Deep Learning
Recurrent Networks:
Modelling Language

Recap: Story so far

* Vanilla recurrent nets are poor at memorization

— The memory behavior is dependent primarily on the
recurrent weights and hidden state activations

* Recurrent (and Deep) networks also suffer from a
“vanishing or exploding gradient” problem

— The gradient of the error at the output gets
concentrated into a small number of parameters in
the earlier layers, and goes to zero for others

— This too is a consequence of recurrent weights and
hidden-state acivations

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W

and linear activation h; = Wh;_;

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W

and linear activation ' hy = Wh;_4
h, = Wth,

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W

and linear activation ' hy = Wh;_4
h, = Wth,
— Eigen decomposing W = UAU™!

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W
and linear activation h; = Wh;_;
h, = Wth,
— Eigen decomposing W = UAU™!
hy = aquq + au, + azus + ..

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W
and linear activation h; = Wh;,_4
h, = Wth,
— Eigen decomposing W = UAU™!
hy = aquq + au, + azus + ..

he = a;Ajuy + aASu, +

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W
and linear activation h; = Wh;,_4
h, = Wth,
— Eigen decomposing W = UAU™!
hy = aquq + au, + azus + ..

he = a;Ajuy + aASu, +

, A, t /13 t
= A |aquy + a, /1—1 U, + as /11 Uz + ...

Recap: The vanishing memory -
the weights matrix edition

hO W’hl W= hzﬂ’ EEN _W’ht

* Response to asingle input at t = 0, with recurrent weight matrix W
and linear activation h; = Wh;,_4
h, = Wth,
— Eigen decomposing W = UAU™!
hy = aquq + au, + azus + ..

he = a;Ajuy + aASu, +

, A, t /13 t
= A |aquy + a, /1—1 U, + as /11 Uz + ...

hy =~ Aa;uy

Recap: The vanishing memory -
the weights matrix edition

14 w 14 14

hO =h1 =h2_> EEN _>ht

* Response to asingle input at t = 0, with recurrent weight matrix W

an The long-term memory only depends on the largest Eigen value

In the worst case it grows or shrinks as A}
— Eigen decomposing W = UAU™!
hy = aquq + au, + azus + ..
he = a;Ajuy + aASu, +

, A, t /13 t
= A |aquy + a, /1—1 U, + as /11 Uz + ...

hy =~ Aa;uy

10

Recap: The vanishing memory -
the weights matrix edition

14

’ i NN

hy W * hy W’ h,
| X '
Xo

aN The long-term memory only depends on the largest Eigen value

— Eige If the largest Eigenvalue is greater than 1, it blows up
If the largest Elgenvalue is Iess than 1, it quickly shrinks to O

A
= A <a1u1 + a, <—2
M

_>h't

14

A

Response to a single input at t = 0, with recurrent weight matrix W

In the worst case it grows or shrinks as A

[PN JR— —

Even if A, =

10 A

|T only 'remembers" Uy

t
> U, +a3(

h¢

~ Aajuy

A
M

_3)23 ;)

11

Recap: The vanishing memory -
the weights matrix edition

ho

14

T

Xo

[
»

h

14

X

:hz

14

> mmnm _’ht

14

A

* Response to asingle input at t = 0, with recurrent weight matrix W

aN The long-term memory only depends on the largest Eigen value

In the worst case it grows or shrinks as A

— Eige Tf the Iarges’r Elgenvalue is gr'ea’rer' than 1, it blows up

If the largest Elgenvalue is Iess than 1, it quickly shrinks to O

/

[PN JR— —

Even if A, =

1L A

|'r only ‘remembers"” Uy

1_

t \

What is "remembered"” isa func’rion of W and not particularly
related to hy or the initial input x, (from which h, is computed)

h¢

~ Aajuy

FOR LINEAR RECURRENT ACTIVATION

Recap: The vanishing memory -
the activation edition

W,b

W,b[|W.b[, |W.b

h h;

* Response to asingle input at t = 0, with recurrent weight matrix W
and nonlinear activation

hy = f(Whe—1 +b)

— For RelLU/Softplus | e

— Softplus

* For inputsin the linear region, h; 4~ — Rectifer
will grow or shrink with the largest
Eigenvalue of W

hy

o(x)

* Forinputs in the negative region,
the output will go to O

e Similar W dependent recurrence
for ELU etc. =

13

Recap: The vanishing memory -
the activation edition

W,b

W,b[|W.b[, |W.b

h h;

