
Generative Adversarial 
Networks

Lecture 2

Introduction To Deep Learning (11-785 / 685 / 485) Spring 2022

Fuyu Tang, Roshan Ram, Ameya Mahabaleshwarkar



● GANs Quick Recap
● GAN Training
● Issues with GAN Training
● Remedies for GAN Training Issues
● GAN Architectures & Recent Progress

Overview



● Discriminative models learn the conditional probability P(Y | X)
● Generative models understand the joint probability P(X, Y) = P(X | Y) . P(Y)

○ GANs model P(X), the distribution of training data
○ Once sufficiently trained, GANs can generate new data from P(X)

● Generative networks are used to generate samples from an unlabeled 
distribution P(X) given samples X1, . . . , Xn. For example:

○ Generate images given sample images
○ Generate music given sample music
○ Generate realistic text given sample corpus



http://www.youtube.com/watch?v=p5U4NgVGAwg


GAN Framework

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394



GAN Training
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GAN Training



GAN Training Algorithm (Ian Goodfellow et al.)



Qualitative Effects of JS-Divergence

● The KL-divergence DL(p, q) penalizes the generator if it misses some modes of images: the penalty is high where 
p(x) > 0 but q(x) → 0. Nevertheless, it is acceptable that some images do not look real. The penalty is low when p(x) 
→ 0 but q(x) > 0. (Poorer quality but more diverse samples)

● JS-divergence is symmetrical. Unlike KL-divergence, it will penalize poor images badly, but can allow less diversity

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b



GANs Training Issues

1. Mode Collapse
2. Vanishing Gradients
3. Convergence and Oscillation



GANs Training Issues - Mode Collapse

● If a generator produces an especially plausible output, the generator may 
learn to produce only that output

● The Generator gets stuck at a point where it only produces a limited variety 
of samples or one sample repeatedly during or after training

● Each iteration of Generator over-optimizes for a particular Discriminator, and 
the Discriminator never manages to learn its way out of the trap

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b



GANs Training Issues - Vanishing Gradients

● If the Discriminator is too good, then the Generator training can fail due to vanishing 
gradients. An optimal Discriminator doesn't provide enough information for the 
Generator to make progress

● Below image shows how gradients will vanish if the distribution of generated images (p) 
is too different than the distribution of real images (q1, q2, q3)

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b



GANs Training Issues - Convergence and Oscillation
● GAN training is based on a zero-sum, non-cooperative, minmax game. In 

short, if one wins the other loses
● In game theory, the GAN model converges when the discriminator and the 

generator reach a Nash equilibrium. This is the optimal point for the GAN 
objective

● Simplified example: Consider two player A and B which control the value of x 
and y respectively. Player A wants to maximize the value xy while B wants to 
minimize it



GANs Training Issues - Convergence and Oscillation

● We update the parameter x and y based on the gradient of the functions -

f(x) = xy, f(y) = -xy

∂f/∂x = y and ∂f/∂y = −x

x → x−α⋅y and y → y+α⋅x ( α is learning rate )



GANs Training Issues - Convergence and Oscillation

● We update the parameter x and y based on the gradient of the functions f(x) = xy, f(y) = -xy

∂f/∂x = y and ∂f/∂y = −x

x → x−α⋅y and y → y+α⋅x ( α is learning rate)

● The Nash equilibrium is x = y = 0. This is the only state where the action of your opponent does not matter. 
It is the only state that any opponents’ actions will not change the game outcome

https://medium.com/deep-math-machine-learning-ai/ch-14-general-adversarial-networks-gans-with-math-1318faf46b43



Feature Matching

Statistics of generated images should match statistics of real images.

Discriminator produces multidimensional output, a “statistic” of data.

Generator trained to minimize L2 between real and generated data.

Discriminator trained to maximize L2 between real and generated data.

Goal: matching features in real images    

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



Minibatch Discrimination

Discriminator can look at multiple inputs at once 
and decide if those inputs come from the real or 
generated distribution.

