Deep Learning Transformers and GNNs

Recap

- We've seen
 - MLPs,
 - CNNs as scanning MLPs,
 - Recurrent nets as MLPs with time recurrence
 - Attention models
- What are the generalizations and extensions
 - Attention : Transformers
 - CNN : Graph networks
 - Autoencoders : Generative models VAEs and GANs

Topics for the week

- Transformers
- GNNs
- Representation learning
- Autoencoders

Topics for the week

- Transformers
- GNNs
- Representation learning
- Autoencoders

Recap: Seq2Seq models

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
 - The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a *second* RNN uses the hidden activation as initial state to produce a sequence of outputs

Recap: Attention Models

- Encoder recurrently produces hidden representations of input word sequence
- Decoder recurrently generates output word sequence
 - For each output word the decoder uses a weighted average of the hidden input representations as input "context", along with the recurrent hidden state and the previous output word

Recap: Attention Models

- Problem: Because of the recurrence, the hidden representation for any word is also influenced by *all* preceding words
 - The decoder is actually paying attention to the sequence, and not just the word
- If the decoder is automatically figuring out which words of the input to attend to at each time, is recurrence in the input even necessary?

Non-recurrent encoder

• Modification: Let us eliminate the recurrence in the encoder

Non-recurrent encoder

- But this will eliminate *context-specificity* in the encoder embeddings
 - The embedding for "an" must really depend on the remaining words
 - It could be translated to "ein", "einer", or "eines" depending on the context.
- Solution: Use the attention framework itself to introduce contextspecificity in embeddings

Recap: Non-recurrent encoder

- The encoder in a sequence-to-sequence model can be composed without recurrence.
- Use the attention framework itself to introduce context-specificity in embeddings
 - "Self" attention

Self attention

• First, for every word in the input sequence we compute an initial representation

– E.g. using a single MLP layer

Self attention

- Then, from each of the hidden representations, we compute a query, a key, and a value.
 - Using separate linear transforms
 - The weight matrices W_q , W_k and W_v are learnable parameters

- For each word, we compute an attention weight between that word and all other words
 - The raw attention of the *i*th word to the *j*th word is a function of query q_i and key k_j
 - The raw attention values are put through a softmax to get the final attention weights

- The updated representation for the word is the attention-weighted sum of the values for all words
 - Including itself

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

- Compute query-key-value sets for every word
- For each word
 - Using the query for that word, compute attention weights for all words using their keys
 - Compute updated representation for the word as attention-weighted sum of values of all words

This is a "single-head" self-attention block

- We can have *multiple* such attention "heads"
 - Each will have an independent set of queries, keys and values
 - Each will obtain an independent set of attention weights
 - Potentially focusing on a different aspect of the input than other heads
 - Each computes an independent output
- The final output is the concatenation of the outputs of these attention heads
- "MULTI-HEAD ATTENTION" (actually Multi-head *self* attention)

• Multi-head self attention

- Multiple self-attention modules in parallel

- Typically, the output of the multi-head self attention is passed through one or more regular feedforward layers
 - Affine layer followed by a non-linear activation such as ReLU

• The entire unit, including multi-head selfattention module followed by MLP is a *multi*head self-attention block

y₄

0₄

 h_4

<eos>

MULTI-HEAD SELF ATTENTION BLOCK

 The entire unit, including multi-head selfattention module followed by MLP is a *multihead self-attention block*

 h_4

 $\langle eos \rangle$

- The encoder can include many layers of such blocks
- No need for recurrence...

• Recap: The encoder in a sequence-to-sequence model can replace recurrence through a series of "multi-head self attention" blocks

- Recap: The encoder in a sequence-to-sequence model can replace recurrence through a series of "multi-head self attention" blocks
- But this still ignores *relative position*
 - A context word one word away is different from one 10 words away
 - The attention framework does not take distance into consideration

• Note that the inputs are actually word *embeddings*

- Note that the inputs are actually word *embeddings*
- We add a "positional" encoding to them to capture the relative distance from one another