* Response to asingle input at t = 0, with recurrent weight matrix W
and nonlinear activation ‘

he = f(Whi—1 +b) =

— For general “saturating” activations

the final “remembered”
hidden state is just the solution to

hy

h = f(Wh + b)

— This is just a function of W and b
and ignores hg

14

Recap: The vanishing memory -
the activation edition

hO W’b= h]_ W’b= h2 W_’b’ EEE W_’b’ ht

* Response to asingle input at t = 0, with recurrent weight matrix W
and nonlinear activation

|
= fWhe_y +b) —=—

— For general “saturating” activations
the final “remembered”
hidden state is just the solution to

What is "remembered” is a function of W, b and the specific

activation, rather than the initial input x, (fr'om which h0 is compu‘red)

b-as

— This is just a function of W and b
and ignores hg

Recap 2: Exploding/Vanishing gradients

ﬁ....! iH'
‘ X

% * ‘!‘i 5‘1‘-‘ o ,.-r
e '\"
..x"{*;’f % ‘

" 4 . ey

‘c i- -‘S‘ ‘5‘ T] il !

‘ “‘t‘-‘F - #—f&

.-‘!'* t“‘\. -t:!-ii"-'\ T 3
(ﬁ&aﬂhﬁ LN L :‘ :ﬁ ¢ ﬁzﬁ* e’fﬁ;

E ‘{'ﬂ.'::;' . 2
~ _______::_::_

kaDlU — VD. VfN WN VfN—l' WN—l ka+1Wk+1

 The length of the loss gradient is modified by the Jacobians of the
activations and the singular values of the weights matrix
— Activations will always shrink (or at best maintain) the length of the gradient
— Singular values of weight matrices are largely < 1

* They will cause loss gradient to shrink in most, if not all directions

 This is also true for RNNs, which are just very deep networks
16

Parameters and activations are
problems

 Both, the memory retention of the network, and its
ability to learn to detect and remember patterns are
heavily dominated by weights/biases and activations

— Rather than what it is trying to “remember”

 Can we have a network that just “remembers”
arbitrarily long, to be recalled on demand?
— Not be directly dependent on vagaries of network

parameters, but rather on input-based determination of
whether it must be remembered

Enter — the constant error carousel

C(t+1 C(t+ 2 C(t+3
cet)) (>® (l@ (L@ LC(E+4)

o (t + 1)[o(t + 2)] o (t + 3)[o (t + 4)[

Time

v

D

t+1 t+2 t+3 th

e History is carried through uncompressed
— No weights, no nonlinearities

— Only scaling is through the o “gating” term that captures other
triggers

— E.g. “Have | seen Pattern2”?

Enter — the constant error carousel

h(t) h(t + 1) i(t +2) §(t +3)
co) C(t+1) C(t+2) C(t +3) ® Ce+ 4

o(t+ 1) o(t+ 2) o(t + 3) o(t+4)

» Time
* Actual non-linear work is done by other portions of the
network
— Neurons that compute the workable state from the memory

Enter — the constant error carousel

h(t) é@w 1 §t+2) §(t+3)
C 1 C 2 C 3
o & (t+)=>< (t+)=>< (t +3) e

8%
o(t+1) o(t +2) o(t +3) o(t + 4)
X(t+1) X(t+2) X(t+3) X(t+4)

» Time

 The gate 6 depends on current input, current
hidden state...

Enter — the constant error carousel

h(t) é@w 1 §t+2) §(t+3)
C 1 C 2 C 3
o & (t+)=>< (t+)=>< (t +3) e

"X
o(t+ 1) o(t+2) | o@t+3) o(t + 4)
Other / /
Wit x4+ 1) X(E+2) X(t+3) X(t + 4)

» Time

 The gate 6 depends on current input, current
hidden state... and other stuff...

Enter — the constant error carousel

h(t) n(t + 1) h(t + 2) h(t +3)
C(t+1) C(t+2) C(t +3)
C(t) {(X) (X (X (%) LC(t+4)
o(t + 1) o(t + 2) o(t +3) o(t + 4)
Other / /
St v+ 1) X(t+2) X(E+3) X(t + 4)
» Time

 The gate o depends on current input, current hidden
state... and other stuff...

