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Outline

• Quick recap
• Back propagation through a CNN
• Modifications:  Transposition, scaling, rotation 

and deformation invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, 

or “does this recording include HELLO”  are best performed by 
scanning for the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or layer makes the final decision
– Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a 
convnet

• For 1-D scan along time, it is called a Time-delay neural network
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Recap: The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of 
“convolutional” and optional “pooling” layers

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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Recap: A convolutional layer

• The computation of each output map has two stages
– Computing an affine map, by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates point-wise on the output of the convolution

Previous
layer
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Recap: Convolution

• Each affine output map is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer
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ିଵ

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏(𝑛)
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Caveat : 0-based indexing
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Recap: Convolution
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layer
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Recap: Convolution
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Convolution layer: A more explicit illustration

• Input maps are convolved with several filters to generate the affine maps 
– Each filter consists of a set of square patterns of weights, with one set for each map in 𝑌(𝑙 − 1,∗)

– We get one affine map per filter

• A point-wise activation function is applied to each map in to produce the 
activation maps 19

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

Affine maps Activation maps



Pseudocode: Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl tensor 

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor
z(l,j,x,y) = W(l,j).segment + b(l,j)#tensor prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )

20Pseudocode has 1-based indexing



Poll 1
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Poll 1
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Select all true statements about a convolution layer.

 The number of “channels” in any filter equals the number of input maps 
(output maps from the previous layer)

 The number of “channels” in any filter equals the number of output maps 
(affine maps output by the layer)

 The number of filters equals the number of input maps
 The number of filters equals the number of output maps



Pooling

• Convolutional (and activation) layers are followed intermittently by 
“pooling” layers
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output
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Recall: Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input 
with a “max-pooling filter”

3 1

4 6
Max

6
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Recap: Pooling and downsampling layer

• Input maps are operated on individually 
by pooling operations to produce the pooled maps 

25

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

pooling

Image assumes pooling
with window of size 2x2

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷ିଵ)



Recap: Max Pooling layer at layer 

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,x,y) = Y(l-1,j,pidx(l,j,m,n))

26

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Recall: Mean pooling

• Mean pooling computes the mean of the 
window of values
– As opposed to the max of max pooling

3 1

4 6

Mean 3.5
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Recap: Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

u(l,j,x,y) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

28

a) Performed separately for every map (j)



Recap: Resampling

• We can also proportionately decrease or 
increase the size of the maps by dropping or 
inserting zeros
– Downsampling:  Drop S-1 rows/columns between 

rows/columns
• Reduces the size of the maps by S on each side

– Upsampling: Insert S-1 rows/columns of zeros 
between adjacent entries

• Increases the size of the map by S on each side

29



The Downsampling Layer

• A downsampling layer simply “drops” of rows and columns 
for every map in the layer
– Effectively reducing the size of the map by factor S in every direction

30

D/S



The Upsampling Layer

• A upsampling (or dilation) layer simply introduces 
rows and columns for every map in the layer
– Effectively increasing the size of the map by factor in every 

direction

• Used explicitly to increase the map size by a uniform factor
31



Downsampling in practice

• In practice, the downsampling is combined 
with the layers just before it by performing the 
operations with a stride > 1
– Could be convolutional or pooling layers

32

Convolution with D/S

D/SPooling

Pooling with D/S

D/SConvolution



Convolution with downsampling
The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

m = 1

for x = 1:S:Wl-1-Kl+1 

n = 1

for y = 1:S:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,m,n) = W(l).segment #tensor inner prod.