- **Positional Encoding:** A sequence of vectors P_0, \dots, P_N , to encode position
 - Every vector is unique (and uniquely represents time)
 - Relationship between P_t and $P_{t+\tau}$ only depends on the distance between them

$$P_{t+\tau} = M_{\tau} P_t$$

• The linear relationship between P_t and $P_{t+\tau}$ enables the net to learn shiftinvariant "gap" dependent relationships

Positional Encoding

regenerate

- A vector of sines and cosines of a harmonic series of frequencies
 - Every 2*l*-th component of P_t is $\sin \omega_l t$
 - Every 2l + 1-th component of P_t is $\cos \omega_l t$
- Never repeats
- Has the linearity property required

• The linear relationship between P_t and $P_{t+\tau}$ enables the net to learn shift-invariant "gap" dependent relationships

• The self-attending encoder!!

• The self-attending encoder!!

 Self attention in encoder: Can use input embedding at time t+1 and further to compute output at time t, because all inputs are available

Self attention and masked self attention

- Self attention in decoder: Decoder is sequential
 - Each word is produced using the previous word as input
 - Only embeddings until time t are available to compute the output at time t
- The attention will have to be "masked", forcing attention weights for t+1 and later to 0

38

Masked self-attention block

- The "masked self attention *block*" includes an MLP after the masked self attention
 - Like in the encoder

Masked multi-head self-attention

- The "masked *multi-head* self attention *block*" includes multiple masked attention heads
 - Like in the encoder

Masked multi-head self-attention block

- The "masked *multi-head* self attention *block*" includes multiple masked attention heads
 - Like in the encoder

Masked multi-head self-attention block

- The "masked *multi-head* self attention *block*" includes multiple masked attention heads, followed by an MLP
 - Like in the encoder

Transformer: Attention is all you need

- Transformer: A sequence-to-sequence model that replaces recurrence with positional encoding and multi-head self attention
 - "Attention is all you need"

Transformer

From "Attention is all you need"

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 •	10^{18}		
Transformer (big)	28.4	41.8	2.3 ·	10^{19}		

- Transformer: tremendous decrease in model computation for similar performance as state-of-art translation models
- The last row in the table shows transformer performance
- The final two columns show computational cost.

Transformer

From "Attention is all you need"

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training C	Training Cost (FLOPs)			
Widden	EN-DE	EN-FR	EN-DE	EN-FR			
ByteNet [18]	23.75						
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$			
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$			
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$			
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot10^{20}$			
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$			
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$			
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$			
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}			
Transformer (big)	28.4	41.8	2.3	10 ¹⁹			
/				$\overline{}$			
Why so good?			W	hy so fast			

- Transformer: tremendous decrease in model computation for similar performance as state-of-art translation models
- The last row in the table shows transformer performance
- The final two columns show computational cost.

?

Recap: Vanishing/exploding gradients

 $\nabla_{f_k} Div = \nabla D. \nabla f_N. W_N. \nabla f_{N-1}. W_{N-1} \dots \nabla f_{k+1} W_{k+1}$

- RNNs are just very deep networks
- LSTMs mitigate the problem at the cost of 3x more matrix multiplications
- Transformers get rid of it! To encode a full sentence, they have way fewer layers than an unrolled RNN.
- The same goes with the vanishing memory issue to an extent. 48

- Computing Y(T) requires Y(T-1)...
- Which requires Y(T-2), etc...
- RNN inputs must be processed in order → slow implementation

Processing order Softmax $q_0 k_0 v_0$ $q_2 k_2 v_2$ $q_3k_3v_3$ $q_1 k_1 v_1$ $q_4k_4v_4$ \boldsymbol{h}_4 \boldsymbol{h}_0 \boldsymbol{h}_1 h_2 h_3 I ate an apple $\langle eos \rangle$

- q_n, k_n, v_n can be computed separately.
- $n^2 < q_n$, $k_n > \text{dot products to compute}$.
- Self attention is easy to compute in parallel → Faster implementations

Transformer

From "Attention is all you need"

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 •	10^{18}		
Transformer (big)	28.4	41.8	2.3 ·	10^{19}		

- Transformer: tremendous decrease in model computation for similar performance as state-of-art translation models
- The last row in the table shows transformer performance
- The final two columns show computational cost.