* Including, obviously, what is currently in raw memory

22

Standard RNN

© ® ©
Recurrent neurons receive past recurrent outputs and current input as
inputs

Processed through a tanh() activation function

— As mentioned earlier, tanh() is the generally used activation for the hidden
layer

Current recurrent output passed to next higher layer and next time instant

23

Long Short-Term Memory

> D, ®
1 1

4) 4) 4 N
- @ T > —-
A [Tells &
\I)—b:lr > >\|)—P
&)) &)

* The a() are multiplicative gates that decide if
something is important or not

e Remember, every line actually represents a vector

24

LSTM: Constant Error Carousel

G

|
&)

* Key component: a remembered cell state

® ® ?
[1Ll)
|

25

LSTM: CEC

®
@
vo

* (; is the linear history carried by the constant-error
carousel

e Carries information through, only affected by a gate
— And addition of history, which too is gated..

LSTM: Gates

®

f

O

e Gates are simple sigmoidal units with outputs in
the range (0,1)

* Controls how much of the information is to be let
through

LSTM: Forget gate

ft = O'(Wf(ct_l, ht—llxt) + bf)

The first gate determines whether to carry over the history or to
forget it
— More precisely, how much of the history to carry over

— Also called the “forget” gate

— Note, we’re actually distinguishing between the cell memory C and
the state h that is coming over time! They’re related though

28

LSTM: Input gate

i = o(W;(Ce—q, he—1,x¢) + by)
Ce = tanh(W(he_y, x¢) + be)

 The second input has two parts

— A perceptron layer that determines if there’s something
new and interesting in the input

— A gate that decides if its worth remembering

LSTM: Memory cell update

fi Ltr%% Cy = fi* Cr_q + i % Cy

 The second input has two parts

— A perceptron layer that determines if there’s something
interesting in the input

— A gate that decides if its worth remembering
— If so its added to the current memory cell

30

LSTM: Output and Output gate

o = a(W,(Ct, he—q,x¢) + by)
h; = o; * tanh(C;)

 The output of the cell

— Simply compress it with tanh to make it lie between 1 and -1

* Note that this compression no longer affects our ability to carry memory
forward

— Controlled by an output gate
* To decide if the memory contents are worth reporting at this time

The complete LSTM unit

Ce-1 /@ @ | > Ct
_ tanh
fe l_;t Ot
Cy
G()_IG() tanh _CIT() %
he—y ' > hy
J

* With all components..

32

LSTM computation: Forward

Ci_1 /® /_P R Cy
tanh
fe L Ot
Ce
c() c() tanh c()
he—q | |) - _ hy

J

e Forward rules:

Gates Variables

fi =0 (Wi [Co—t,hi—1,2¢] + bf) Cp =tanh(We-[he—1, 2] + be)
it = 0 (Wi [Ce—1,hs—1,2¢] + b;) C,= f % Ci_q +1i; % C,
Ot =0 (WO-[Ct,ht_l,a:t] + bo) ht = O3 * tanh (Ct)

LSTM computation: Forward

s [

>

(0) (1
& =
tanh

fe Lt Ot

Ce
c() c() tanh c()

B e

Xt

e Forward rules:

Gates

fi =0 (Ws-|Cemryhi—1,2¢] + by
it = 0 (Wi [Ce—1,he—1,2¢] + b
o =0 (Wy-[Cy, hi—1,2¢] + bo)

Variables

ht = O * tanh (Ct)

Cy

Cy =tanh(We-[he—1, 2] + beo)

) ?”Ct :ft*ct—1+it*ét

34

LSTM architectures example

Y(t)

A A A A A A A A

X(t)

Time

e Each green box is now an (layer of) LSTM cell(s)

— Keep in mind each box is an array of units
— For LSTMs the horizontal arrows carry both C(t) and

h(t)

35

[-

Bidirectional LSTM

h(0) h(1) (T — 1) h(T)

h+(0) he(1) he(T — 1)

he(=1)
hy(0) hy(1) hy(T 7 1)

. A Ve,

X(0) X(1) X(T-1) X(T)

 Like the BRNN, but now the hidden nodes are LSTM units.
— Or layers of LSTM units

36

37

Poll 1

Select all that are true

e Conventional RNNs lose their memory because of the properties of their recurrent weights
matrices and activations

e LSTMs eliminate this problem by eliminating recurrent weights and activations
e LSTMs have no mechanism for forgetting patterns

In an LSTM the forget gate and the input pattern detector are separate because (select all that are
true)