Y(l,:,m,n) = activation(z(l,:,m,n))

n++

m++

Y = softmax( {Y(L,:,:,:)} )
33

STRIDE

Downsampled indices



Max Pooling with Downsampling

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
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Mean Pooling with Downsampling

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

35



The Upsampling Layer

• A upsampling layer is generally followed by a 
CNN layer
– It is not useful to follow it by a pooling layer

– It is also not useful as the final layer of a CNN
36

Up
Sample Convolution

Convolution with upsampling



The Upsampling Layer

• Upsampling layers followed by a convolutional layer are 
also often viewed as convolving with a fractional stride
– Upsampling by factor is the same as striding by factor 

• Also called “transpose convolutions” for reasons we won’t 
get into here

37

Convolution
with stride 

0.5



* with resampling

• Although the resampling operation is generally merged 
with convolutions or pooling (by changing their stride) in 
the forward pass in practical implementations…

• …It is more convenient to think of the two as separate 
operations in the backward pass
– More on this later…

38



Recap: A CNN, end-to-end

• Typical image classification task
– Assuming maxpooling..

• Input: RBG images
– Will assume color to be generic

39



Recap: A CNN, end-to-end

ଵ
ଵ

ଶ
ଵ

1

4

• Several convolutional and pooling layers. 
• The output of the last layer is “flattened” and passed through an MLP

convolve convolve

40

య

ଷ

3



1

భ

ଵ

 2 3 3

3

2

మ

ଶ



Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

య

ଷ

3
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ଵ
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learnable learnable
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Recap: Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a loss:
– Define a divergence between the desired output and true 

output of the network in response to any input
– The loss aggregates the divergences of the training set

• Network parameters are trained to minimize the loss
– Through variants of gradient descent
– Gradients are computed through backpropagation
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Defining the loss

• The loss for a single instance 43

ଵ
ଵ

ଶ
ଵ

1

4

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

య

ଷ
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Recap: Problem Setup
• Given a training set of input-output pairs 

• The divergence on the ith instance is 
• The aggregate Loss

• Minimize w.r.t 
– Using gradient descent

44



Recap: The derivative

• Computing the derivative

45

Total derivative:

Total training loss:



Recap: The derivative

• Computing the derivative

46

Total derivative:

Total training loss:



Backpropagation: Final flat layers

• For each training instance: First, a forward pass through the net
• Then the backpropagation of the derivative of the divergence

• Backpropagation continues in the usual manner until the computation of 
the derivative of the divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the “unrolling” of the maps from 

the final convolutional layer

()

భ

ଵ

1 మ

ଶ

2

3

Conventional backprop until here
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Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolution layers

– The pooling layers

భ

ଵ

1
మ

ଶ

2

3

Need adjustments here

()
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Backpropagating through the convolution

• Convolution layers:
• We already have the derivative w.r.t (all the elements of) activation map 

– Having backpropagated it from the divergence

• We must backpropagate it through the activation to compute the derivative w.r.t.
and further back to compute the derivative w.r.t the filters and 49

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

()()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

(ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

Affine maps Activation maps



Backprop:  Pooling layer

• Pooling layers:
• We already have the derivative w.r.t 

– Having backpropagated it from the divergence

• We must compute the derivative w.r.t 50

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷ିଵ)

pooling

()(ିଵ)



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination maps from 
the activation output maps 

• How to compute the derivative w.r.t. and given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. given derivatives w.r.t.

51
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Backpropagating through the activation

• Forward computation: The activation maps are obtained by point-wise 
application of the activation function to the affine maps

– The affine map entries have already been computed via 
convolutions over the previous layer 54

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)



Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of 
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 55

()()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination maps from 
the activation output maps 

• How to compute the derivative w.r.t. and given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. given derivatives w.r.t.
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Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.
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Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.
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Backpropagating through the affine map

• We already have the derivative w.r.t 
– Having backpropagated it past 

• We must compute the derivative w.r.t 59

Filter1 Filter 𝑙

()()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)



Backpropagating through the affine map

• We already have the derivative w.r.t 
– Having backpropagated it past 

• We must compute the derivative w.r.t 60

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

()()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

(ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝒘𝒍(𝟏, 𝟏)

𝒘𝒍(𝟐, 𝟏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝟐, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter 

• influences the divergence through all maps61

Filter(n)

