4

e JS-divergence is symmetrical. Unlike KL-divergence, it will penalize poor images badly, but can allow less diversity

0.4]
— P 0.08- — Ds(PIIQ!

0.3 S|

0.06
0.2

0.04
0.1 0.02 1
0.0 0.00 A

-4-3-2-10 1 2 3 4 -4-3-2-10 1 2 3 4

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

GANSs Training Issues

1. Mode Collapse
2. Vanishing Gradients
3. Convergence and Oscillation

GANs Training Issues - Mode Collapse

e If a generator produces an especially plausible output, the generator may

learn to produce only that output

e The Generator gets stuck at a point where it only produces a limited variety
of samples or one sample repeatedly during or after training

e Each iteration of Generator over-optimizes for a particular Discriminator, and
the Discriminator never manages to learn its way out of the trap

(¥ LA
Ny = .

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

GANs Training Issues - Vanishing Gradients

e |If the Discriminator is too good, then the Generator training can fail due to vanishing
gradients. An optimal Discriminator doesn't provide enough information for the
Generator to make progress

e Below image shows how gradients will vanish if the distribution of generated images (p)
is too different than the distribution of real images (g7, g2, g3)

30
q

20
4

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

GANSs Training Issues - Convergence and Oscillation

GAN training is based on a zero-sum, non-cooperative, minmax game. In
short, if one wins the other loses

In game theory, the GAN model converges when the discriminator and the
generator reach a Nash equilibrium. This is the optimal point for the GAN
objective

Simplified example: Consider two player A and B which control the value of x
and y respectively. Player A wants to maximize the value xy while B wants to
minimize it

GANSs Training Issues - Convergence and Oscillation

e \We update the parameter x and y based on the gradient of the functions -

f(x) = xy, f(y) = -xy
df/fox =y and df/dy = —x

X — x—a-yandy — y+a-x (ais learning rate)

GANSs Training Issues - Convergence and Oscillation

e We update the parameter x and y based on the gradient of the functions f(x) = xy, f(y) = -xy
dflox =y and df/dy = —x
X — Xx—a-y and y — y+a-x (ais learning rate)

e The Nash equilibrium is x =y = 0. This is the only state where the action of your opponent does not matter.
It is the only state that any opponents’ actions will not change the game outcome

0 20 40 60 80 100
Iterations

https://medium.com/deep-math-machine-learning-ai/ch-14-general-adversarial-networks-gans-with-math-1318faf46b43

Feature Matching

Statistics of generated images should match statistics of real images.
Discriminator produces multidimensional output, a “statistic” of data.
Generator trained to minimize L2 between real and generated data.
Discriminator trained to maximize L2 between real and generated data.
Goal: matching features in real images

|ExD(X) — EzD(G(2))|I3

IEx f(X) — Ezf(G(2))ll3

Minibatch Discrimination

Discriminator can look at multiple inputs at once
and decide if those inputs come from the real or
generated distribution.

- GANSs frequently collapse to a single point

- Discriminator needs to differentiate between
two distributions

- Easier task if looking at multiple samples

Append the similarity between the image and
other images in the same batch in one of the
dense layers in the discriminator to classify
whether this image is real or generated.

Mi)

Mo

Mn

Historical averaging

Dampen oscillations by encouraging updates to converge to a mean.

- GANs frequently create a cycle or experience oscillations
- Add a term to reduce oscillations that encourage the current parameters to
be near a moving average of the parameters

1 e P
0—229,-2

One-sided Label Smoothing

Don’t over-penalize generated images

- Label smoothing is a common and easy technique that improves performance
across many domains

- Sigmoid tries hard to saturate to 0 or 1 but can never quite reach that goal

- Provide targets that are epsilon or 1- epsilon so the sigmoid doesn’t saturate
and overtrain

- Experimentally, smooth the real targets but do not smooth the generated
targets when training the discriminator.

Virtual Batch Normalization

Use batch normalization to accelerate convergence

- Batch normalization accelerates convergence
- However, hard to apply in adversarial setting
- Collect statistics on fixed batch of real data and use to normalize other data.

Recap

Jenson-Shanon

KL Divergence Divergence

Special Case:

P(X)

KL-Divergence:

Let B be the distance between the two peaks of the distribution.

1
foz0 ELPIQ) = 1log(5) = oo

f6=0, KL(P|Q)=1llog(;) =0

Not differentiable w.rt © p

X
I
o

_ Pp+Pg

2

1 1
JS(Pp||Pg) = §K/—(PD||m) o EK/—(PGP")

Jenson-Shanon-Divergence:)

Let B be the distance between the two peaks of the distribution.

1 1
f0#0, JSD(P||Q) = 0.5 % (llog(O—j) + llog(ﬁ)) = log2
f0=0, JSD(P|Q)=05+ (llog(%) + llog(%)) —0

Constantto 0 - a0

Wasserstein Distance: we..p,)= inf Eq,o|llz—yll]

~yeII(P,,Pg)

e Minimum cost of turning one pile of dirt into another pile of dirt, when both

distributions are treated as pile of dirt.
e The total 2 mass x mean distance required to transform one distribution to

another

i .'é.,u Red points, Blue points represent two different distributions.
‘ ©

Wasserstein Distance:

Let B be the distance between the two peaks of the distribution.

W(PQ) =10 |

Differentialble w.r.t 6
P(X)

WGAN W(Pr,Pg) = _inf B gy | Iz —yll]

~yeIl(P,,Pg)

/ Kantorovich-Rubinstein duality

minmax E |D(z)| - E [D(%))]

D should be a 1-Lipschitz function: | f(x1) — f(x2)] < K|x; — x3|

A function is K-Lipschitz if its gradients are at most K everywhere.