- GANs frequently collapse to a single point
- Discriminator needs to differentiate between 

two distributions
- Easier task if looking at multiple samples

Append the similarity between the image and 
other images in the same batch in one of the 
dense layers in the discriminator to classify 
whether this image is real or generated. 

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



Historical averaging

Dampen oscillations by encouraging updates to converge to a mean.

- GANs frequently create a cycle or experience oscillations
- Add a term to reduce oscillations that encourage the current parameters to 

be near a moving average of the parameters

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



One-sided Label Smoothing

Don’t over-penalize generated images

- Label smoothing is a common and easy technique that improves performance 
across many domains

- Sigmoid tries hard to saturate to 0 or 1 but can never quite reach that goal

- Provide targets that are epsilon or 1- epsilon so the sigmoid doesn’t saturate 
and overtrain

   -   Experimentally, smooth the real targets but do not smooth the generated 
targets when training the discriminator.

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



Virtual Batch Normalization

Use batch normalization to accelerate convergence

- Batch normalization accelerates convergence
- However, hard to apply in adversarial setting
- Collect statistics on fixed batch of real data and use to normalize other data.

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



Recap

KL Divergence Jenson-Shanon   
   Divergence



Special Case:



KL-Divergence:

Let θ be the distance between the two peaks of the distribution.

If θ ≠ 0, 

If θ = 0, 

Not differentiable w.r.t θ



Jenson-Shanon-Divergence:

Let θ be the distance between the two peaks of the distribution.

If θ ≠ 0, 

If θ = 0, 

Constant to θ



Wasserstein Distance:

● Minimum cost of turning one pile of dirt into another pile of dirt, when both 
distributions are treated as pile of dirt.

● The total Σ mass × mean distance required to transform one distribution to 
another

Red points, Blue points represent two different distributions.



Wasserstein Distance:

Let θ be the distance between the two peaks of the distribution.

W(P,Q) = | θ |
 

Differentialble w.r.t θ



WGAN

D should be a 1-Lipschitz function:

  A function is K-Lipschitz if its gradients are at most K everywhere.
→ W(Pr, Pg) is continuous everywhere, and differentiable almost everywhere

 

  Restrict weights between [-c, c]

Weight Clipping

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 
“Wasserstein generative adversarial networks.” 
International conference on machine learning. PMLR, 
2017.



Gradient Penalty

Gradient penalty introduces a softer constraint on gradients

- more stable training 
- requires very little hyper-parameter tuning

Gulrajani, Ishaan, et al. “Improved training of wasserstein 
gans.” arXiv preprint arXiv:1704.00028 (2017).



Wasserstein JSD KL

Differentiable

Meaningful Loss (θ ≠ 0)

Not Differentiable

Constant (θ ≠ 0)

Not Differentiable

Not symmetric



GAN Architectures



GAN



Conditional GANs



Conditional GAN Architecture



Conditional GAN Results



LapGAN



LapGAN Architecture



BiGANs



BiGAN Architecture



BiGAN Architecture



CycleGAN



CycleGAN Results



CycleGAN Architecture



CycleGAN Results



CycleGAN Results



CycleGAN Lesson



Neural Style Transfer Results



Neural Style Transfer Results



Style Transfer with CycleGAN



Neural Style Transfer vs CycleGAN

● Neural Style Transfer
○ Need a content and style image
○ Specific & small number of images
○ More control
○ https://reiinakano.com/arbitrary-image-stylization-tfjs/

● CycleGAN
○ Just need 2 domains of images. No need for specific content or style images
○ Many similar pictures
○ Specificity of images doesn’t really matter

https://reiinakano.com/arbitrary-image-stylization-tfjs/


[ADDITIONAL] Kaggle: CycleGAN for Monet Paintings

https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-painti
ngs

https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-paintings
https://www.kaggle.com/code/dimitreoliveira/introduction-to-cyclegan-monet-paintings



