
Deep Learning
Recurrent Networks:
Modelling Language

1

Recap: Story so far

• Vanilla recurrent nets are poor at memorization
– The memory behavior is dependent primarily on the

recurrent weights and hidden state activations

• Recurrent (and Deep) networks also suffer from a
“vanishing or exploding gradient” problem
– The gradient of the error at the output gets

concentrated into a small number of parameters in
the earlier layers, and goes to zero for others

– This too is a consequence of recurrent weights and
hidden-state acivations

2

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

3

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

4

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

5

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

6

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଶ ଶ
௧

ଶ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

7

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଶ ଶ
௧

ଶ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

8

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଶ ଶ
௧

ଶ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

9

 ଵ ଶ ௧

 No further inputs

௧ ௧ିଵ

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଶ ଶ
௧

ଶ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

10

 ଵ ଶ ௧

 No further inputs

The long-term memory only depends on the largest Eigen value
In the worst case it grows or shrinks as ଵ

௧

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

11

 ଵ ଶ ௧

 No further inputs

The long-term memory only depends on the largest Eigen value
In the worst case it grows or shrinks as ଵ

௧

If the largest Eigenvalue is greater than 1, it blows up

If the largest Eigenvalue is less than 1, it quickly shrinks to 0

Even if ଵ , it only “remembers” ଵ

Recap: The vanishing memory –
the weights matrix edition

• Response to a single input at , with recurrent weight matrix
and linear activation

௧
௧

– Eigen decomposing ିଵ

 ଵ ଵ ଶ ଶ ଷ ଷ

௧ ଵ ଵ
௧

ଵ ଵ ଵ
௧

ଵ

ଵ
௧

ଵ ଵ ଶ
ଶ

ଵ

௧

ଶ ଷ
ଷ

ଵ

௧

ଷ

௧ ଵ
௧

ଵ ଵ

12

 ଵ ଶ ௧

 No further inputs

The long-term memory only depends on the largest Eigen value
In the worst case it grows or shrinks as ଵ

௧

If the largest Eigenvalue is greater than 1, it blows up

If the largest Eigenvalue is less than 1, it quickly shrinks to 0

Even if ଵ , it only “remembers” ଵ

What is “remembered” is a function of W and not particularly
related to or the initial input (from which is computed)

Recap: The vanishing memory –
the weights matrix edition

FOR LINEAR RECURRENT ACTIVATION

Recap: The vanishing memory –
the activation edition

• Response to a single input at , with recurrent weight matrix
and nonlinear activation

௧ ௧ିଵ

– For ReLU/Softplus
• For inputs in the linear region, ௧

will grow or shrink with the largest
Eigenvalue of

• For inputs in the negative region,
the output will go to 0

• Similar dependent recurrence
for ELU etc.

13

 ଵ ଶ ௧

 No further inputs

Recap: The vanishing memory –
the activation edition

• Response to a single input at , with recurrent weight matrix
and nonlinear activation

௧ ௧ିଵ

– For general “saturating” activations
the final “remembered”
hidden state is just the solution to

– This is just a function of and
and ignores 14

 ଵ ଶ ௧

 No further inputs

Recap: The vanishing memory –
the activation edition

• Response to a single input at , with recurrent weight matrix
and nonlinear activation

௧ ௧ିଵ

– For general “saturating” activations
the final “remembered”
hidden state is just the solution to

– This is just a function of and
and ignores 15

 ଵ ଶ ௧

 No further inputs

What is “remembered” is a function of W, b and the specific
activation, rather than the initial input (from which is computed)

Recap 2: Exploding/Vanishing gradients
in backpropagation

ೖ ே ே ேିଵ ேିଵ ାଵ ାଵ

• The length of the loss gradient is modified by the Jacobians of the
activations and the singular values of the weights matrix
– Activations will always shrink (or at best maintain) the length of the gradient
– Singular values of weight matrices are largely < 1

• They will cause loss gradient to shrink in most, if not all directions

• This is also true for RNNs, which are just very deep networks
16

Parameters and activations are
problems

• Both, the memory retention of the network, and its
ability to learn to detect and remember patterns are
heavily dominated by weights/biases and activations
– Rather than what it is trying to “remember”

• Can we have a network that just “remembers”
arbitrarily long, to be recalled on demand?
– Not be directly dependent on vagaries of network

parameters, but rather on input-based determination of
whether it must be remembered

17

Enter – the constant error carousel

• History is carried through uncompressed
– No weights, no nonlinearities
– Only scaling is through the s “gating” term that captures other

triggers
– E.g. “Have I seen Pattern2”?