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)





 ିଵ

𝑍(𝑙, 𝑛)



Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter 

• influences the divergence through all maps62

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝒎, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)



Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter 

• influences the divergence through all maps63

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter 

• influences the divergence through all maps64

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency diagram for a single map

• Each map influences through the th “plane” of the 
th filter 

• influences the divergence through all maps
65

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)



Dependency diagram for a single map

 ିଵ,  ,



 ିଵ,

• Need to compute  ିଵ, , the derivative of w.r.t. to 
complete the computation of the formula 66

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)



Dependency diagram for a single map

67

 ିଵ,  ,



 ିଵ,

• Need to compute  ିଵ, , the derivative of w.r.t. to 
complete the computation of the formula

Consider a specific 

()(ିଵ)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷)

𝑍(𝑙, 𝑛)



BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t. 

68



BP: Convolutional layer

3 44
4 32
3 42

• Each affects several 
terms
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BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps

N = No. of filters
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BP: Convolutional layer

N = No. of filters

71
ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ

Summing over all Z maps



BP: Convolutional layer

N = No. of filters

72
ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ

Summing over all Z maps
What is this?



How a single influences 

• Compute how each in influences 
various locations of 

73



Assuming indexing
begins at 0



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 





How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 
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• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 

82



• Note: The coordinates of and sum to the coordinates 
of 



How a single influences 

• Note: The coordinates of and 
sum to the coordinates of 
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How a single influences 
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BP: Convolutional layer

ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ

Summing over all Z maps
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BP: Convolutional layer

ᇱ ᇱ 
ᇱ ᇱ

௫ᇱ,௬ᇱ

Summing over all Z maps

86



Poll 2

• @886, 887

87



Poll 2

88

In order to compute the derivative at a single affine element Y(l,m,x,y),  we must consider the 
contributions of every position of every affine map at the next layer: True or false 

 True 
 False 

 

The derivative for an single affine element Y(l,m,x,y) will require summing over every position of every Z 
map in the next layer: True of false 

 True 
 False 



Computing derivative for 

• The derivatives for every element of every 
map in by direct implementation of 
the formula:

• But this is actually a convolution!
– Let’s see how

89



How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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How a single influences 
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• The derivative at is the sum of component-wise product 
of the filter elements and the elements of the derivative at 



How a single influences 

100

• The derivative at is the sum of component-wise 
product of the filter elements and the elements of the derivative at 



𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



Derivative at from a single map

101
Contribution of the entire th affine map 



𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦
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Derivative at from a single map



103

Derivative at from a single map



Zero pad with K-1 rows
and cols on every side

flip
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map





111

Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map



Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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BP: Convolutional layer

ᇱ ᇱ 
ᇱ ᇱ

௫ᇱ,௬ᇱ

Summing over all Z maps
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The actual convolutions

• The  affine maps are produced by convolving with  filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

130

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷)



The actual convolutions

• The  affine maps are produced by convolving with  filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

131

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷)



132

 In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍
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flip

In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip
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𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ
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flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

151





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

152





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

153





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

154





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



155

flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

156





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



flip

157





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



158

flip





𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
=  

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ



Computing the derivative for 

• This is just a convolution of the zero-padded  
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side

159

𝑤(𝑚, 𝑛, 𝑥, 𝑦)

𝑤(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)



The size of the Y-derivative map

• We continue to compute elements for the derivative map as long as the 
(flipped) filter has at least one element in the (unpadded) derivative Zmap
– I.e. so long as the derivative is non-zero

• The size of the derivative map will be 
– and are heidght and width of the Zmap

• This will be the size of the actual map that was originally convolved
160



The size of the Y-derivative map

• If the map was zero-padded in the forward 
pass, the derivative map will be the size of the 
zero-padded map
– The zero padding regions must be deleted before 

further backprop
161



Poll 3

• @888

162



Poll 3

163

Select all statements that are true about how to compute the derivative of the 
divergence w.r.t lth layer activation maps by backpropagation

 To compute the derivative w.r.t. the  mth activation map of the lth convolutional 
layer,  we must select the mth “planes” of all the (l+1)th layer filters

 The selected filter planes must be flipped left-right and up-down
 They must convolve the derivative (maps) for the (l+1)th layer affine values
 The output of the convolution must be flipped back left-right and up-down



Overall algorithm for computing 
derivatives w.r.t.