The patterns that inform the LSTM that a stored memory may be forgotten could be different
from the patterns that are stored

o A “forget” signal from the forget gate will also result in a “decrement” signal from the input
pattern detector

38

Notes on the pseudocode

Class LSTM_cell

We will assume an object-oriented program
Each LSTM unit is assumed to be an “LSTM cell”

There’s a new copy of the LSTM cell at each time, at
each layer

LSTM cells retain local variables that are not relevant to
the computation outside the cell

— These are static and retain their value once computed,
unless overwritten

LSTM cell (single unit)
Definitions C“‘ &

C : previous value of CEC

Input:

h : previous hidden state value (“output” of cell)
x: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/ (l+exp(-x))

H = H H H I HH H

performed component-wise

Static local variables to the cell

static local z¢, z;, 2., 2,, £, 1, o, C;

function [C,h] = LSTM cell.forward(C,h,x, [W,b])

code on next slide
40

LSTM cell forward

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local z;, z;,, z,, z,, £, 1, o, C;

function [C_,, h] = LSTM cell.forward(C,h,x, [W,Db])
z, = W, .C + Weyh + Wex + b

f = sigmoid(z;) # forget gate

CH_/ @ o5
z; = W, C+ W;;)h + W, x + b; F i g | o ”1
i = sigmoid(z;) # input gate m]m £ '

he_q ., > hy
z, = W,h + W x + b, %

C; = tanh(z_.) # Detecting input pattern

@]
]

foC + ioC;, # “o” is component-wise multiply

W, C, + W,h + W x + b,

o oc o

z
o = sigmoid(z,) # output gate

h, = ooctanh(C.) # “o” is component-wise multiply

return C_,h 1

.

—E— .

LSTM network forwa rd

4.77_._‘_.;_.'_._.,_._4._.

it L ; IE

Q‘-ﬁ-i-'

H
‘——{

-
-
-

t
[

Assuming h(-1,*) is known and C(-1,*)=0 :
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{l},b{1l}] are the entire set of weights and biases
& for the 1*" hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1),h(t,1)] = LSTM cell(t,1l) .forward(..
.C(t-1,1) ,h(t-1,1) ,h(t,1-1) [W{1l} , b{1l}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z,(t))

42

Training the LSTM

* |dentical to training regular RNNs with one
difference

— Commonality: Define a sequence divergence and
backpropagate its derivative through time

* Difference: Instead of backpropagating
gradients through an RNN unit, we will
backpropagate through an LSTM cell

Backpropagation rules: Backward

Ce—1 @ Do

-

> (i1

(\
X | |
. anh
ft l;g 0 t
C,
0
]

tanh

Better done in code

t+1 T
> Ney1

Xt+1

Ve, Div =V, Div o (0, o tanh'(.) + tanh(.) o o'(L)W¢,) +
Ve, ., Divo (frer + Croa' (OWep + Crpq 00’ (OWe; ...)

Vp Div = V, DivVp,z, + Ve, Dive (Cioa'(IWyp+ Crpqg o0’ (OWy;) +
Ve, ., Div o 0pyq o tanh' ()W + Vy,, Div o tanh(.) o o' (L)W,

44

Notes on the backward pseudocode

Class LSTM_cell

* We first provide backward computation within a cell

 For the backward code, we will assume the static variables
computed during the forward are still available

* The following slides first show the forward code for
reference

* Subsequently we will give you the backward, and explicitly
indicate which of the forward equations each backward
equation refers to

— The backward code for a cell is long (but simple) and extends
over multiple slides

LSTM cell forward (for reference)

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell

static local z;, z;,, z,, z,, £, 1, o, C;

function [C_,, h] = LSTM cell.forward(C,h,x, [W,Db])
z, = W, .C + Weyh + Wex + b

f = sigmoid(z;) # forget gate

z, = W,.C + W,h + W, x + b, o fro—@ 3
i = sigmoid(z;) # input gate F ke | o th

- o] 0] &) N
z, = Wyh + W x + b, 4
C; = tanh(z_.) # Detecting input pattern #
C, = foC + ioC, # “o” is component-wise multiply

z, = W, C, + W,h + W _x + b,

o oc o

o = sigmoid(z,) # output gate

h, = ooctanh(C.) # “o” is component-wise multiply

return C_,h 16

LSTM cell backward

Static local variables carried over from forward
static local z,, z;, z.,, z,, £, i, o, C;
function [dC,dh,dx,d[W, b]]=LSTM cell.backward(dC_,, dh
First invert h, = ootanh (C)
do = dh_ o tanh(C_)"
d tanhC_, = dh_oo”

o/

C, h,

Col hol xl

dC, += dtanhC_ o (1-tanh?(C,))T #(1-tanh?) is the derivative of tanh

Next invert o = sigmoid(z,)