— W(Pr, Pg) is continuous everywhere, and differentiable almost everywhere
Weight clipping

—— Weight clipping (c = 0.001)

E) [
I I I 8 10 Weight clipping (¢ = 0.01)
Welght Cllpplng go —— Weight clipping (c = 0.1)
. . < | = Gradient penalt
Restrict weights between [-c, C] g | — ; -
:
- —10
=]
2
T
Uﬁ —20
—0.02 —-0.01 0.00 0.01 0.02 13 10 - 1 1

Weights

Discriminator layer

Gradient Penalty

L= E D@~ E, D@+ E [(IVeD@)l2- 1.

-

Original critic loss Our gradient penalty

Gradient penalty introduces a softer constraint on gradients

Gradient penalty

- more stable training
- requires very little hyper-parameter tuning

-0.50 -0.25 0.00 0.25 0.50
Weights

Wasserstein JSD KL

06
08

05

06

04

04

02

02
01

Figure 1: These plots show p(Pg,Py) as a function of 6 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

Differentiable Not Differentiable Not Differentiable

Meaningful Loss (8 # 0) Constant (O # 0) Not symmetric

GAN Architectures

There are many variations of GANs for modeling different tasks.
This is not meant to be exhaustive but a sample of the
possibilities.

m GAN

m Conditional GAN
m LapGAN
m Recurrent Adversarial Network
m Categorical GAN !
m InfoGAN

m AAE

m BiGAN

m CycleGAN

Iyt

GAN

Unqualified, “GAN" typically refers to a simple model of P(X)
[GPM™14]. This is a vanilla GAN. Think unsupervised generation
of unlabeled images, video, etc.

Conditional GANs

A conditional GAN models P(X | Y). For example, generate
samples of MNIST conditioned on the digit you are generating.

[IMO14]. The model is constructed by adding the labels Y as an
input to both generator and discriminator.

m(gn max V(D,G) =ExlogD(X,Y)+EzlogD(G(Z,Y),Y)

Conditional GAN Architecture
V— . B

e0000
\
00008 ©0000)

(o 0 S OOO@ |
(XXXX)

\2[00000] [OOOOO])

Conditional GAN Results

O
>
™
>
x
g
o
T~
T
¥
o~
*
=
x>
I’

v ¥y

29979%7999971

Q
'

9 w2799

ure 2: Generated MNIST digits, each row conditioned on one label

Fig

LapGAN

A Laplacian GAN is constructed of a chain of conditional GANs, to
generate progressively larger images. A GAN generates small,
blurry images. A conditional GAN generates larger images

conditioned on the smaller image, repeated until you reach the
desired size. [DCSF15]

LapGAN Architecture

Real/Generated?

Real/Generated?

BiGANs

A Bi-Directional Generative Adversarial Network trains an
encoder/decoder pair in an elegant fashion. The discriminator tries
to tell the difference between pairs of real data and encoded real

data from data generated from prior samples and prior samples.
[DKD16]

V(D, E, G) = Ex log D(X, E(X)) + Ez log(1 — D(G(Z), Z))

This method simultaneously trains the pair and does not require
any assumptions about the distance metric in either the hidden or
output spaces.

BiGAN Architecture

features data
 SE-a——

—
z G >—»

»(G(z).z

[2>—(w)
o(X, E(x) M
(e —<e.

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

Y

A

O ®

BiGAN Architecture

BiGAN Architecture

Generated Images

Latent Codes

| | Generator
H EE B

Discriminator

Generated
Latent Codes

Dataset Images

Real Image,
Fake Code

OR

Real Code,
Fake Image?

CycleGAN

CycleGAN trains a pair of conditional GANSs to perform
image-to-image translation [ZPIE17].

m GAN A trained to convert from X to Y
m GAN B trained to convert from Y to X

m Additional “cycle-consistency” losses ||Y — A(B(Y))||; and
IX = B(AX))I

CycleGAN Results

Zebras T Horses

horse — zebra

CycleGAN Architecture

Start

Input_A

Discriminator A

|

Decision [0,1]

Cyclic_A

Generator
A2B

Generator
B2A

”

Decision [0,1]

| Discriminator B

CycleGAN Results

Monet Z_> Photos

CycleGAN Results

Summer Z_ Winter

CycleGAN Lesson

m There is no paired dataset of zebras and horses
m So no easy discriminative method to train zebras from horses

m But using GANs, can train distributions to match

Neural Style Transfer Results

Neural Style Transfer Results

Style Transfer with CycleGAN

Cezanne

I S < "
a LT, «S——

i -5

E'.H."‘.NHIM -

”H!&#M

4| i - i
— S M M M M M e e e e e
i T = i e

Neural Style Transfer vs CycleGAN

Neural Style Transfer

Need a content and style image

Specific & small number of images

More control
https://reiinakano.com/arbitrary-image-stylization-tfjs/

CycleGAN

o Just need 2 domains of images. No need for specific content or style images
o Many similar pictures
o Specificity of images doesn’t really matter

o O O O

https://reiinakano.com/arbitrary-image-stylization-tfjs/

[ADDITIONAL] Kaggle: CycleGAN for Monet Paintings

https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-painti
ngs

I'm Something of a Painter Myself

Introduction to CycleGAN - Monet paintings

https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-paintings
https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-paintings

~ Just Think'an Extra
couple of Seconds
before Assuming
Something is Real