• Given the derivatives 

• Compute derivatives using:

164

Can be computed by convolution with flipped filter



Derivatives for a single layer : 
Vector notation

# The weight W(l,m)is a 3D Dl-1xKlxKl
# Assuming dz has already been obtained via backprop

dzpad = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad

for j = 1:Dl
for i = 1:Dl-1 # Transpose and flip

Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(l,i,j,:,:))) 

dzpad(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) #center map

end

for j = 1:Dl-1
for x = 1:Wl-1

for y = 1:Hl-1
segment = dzpad(:, x:x+Kl-1, y:y+Kl-1) #3D tensor

dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.

165



Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.

166



The derivatives for the weights

167

• Each weight affects several 
– Consider the contribution of one filter components: 

(e.g. )



௫ᇱ,௬ᇱ









168

• Each affine output is computed from multiple input maps simultaneously
• Each weight  affects several 

Previous
layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

Convolution: the contribution of 
a single weight
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• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

Convolution: the contribution of 
a single weight



170

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight



Previous
layer

173

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight



Previous
layer

174

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight



Previous
layer

176

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑧 𝑙, 𝑛, 2,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight



178

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑧 𝑙, 𝑛, 2,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 

Convolution: the contribution of 
a single weight
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Convolution: the contribution of 
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑧 𝑙, 𝑛, 2,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏(𝑛)

ଶ

௬ᇲୀ

ଶ

௫ᇲୀ

• Each weight affects several 
– Consider the contribution of one filter components: e.g. 



Previous
layer

180

Convolution: the contribution of 
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑧 𝑙, 𝑛, 2,1 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑧 𝑙, 𝑛, 2,2 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯
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• The final divergence is influenced by every 
• The derivative of the divergence w.r.t must sum over all 

terms it influences

The derivative for a single weight



Div

• Each filter component affects several 
• The derivative of each w.r.t.  is given by

 
௫,௬
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• The final divergence is influenced by every 
• The derivative of the divergence w.r.t must sum over all 

terms it influences

The derivative for a single weight



Div

 
௫,௬

Already computed

• Each filter component affects several 
• The derivative of each w.r.t.  is given by
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• The final divergence is influenced by every 
• The derivative of the divergence w.r.t must sum over all 

terms it influences

The derivative for a single weight



Div

Already computed

 
௫,௬

• Each filter component affects several 
• The derivative of each w.r.t.  is given by
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• The final divergence is influenced by every 
• The derivative of the divergence w.r.t must sum over all 

terms it influences

The derivative for a single weight



Div


௫,௬

• Each filter component affects several 
• The derivative of each w.r.t.  is given by



But this too is a convolution

• The derivatives for all components of all filters 
can be computed directly from the above formula

• In fact, it is just a convolution

• How?

185


௫,௬





Recap: Convolution

• Forward computation: Each filter produces an 
affine map 186

Filter1 Filter 𝑙


ିଵ

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏(𝑛)

ଶ

ୀ

ଶ

ୀ



Recap: Convolution

• influences through 
187

Filter1


ିଵ

𝑧 𝑙, 𝑛, 𝑥, 𝑦 =    𝑤 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏(𝑛)

ଶ

ୀ

ଶ

ୀ



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 188







The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 189



𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 190

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 191

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 192

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 193

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 194

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 195

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 196

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 197

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= 

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚





The filter derivative

• The derivative of the th affine map convolves with 
every output map of the th layer, to get 
the derivative for , the th “plane” of the th filter