[W,b])

dz_, = doosigmoid(z_)To(l-sigmoid(z,))T # do x derivative of sigmoid(z,)

Next invert z, = W, C, + W,;h + W_x + b,

oCc o

dC, += dz W # Note - this is a regular matrix multiply

o""ocC
dh = dz_ W,
dx = dz_, W_,

dw,, = C,dz, # Note - this multiplies a column vector by a
dw_,, = h dz,

dw,, = x dz,

db, = dz, S

Next invert C, = foC + ioC;
dC = dC_ o £

dC; = dC 0 i

di = dC_,°C;

df = dC_,-C

he_q

row vector

47

LSTM cell backward (continued)

Next invert C;, = tanh(z))
dz_, = dC;o(1l-tanh?(z))T

Next invert W_ h + W_x + b,
dh += dz_W_,
dx += dz_ W_,

dWw_, = h dz_

dw_, = x dz_

db, = dz,

Next invert i = sigmoid(z;)

dz; = diosigmoid(z;)To(l-sigmoid(z;))”

Next invert z, = W, C + W, ;h + W, . x + b,
dC += dz; W,
dh += dz; W;,
dx += dz; W,,

dw;. = C dz;
dwW,, = h dz;
dWw;, = x dz;
db;, = dz;

LSTM cell backward (continued)

Next invert f = sigmoid(z,)
dz, = df o sigmoid(z;)To(l-sigmoid(z,))"*

Finally invert z, = W, C + W,;h + W, x + b,
dC += dz; Wg,
dh += dz, W,
dx += dz, Wg,

dWw.., = C dz;
dW, = h dz;
dWw.,, = x dz;
db, = dz,

return dC, dh, dx, 4d[W, Db]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

49

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{l},b{1l}] are the entire set of weights and biases
" for the 1* hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1) ,h(t,1)] = LSTM cell(t,1l) .forward(..
LC(t-1,1),h(t-1,1) ,h(t,1-1) [W{1l},b{1l}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z,(t))

50

LSTM network backward

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{l},b{1l}] are the entire set of weights and biases
for the 1* hidden layer

W, and b, are output layer weights and biases
Y is the output of the network

Assuming dW, and db, and d[W{l} b{l}] (for all 1) are
all initialized to 0 at the start of the computation

HH H H A N

for t = T-1:0 # Including both ends of the index

dz, = d¥(t) o Softmax Jacobian(zo(t))
dW, += h(t,L) dz,(t) . .
dh(t,L) = dz,(t)W, grregmgey

B —— _.ﬁ_. — |_".T_~
t 1 1 1 1 1

db_ += dz_(t)

for 1 = L-1:0
[dC(t,1) ,dh(t, 1) ,dx(t,1) ,d[Ww, b]] = ..
.. LSTM cell(t, 1) .backward(..
.. dC(t+1,1), dh(t+1,1)+dx(t,1+1), C(t-1,1), h(t-1,1),

d[W{l} b{l}] += d[W b]
51

52

Poll 2

Backward computation in an LSTM can be performed by computing the derivatives of all forward
operations in reverse order (T/F)

e True
e False

This necessarily requires computation of complicated derivative formulae (T/F)

e True
e False

Gated Recurrent Units: Lets simplify
the LSTM

it = O (Wz ' [ht—laﬂjt])
Tt = U(Wr ' [ht—laxt])
h; = tanh (W - [ry * hy_1,2¢])

ht:(l_zt)*ht—l+zt*ﬁt

e Simplified LSTM which addresses some of

your concerns of why

54

Gated Recurrent Units: Lets simplify
the LSTM

it = O (Wz ' [ht—laxt])
Tt = U(Wr ' [ht—laxt])
h; = tanh (W - [ry * hy_1,2¢])

ht:(l_zt)*ht—l+zt*ﬁt

* Combine forget and input gates

— In new input is to be remembered, then this means
old memory is to be forgotten