Time
t+1 t+2 t+3 t+4

18

Enter – the constant error carousel

• Actual non-linear work is done by other portions of the
network
– Neurons that compute the workable state from the memory

Time

19

Enter – the constant error carousel

• The gate s depends on current input, current
hidden state…

Time

20

Enter – the constant error carousel

Other
stuff

Time

21

• The gate s depends on current input, current
hidden state… and other stuff…

Enter – the constant error carousel

Other
stuff

Time

22

• The gate s depends on current input, current hidden
state… and other stuff…

• Including, obviously, what is currently in raw memory

Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as
inputs

• Processed through a tanh() activation function
– As mentioned earlier, tanh() is the generally used activation for the hidden

layer

• Current recurrent output passed to next higher layer and next time instant

23

Long Short-Term Memory

• The are multiplicative gates that decide if
something is important or not

• Remember, every line actually represents a vector
24

LSTM: Constant Error Carousel

• Key component: a remembered cell state

25

LSTM: CEC

• is the linear history carried by the constant-error
carousel

• Carries information through, only affected by a gate
– And addition of history, which too is gated..

26

LSTM: Gates

• Gates are simple sigmoidal units with outputs in
the range (0,1)

• Controls how much of the information is to be let
through

27

LSTM: Forget gate

• The first gate determines whether to carry over the history or to
forget it
– More precisely, how much of the history to carry over
– Also called the “forget” gate
– Note, we’re actually distinguishing between the cell memory and

the state that is coming over time! They’re related though
28

௧ ௧ିଵ ௧ିଵ ௧

௧ିଵ

LSTM: Input gate

• The second input has two parts
– A perceptron layer that determines if there’s something

new and interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

29

௧ ௧ିଵ ௧ିଵ ௧

௧ିଵ ௧ ௧ିଵ ௧

LSTM: Memory cell update

• The second input has two parts
– A perceptron layer that determines if there’s something

interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

30

௧ିଵ

LSTM: Output and Output gate

• The output of the cell
– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory
forward

– Controlled by an output gate
• To decide if the memory contents are worth reporting at this time

31

௧ିଵ

௧
௧ ௧ ௧ିଵ ௧

௧ ௧ ௧

The complete LSTM unit

• With all components..

௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧
s() s() s()tanh

tanh

32

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

33

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

34

LSTM architectures example

• Each green box is now an (layer of) LSTM cell(s)
– Keep in mind each box is an array of units
– For LSTMs the horizontal arrows carry both and

Time
X(t)

Y(t)

35

Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units.
– Or layers of LSTM units

36

t

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Poll 1

• @ , @

37

Poll 1

38

Select all that are true

 Conventional RNNs lose their memory because of the properties of their recurrent weights
matrices and activations

 LSTMs eliminate this problem by eliminating recurrent weights and activations
 LSTMs have no mechanism for forgetting patterns

In an LSTM the forget gate and the input pattern detector are separate because (select all that are
true)

 The patterns that inform the LSTM that a stored memory may be forgotten could be different
from the patterns that are stored

 A “forget” signal from the forget gate will also result in a “decrement” signal from the input
pattern detector

Notes on the pseudocode

Class LSTM_cell

• We will assume an object-oriented program

• Each LSTM unit is assumed to be an “LSTM cell”

• There’s a new copy of the LSTM cell at each time, at
each layer

• LSTM cells retain local variables that are not relevant to
the computation outside the cell
– These are static and retain their value once computed,

unless overwritten

39

LSTM cell (single unit)
Definitions

Input:
C : previous value of CEC
h : previous hidden state value (“output” of cell)
x: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/(1+exp(-x))
performed component-wise

Static local variables to the cell
static local zf, zi, zc, zo, f, i, o, Ci
function [C,h] = LSTM_cell.forward(C,h,x,[W,b])

code on next slide
40

LSTM cell forward
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f C + i Ci # “ ” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o tanh(Co) # “ ” is component-wise multiply

return Co,ho 41

LSTM network forward
Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

42

Training the LSTM

• Identical to training regular RNNs with one
difference
– Commonality: Define a sequence divergence and

backpropagate its derivative through time

• Difference: Instead of backpropagating
gradients through an RNN unit, we will
backpropagate through an LSTM cell