GPT

Alec Radford et. al., Improving Language Understanding by Generative Pre-Training

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- GPT uses only the decoder of the transformer as an LM — "Transformer w/o aux LM"
- Large performance improvement in many tasks

GPT

Alec Radford et. al., Improving Language Understanding by Generative Pre-Training

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- Add Task conditioning: put the nature of your task in the input (not just LM)
- Parameters x1000
- \rightarrow GPT-3 : Generalizes to more tasks, not just more inputs!

BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

- Bert: Only uses encoder of transformer to derive word and sentence embeddings
- Trained to "fill in the blanks"
- This is *representation learning* (more next lecture)

Attention is all you need

- Self-attention can effectively replace recurrence in sequence-to-sequence models
 - "Transformers"
 - Requires "positional encoding" to capture positional information
- Can also be used in regular sequence analysis settings as a substitute for recurrence
- Currently *the* state of the art in most sequence analysis/prediction...

Attention is all you need

- Self-attention can effectively replace recurrence in sequence-to-sequence models
 - "Transformers"
 - Requires "positional encoding" to capture positional information
- Can also be used in regular sequence analysis settings as a substitute for recurrence
- Currently *the* state of the art in most sequence analysis/prediction... and even computer vison problems!

Vision Transformers

Dosovitskiy et al, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020

- Divide your image in patches with pos. encodings
- Apply Self-Attention!

 \rightarrow Sequential and image problems are similar when using transformers

Impact of Transformers

- Transformers have played a major role in the "uniformization" of DL-based tasks:
 - Find a pretrained "BERT-like" transformer (Text, Image, Speech)
 - Fine-tune on your task or not! (Prompting...)
- This has helped democratize Deep Learning considerably

• But...

Caveat 1

- Not all transformers are the same: Big/small, fast/slow, mono-/multilingual, contrastive/ generative, regressive/autoencoding...
- Pick the right one!

Caveat 2

- Transformers are not always the right choice.
- They often require more parameters than LSTMs at equal performance
- → Tricky on small hardware (phones, IoT, etc)

Topics for the week

- Transformers
- GNNs

Input structure

- We've seen models for
 - Static, fixed-sized inputs
 - MLP
 - Shift invariant pattern recognition
 - CNN
 - Inputs arranged in a sequence
 - RNN
- What about Graph-structured inputs?

 A structured representation of sets of entities with pair-wise interactions

• **Objects/Data points** : Nodes, Vertices (V)

- **Objects/Data points** : Nodes, Vertices (V)
- Interactions/Relations : Links, Edges (E)

- **Objects/Data points** : Nodes, Vertices (V)
- Interactions/Relations : Links, Edges (E)
- **System** : Network, Graphs (G)

- **Objects/Data points** : Nodes, Vertices (V)
- Interactions/Relations : Links, Edges (E)
- **System** : Network, Graphs (G)
- Node (and edge) Attributes : Feature vectors (X)

Social Networks

- Many types of data are naturally represented as graphs
 - Social networks: Nodes are people, links are connections

Social Networks

World Wide Web or Citation Networks

- Many types of data are naturally represented as graphs
 - Social networks: Nodes are people, links are connections
 - World wide web: Sites point to one another
 - Citation networks: Papers cite one another

Social Networks

Molecules

World Wide Web or Citation Networks

- Many types of data are naturally represented as graphs
 - Social networks: Nodes are people, links are connections
 - World wide web: Sites point to one another
 - Citation networks: Papers cite one another
 - Molecules: Atoms and their connections

Any data with relational structure can be represented as a graph

– Data instances with pair-wise relations

- Like the examples we just saw
- And other, more surprising instances

Surprising graphs

- Images are graphs!
 - Nodes are pixel positions
 - Pixel values are node attributes
 - Relations are adjacency
 - Each node is connected to the four adjacent nodes

Directed and undirected edges

- Edges in a graph can be directed or undirected
 An undirected edge is estually an edge that points k
 - An undirected edge is actually an edge that points both ways
- We will assume directed edges, but everything generalizes to undirected graphs
Recap: Data can be represented as