* Why compute twice?
55

Gated Recurrent Units: Lets simplify
the LSTM

it = O (Wz ' [ht—laﬂjt])
Tt = U(Wr ' [ht—laxt])
h; = tanh (W - [ry * hy_1,2¢])

ht:(l_zt)*ht—l+zt*ﬁt

 Don’t bother to separately maintain compressed and
regular memories

— Pointless computation!
— Redundant representation

56

GRU architectures example

Y(t)

EEEEEER.
=T : T= =T {

X(t)
Time

* Each green box is now a (layer of) GRU cell(s)

— Keep in mind each box is an array of units

57

58

Poll 3

GRUs are simplifications of the LSTM that use the principle that if a pattern triggers forgetting of a
pattern, it cannot also trigger increment of the memory

e True
e False

Like LSTMs, GRUs retain separate lines for the store memory and the hidden state

e True
e False

Story so far

Recurrent networks are poor at memorization
— Memory can explode or vanish depending on the weights and activation
They also suffer from the vanishing gradient problem during training

— Error at any time cannot affect parameter updates in the too-distant past

— E.g. seeing a “close bracket” cannot affect its ability to predict an “open
bracket” if it happened too long ago in the input

LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure

— Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

— Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

Significant issues

 The Divergence
* How to use these nets..
* This and more in the remaining lecture(s)

Key Issue

Ydesired(t)

Time

* How do we define the divergence

* Also: how do we compute the outputs..

62

But first — a brief detour...

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
i S
current = blocked;

}

ru->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Related math. What is it talking
about?

Proof. Omitted. [N |

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X, we
have

Ox(F) = {morphy xoy (G, F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, O
Lemma 0.3. Let 5 be a scheme. Let X be a scheme and X is an affine open

covering. Let i C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X=2Y' 2YaYaY xxY = X.
be o morphism of algebrate spaces over § and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering,

Consider a common structure on X and X the functor Ox(U7) which is locally of
finite type. 0

This since F € F and r € § the diagram

S —

l

£

O

™\

L
= ——a=

Bor,

= ——=n X

l

Spec(iy) Morges d(Qx,,.G)

i5 @& limit. Then @ s o finite type and assume S 5 a fat and F oand ¢ s a finite
type f.. This is of finite type diagrams, amnd
& the composition of G is a regular sequence,
o My is a sheal of rings.
(I

FProof. We hive see that X = Spec(H) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks, Then the
cohomology of X is an open neighbourhood of [, m|

Proof. This is elear that § is a Anite presentation, see Lemmas 77,
A reduced above we conclude that [7 is an open covering of C. The functor F is a
“fielil

Oy — Fr "”o-\'uul.-l B I:’I:.G‘l{cj‘:'u]
is an isomorphism of covering of Oy, . I F is the unigque element of F such that X
is an somorphism.
The property JF is a disjoint union of Proposition 77 and we can fltered set of
presentations of a scheme O y-algebra with F are opens of finiwe type over S.
If F is a scheme theoretic image points, a

If F is o finite direct sum Oy, is a closed immersion, see Lemma 77, Thisis a
sequence of F is a similar morphism.

65

And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(P3JS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

66

The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

— With simple architectures

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Modern text generation is a lot more
sophisticated that that

* One of the many sages of the time, the Bodhisattva Bodhisattva
Sakyamuni (1575-1611) was a popular religious figure in India and
around the world. This Bodhisattva Buddha was said to have passed
his life peacefully and joyfully, without passion and anger. For over
twenty years he lived as a lay man and dedicated himself toward
the welfare, prosperity, and welfare of others. Among the many
spiritual and philosophical teachings he wrote, three are most
important; the first, titled the "Three Treatises of Avalokitesvara";
the second, the teachings of the "Ten Questions;" and the third,
"The Eightfold Path of Discipline.”

— Entirely randomly generated

Brief detour: Language models

* Modelling language using recurrent nets

* More generally language models and
embeddings..

Language modelling using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

70

Language modelling: Representing
words

* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical) order
* E.g. [A AARDVARK AARON ABACK ABACUS... ZZYP]

— Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

 E.g. “AARDVARK” 2 [01000...]
e E.g. “AARON” > [001000..]

* Characters can be similarly represented

— English will require about 100 characters, to include both cases,
special characters such as commas, hyphens, apostrophes, etc.,
and the space character

Predicting words

Four score and seven years ???