43

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

 ௧

శభ ௧ାଵ ௧
ᇱ

 ௧ାଵ
ᇱ

 ௭ ௧ శభ ௧
ᇱ

 ௧ାଵ
ᇱ

శభ ௧ାଵ
ᇱ

 శభ

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

Better done in code

44

Notes on the backward pseudocode

Class LSTM_cell

• We first provide backward computation within a cell
• For the backward code, we will assume the static variables

computed during the forward are still available
• The following slides first show the forward code for

reference
• Subsequently we will give you the backward, and explicitly

indicate which of the forward equations each backward
equation refers to
– The backward code for a cell is long (but simple) and extends

over multiple slides

45

LSTM cell forward (for reference)
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f C + i Ci # “ ” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o tanh(Co) # “ ” is component-wise multiply

return Co,ho 46

LSTM cell backward
Static local variables carried over from forward
static local zf, zi, zc, zo, f, i, o, Ci
function [dC,dh,dx,d[W, b]]=LSTM_cell.backward(dCo, dho, C, h, Co, ho, x, [W,b])

First invert ho = o∘tanh(C)
do = dho ∘ tanh(Co)T

d tanhCo = dho ∘ oT

dCo += dtanhCo ∘ (1-tanh2(Co))T #(1-tanh2) is the derivative of tanh

Next invert o = sigmoid(zo)
dzo = do ∘ sigmoid(zo)T ∘(1-sigmoid(zo))T # do x derivative of sigmoid(zo)

Next invert zo = WocCo + Wohh + Woxx + bo
dCo += dzoWoc # Note – this is a regular matrix multiply
dh = dzo Woh
dx = dzo Wox

dWoc = Codzo # Note – this multiplies a column vector by a row vector
dWoh = h dzo
dWox = x dzo
dbo = dzo

Next invert Co = f∘C + i∘Ci
dC = dCo ∘ f
dCi = dCo ∘ i
di = dCo ∘ Ci
df = dCo ∘ C

47

LSTM cell backward (continued)
Next invert Ci = tanh(zc)
dzc = dCi (1-tanh2(zc))T

Next invert Wchh + Wcxx + bc
dh += dzc Wch
dx += dzc Wcx

dWch = h dzc
dWcx = x dzc
dbc = dzc

Next invert i = sigmoid(zi)
dzi = di sigmoid(zi)T (1-sigmoid(zi))T

Next invert zi = WicC + Wihh + Wixx + bi
dC += dzi Wic
dh += dzi Wih
dx += dzi Wix

dWic = C dzi
dWih = h dzi
dWix = x dzi
dbi = dzi 48

LSTM cell backward (continued)
Next invert f = sigmoid(zf)

dzf = df sigmoid(zf)T (1-sigmoid(zf))T

Finally invert zf = WfcC + Wfhh + Wfxx + bf
dC += dzf Wfc
dh += dzf Wfh
dx += dzf Wfx

dWfc = C dzf
dWfh = h dzf
dWfx = x dzf
dbf = dzf

return dC, dh, dx, d[W, b]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

49

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

50

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM_cell is an indexed class with functions
[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer
Wo and bo are output layer weights and biases
Y is the output of the network
Assuming dWo and dbo and d[W{l} b{l}] (for all l) are
all initialized to 0 at the start of the computation

for t = T-1:0 # Including both ends of the index

dzo = dY(t) Softmax_Jacobian(zo(t))

dWo += h(t,L) dzo(t)

dh(t,L) = dzo(t)Wo
dbo += dzo(t)

for l = L-1:0

[dC(t,l),dh(t,l),dx(t,l),d[W, b]] = …
… LSTM_cell(t,l).backward(…
… dC(t+1,l), dh(t+1,l)+dx(t,l+1), C(t-1,l), h(t-1,l), …
… C(t,l), h(t,l), h(t,l-1), [W(l),b(l)])

d[W{l} b{l}] += d[W,b]
51

LSTM network backward

Poll 2

• @ , @

52

Poll 2

53

Backward computation in an LSTM can be performed by computing the derivatives of all forward
operations in reverse order (T/F)

 True
 False

This necessarily requires computation of complicated derivative formulae (T/F)

 True
 False

Gated Recurrent Units: Lets simplify
the LSTM

• Simplified LSTM which addresses some of
your concerns of why

54

Gated Recurrent Units: Lets simplify
the LSTM

• Combine forget and input gates
– In new input is to be remembered, then this means

old memory is to be forgotten
• Why compute twice?