- Many types of data can be represented as graphs
 - With nodes representing instances and edges representing pair-wise relationships
 - Even images and time series can be viewed as graphs
- Classification and prediction tasks can also be performed on graphs

• **Node Classification** : Topic Classification

- Node Classification : Topic Classification
- Link Prediction : Recommendation Systems, predicting bond types

- Node Classification : Topic Classification
- Link Prediction : Recommendation Systems, predicting bond types
- Graph Classification : Image Classification

- Node Classification : Topic Classification
- Link Prediction : Recommendation Systems
- Graph Classification : Image Classification
- Also, various combinatorial optimization problems, e.g. travelling salesman problem

- Node Classification : Topic Classification
- Link Prediction : Recommendation Systems
- Graph Classification : Image Classification
- Also, various combinatorial optimization problems, e.g. travelling salesman problem

All of these tasks can be performed using Graph Neural Networks

Graph Neural Nets (through an example)

- Given a citation network, classify a paper topic into either Natural Language Processing (NLP) or Computer Vision (CV) paper.
 - Based on its content and its citations
- Problem of node classification (NLP or CV)

• Graph representing a citation network with labels

- Graph representing a citation network with labels
- Each node has a feature vector
 - E.g. word count vectors
- **Objective:** Learn to compute an *embedding* for each node in the graph from the node features and graph structure

Step 0: Setup

- Graph : G = (V, E)
- Node features: $X \in \mathbb{R}^{d \times |V|}$
- To estimate : embeddings z_u for all nodes $u \in V$

Step 0: Setup

- We will use a multi-layer network which also computes intermediate values:
- Intermediate terms
 - *k*th-layer node activation $h_u^k \forall u \in V$
 - *k*th-layer edge activation $h_{u,v}^k \forall u, v \in V$

Step 0: Setup

- We will use a multi-layer network which also computes intermediate values for node classification, only need node embeddings (but discussion generalizes to link-embedding)
- Intermediate terr models)

 \leftarrow Kth-layer node activation $h_u^k \forall u \in V$

- Kth-layer edge activation $h_{u,v}^k \forall u, v \in V$

- Next step: Update all the node vectors using "context" information from all their neighbors
- Aggregate information from neighboring nodes to compute an incoming "message" m_u^k
- **Update** the activation h_u^k at each node by combining h_u^k with the message m_u^k to obtain the updated vector h_u^{k+1}

Step 1: Update node vectors

 $m_{u}^{k} = \text{AGGREGATE}^{k} (\{h_{v}^{k}, \forall v \in Neighbor(u)\})$ $h_{u}^{k+1} = \text{UPDATE}^{k} (h_{u}^{k}, m_{u}^{k})$

- AGGREGATE is an order-invariant operation, such as sum or max
- UPDATE is typically a regular MLP layer (linear layer plus activation)

Step 1.1: AGGREGATE (with sum)

$$m_u^k = \sum_{v \in Neighbor(u)} h_v^k$$

$$m_A^k = h_B^k + h_C^k + h_E^k$$

Step 1.1: AGGREGATE (with sum)

Compute messages for all nodes

- Some nodes may have zero message in a directed graph

- Updates may change the size of the embeddings
- Typical activation functions are tanh and ReLU

Step 1: Estimating embeddings

 $m_u^k = \operatorname{AGGREGATE}^k (\{h_v^k, \forall v \in Neighbor(u)\})$

 $h_u^{k+1} = \text{UPDATE}^k (h_u^k, m_u^k)$

• After *K* layers of aggregate/update steps, we obtain our final embedding

$$z_u = m_u^K$$

• We can add a final classification layer to the embedding for the final classification

Model Parameters

• The learnable parameters of the network are the self and message weights and bias, for all the *K* layers

- The divergence with respect to the ground truth labels of nodes (on training data) can minimized via backpropagation, to learn the parameters
- Nodes on novel graphs can now be labelled using these parameters for inference

GNN uses

- Molecular properties/materials chemistry/drug design
- Social network analysis
- Maps...

Breakthrough in GNN

The model architecture for determining optimal routes and their travel time.

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Breakthrough in GNN

Google Maps ETA Improvements Around the World

Image Credit: DeepMind

Next up: Representation learning