WTL —_ f(Wo, ver) Wn—l)

N h

Nx1 one-hot vectors

S-roabr oo

=

OO O e

* Given one-hot representations of W,..W,,_,, predict W,

72

Predicting words

Four score and seven years ??? Wo

Wn —_ f(Wo, ver) Wn—l)

N h

Nx1 one-hot vectors

S-roabr oo

SO O e

=

* Given one-hot representations of W,..W,,_,, predict W,

* Dimensionality problem: All inputs W,...W,,_; are both
very high-dimensional and very sparse

73

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0

* (1,&,6) has no meaning exceptfore = § = 0
. . N
— Density of points: O (r_N)

This is a tremendously inefficient use of dimensions

74

Why one-hot representation

(1,0,0)

(0,1

v

(0,0,1)

The one-hot representation makes no assumptions about the relative

importance of words
— All word vectors are the same length
It makes no assumptions about the relationships between words

— The distance between every pair of words is the same

75

Solution to dimensionality problem

(1,0,0)

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: 0 (riM)

76

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: 0 (riM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

77

o
Four score and seven years ??? W, '] p
1
Wn — f(PWO, PWZ, ""PWn—l) 28:
W (1)—> P (1)
1
o fO — 0\ W,
. 0
.
0
Wh-1 i P
0

The Projected word vectors

\ 4

* Project the N-dimensional one-hot word vectors into a lower-dimensional space

Replace every one-hot vector W; by PW;
Pisan M X N matrix
PW; is now an M-dimensional vector

Learn P using an appropriate objective

* Distances in the projected space will reflect relationships imposed by the objective
78

“Projection”

W‘l’l — f(PWl,PWZ, ""PW‘I’l—l)

O —

v

* Pisasimple linear transform
* Asingle transform can be implemented as a layer of M neurons with linear activation

* The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights
79

Predicting words: The TDNN model

\ 4

Predict each word based on the past N words
— “A neural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

80

Alternative models to learn

projections
Wa| [Wo| Wil

*

\ Mean pooling \

Color indicates
AmANA W] W] W] shared parameters

Soft bag of words: Predict word based on words in
immediate context

— Without considering specific position
Skip-grams: Predict adjacent words based on current
word

More on these in a future recitation?

81

Embeddings: Examples

Country and Capital Vectors Projected by PCA

2]] - |]]
Chinar
*Beijing
1.5 F Russia G
Japan«
1 | Moscow |
Turkey< WAnkara Tokyo
0.5 F -
Poland«
0 Germany |
France AWNarsaw
w “»Berlin
-0.5 ltaly Paris -
#Athens
Greece: "
-1 Spaimr Rome -
| .. Adadrid i
-1.5 |- Portugal ot ishorn
_2 i [] | 1 [|]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

 From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality”

82

83

Poll 4

Select all that are true

e The distance between any two non-identical one-hot vectors is the same

e Words are represented as one-hot embeddings because these do not impose any a priori
assumption about which words are closer than others

e Word embeddings derived from language models are lower-dimensional real-valued
representations where the distance between words is a meaningful representation of their
closeness

e Low dimensional word embeddings enable you to find representations for words that were not
part of your training vocabulary

84

Modelling language

W W3 (Wa| W5 |Wel W, |Ws Ws| |Wig
FNERERNRD

> — > — > — —

A A A A A A A A A

A A A A A A A A A

Wi Wy (Wi (W, [Ws| [We| [Wo] [We| [Ws

 The hidden units are (one or more layers of) LSTM units

* Trained via backpropagation from a lot of text

— No explicit labels in the training data: at each time the next
word is the label.

Generating Language: Synthesis

i

e On trained model : Provide the first few words
— One-hot vectors

* After the last input word, the network generates a probability distribution
over words

— Outputs an N-valued probability distribution rather than a one-hot vector
86

Generating Language: Synthesis

i

v

On trained model : Provide the first few words
— One-hot vectors

After the last input word, the network generates a probability distribution over words
— Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution
— And set it as the next word in the series

87

Generating Language: Synthesis

w,| [we
EE N B
t =T__»T =T

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

88

Generating Language: Synthesis

Wal [(Ws| [We] Wzl [Wel [Wo| [Wig

\ 4
v
\ 4
\ 4
v
v

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution
Continue this process until we terminate generation

— In some cases, e.g. generating programs, there may be a natural termination

89

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = 8; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
3
}
rw->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

90

Composing music with RNN

2.
X

310N

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neu ral-netw%gks/

Returning to our problem

* Divergences are harder to define in other
scenarios..

e ... nextclass