55

Gated Recurrent Units: Lets simplify
the LSTM

• Don’t bother to separately maintain compressed and
regular memories
– Pointless computation!
– Redundant representation

56

GRU architectures example

• Each green box is now a (layer of) GRU cell(s)
– Keep in mind each box is an array of units

Time
X(t)

Y(t)

57

Poll 3

• @, @

58

Poll 3

59

GRUs are simplifications of the LSTM that use the principle that if a pattern triggers forgetting of a
pattern, it cannot also trigger increment of the memory

 True
 False

Like LSTMs, GRUs retain separate lines for the store memory and the hidden state

 True
 False

Story so far
• Recurrent networks are poor at memorization

– Memory can explode or vanish depending on the weights and activation

• They also suffer from the vanishing gradient problem during training
– Error at any time cannot affect parameter updates in the too-distant past
– E.g. seeing a “close bracket” cannot affect its ability to predict an “open

bracket” if it happened too long ago in the input

• LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure
– Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

– Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

60

Significant issues

• The Divergence
• How to use these nets..
• This and more in the remaining lecture(s)

61

Key Issue

• How do we define the divergence

• Also: how do we compute the outputs..

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

62

But first – a brief detour…

63

Which open source project?

64

Related math. What is it talking
about?

65

And a Wikipedia page explaining it all

66

The unreasonable effectiveness of
recurrent neural networks..

• All previous examples were generated blindly
by a recurrent neural network..
– With simple architectures

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

67

Modern text generation is a lot more
sophisticated that that

• One of the many sages of the time, the Bodhisattva Bodhisattva
Sakyamuni (1575-1611) was a popular religious figure in India and
around the world. This Bodhisattva Buddha was said to have passed
his life peacefully and joyfully, without passion and anger. For over
twenty years he lived as a lay man and dedicated himself toward
the welfare, prosperity, and welfare of others. Among the many
spiritual and philosophical teachings he wrote, three are most
important; the first, titled the "Three Treatises of Avalokiteśvara";
the second, the teachings of the "Ten Questions;" and the third,
"The Eightfold Path of Discipline.“
– Entirely randomly generated

68

Brief detour: Language models

• Modelling language using recurrent nets

• More generally language models and
embeddings..

69

Language modelling using RNNs

• Problem: Given a sequence of words (or
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??

70

Language modelling: Representing
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g. [A AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

• E.g. “AARDVARK” [0 1 0 0 0 …]
• E.g. “AARON” [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases,

special characters such as commas, hyphens, apostrophes, etc.,
and the space character

71

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

 ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ିଵ

72

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

 ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ିଵ

73

The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)

74

Why one-hot representation

• The one-hot representation makes no assumptions about the relative
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)

75

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

76

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

77

The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊 by 𝑃𝑊

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊 is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

 ଶ ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

78

“Projection”

• P is a simple linear transform
• A single transform can be implemented as a layer of M neurons with linear activation
• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights

 ଵ ଶ ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

ିଵ

79

Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional
representations of words

ଵ ଶ ଷ ସ ହ ଼ ଽ

ହ ଼ ଽ ଵ

80

Alternative models to learn
projections

• Soft bag of words: Predict word based on words in
immediate context
– Without considering specific position

• Skip-grams: Predict adjacent words based on current
word

• More on these in a future recitation?

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊

𝑃

𝑊

𝑊ସ

𝑃

𝑊

𝑊ହ 𝑊 𝑊଼ 𝑊ଽ 𝑊ଵ𝑊ସ

Color indicates
shared parameters

81

Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality” 82

Poll 4

• @

83

Poll 4

84

Select all that are true

 The distance between any two non-identical one-hot vectors is the same
 Words are represented as one-hot embeddings because these do not impose any a priori

assumption about which words are closer than others
 Word embeddings derived from language models are lower-dimensional real-valued

representations where the distance between words is a meaningful representation of their
closeness

 Low dimensional word embeddings enable you to find representations for words that were not
part of your training vocabulary

Modelling language

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

– No explicit labels in the training data: at each time the next
word is the label.

ଵ ଶ ଷ ସ ହ ଼ ଽ

ହ ଼ ଽ ଵଶ ଷ ସ

85

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ

86

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ

87

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ

88

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଼ ଽ ଵସ

89

Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

90

Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/91

Returning to our problem

• Divergences are harder to define in other
scenarios..

• … next class

92