198

Filter(n)

ିଵ





 ିଵ



The filter derivative

199

Filter1

ିଵ

𝑑𝐷𝑖𝑣

𝑑𝑤 (𝑚, 𝑛, 𝑖, 𝑗)
= 

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)
𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗

௫,௬

=
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛)
⨂𝑦 𝑙 − 1, 𝑚

If was zero padded in the forward pass, it must be zero padded for backprop





 ିଵ



Poll 4

200



Poll 4

201

Select all statements that are true about how to compute the derivative of the 
divergence w.r.t lth layer filters using backpropagation

 The derivative for the mth plane of the nth filter is computed by convolving the 
mth input (l-1th) layer map with the nth output (lth) layer affine derivative map

 The output map must be flipped left-right/up-down before convolution



Derivatives for the filters at layer : 
Vector notation

# The weight W(l,j)is a 3D Dl-1xKlxKl
# Assuming that derivative maps have been upsampled
#    if stride > 1

# Also assuming y map has been zero-padded if this was
#    also done in the forward pass

# The width and height of the dz map are W and H

for n = 1:Dl
for x = 1:Kl

for y = 1:Kl
for m = 1:Dl-1

dw(l,m,n,x,y) = dz(l,n,:,:).       #dot product
y(l-1,m,x:x+H-1,y:y+W-1)  

202



Derivatives through a convolutional 
layer

• The entire process is simpler if we simply look at it through code
– Through the reapplication of two simple rules:

• For any computation of the form

– The loss derivative for z given the loss derivative of y is

’ ௭

• For any computation in the forward pass

– The backward computation to compute loss derivatives for the terms on the 
right, given loss derivatives to the left is

– Since this is “backpropgation”, all computations are reversed
203



CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1 

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
204

Switching to 1-based
indexing with appropriate 
adjustments



Backward layer 

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1 

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

205



Complete Backward (no pooling)
dY(L) = dDiv/dY(L)

for l = L:downto:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1 

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)
206



Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1 

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)207

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here



Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination 

maps from the activation output maps 

• How to compute the derivative w.r.t. and 
given derivatives w.r.t.

208



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination maps from 
the activation output maps 

• How to compute the derivative w.r.t. and given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. given derivatives w.r.t.

209



Max

210

Pooling

• Pooling “pools” groups of values to reduce 
jitter-sensitivity
– Scanning with a “pooling” filter

• The most common pooling is “Max” pooling



Max

211

Max Pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

∈ , ାିଵ , 

∈ ,ାିଵ

1 3

6 5
Max

6



Max pooling

Max
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• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

∈ , ାିଵ , 

∈ ,ାିଵ



Max pooling

Max
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• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

∈ , ାିଵ , 

∈ ,ାିଵ



Max pooling

Max
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• Max pooling selects the largest from a pool of elements
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Max pooling
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• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input
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Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

216
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Max Pooling layer at layer 

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,x,y) = y(l-1,j,pidx(l,j,x,y))
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a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Derivative of max pooling layer at 
layer 

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)
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a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent  overlapping windows 



Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input


ଶ
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Derivative of mean pooling

• The derivative of mean pooling is distributed over the 
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌



 
ଶ
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Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl  #Over the maps

for x = 1:Wl-1-Kl+1 #Kl = pooling kernel size

for y = 1:Hl-1-Kl+1

y(l,j,x,y) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))
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Derivative of mean pooling layer at 
layer 

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
for i = 1:Klpool

for j = 1:Klpool
dy(l-1,j,p,x+i,x+j) += (1/K2lpool)y(l,j,x,y)
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“+=“ because adjacent windows may overlap



Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, and 
every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the network
• Still missing one component… resampling

– Next class
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Pooling layers that operate over groups of outputs from the 
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back 
propagation
– Maxpooling layers must propagate derivatives only over the maximum 

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for 
the fact that the network is, in fact, a shared parameter network 224


