
Deep Learning

Transformers and GNNs

1

Recap

• We’ve seen

– MLPs,

– CNNs as scanning MLPs,

– Recurrent nets as MLPs with time recurrence

– Attention models

• What are the generalizations and extensions

– Attention : Transformers

– CNN : Graph networks

– Autoencoders : Generative models – VAEs and GANs

2

Topics for the week

• Transformers

• GNNs

• Representation learning

• Autoencoders

3

Topics for the week

• Transformers

• GNNs

• Representation learning

• Autoencoders

4

Recap: Seq2Seq models

5

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

5

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Attention Models

• Encoder recurrently produces hidden representations of input word
sequence

• Decoder recurrently generates output word sequence

– For each output word the decoder uses a weighted average of the
hidden input representations as input “context”, along with the
recurrent hidden state and the previous output word

6

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3𝒉−1

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4

𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Attention Models

• Problem: Because of the recurrence, the hidden representation for any word is
also influenced by all preceding words
– The decoder is actually paying attention to the sequence, and not just the word

• If the decoder is automatically figuring out which words of the input to attend to
at each time, is recurrence in the input even necessary?

7

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3𝒉−1

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4

𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Non-recurrent encoder

• Modification: Let us eliminate the recurrence

in the encoder

8

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4

𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Non-recurrent encoder

• But this will eliminate context-specificity in the encoder embeddings

– The embedding for “an” must really depend on the remaining words
• It could be translated to “ein”, “einer”, or “eines” depending on the context.

• Solution: Use the attention framework itself to introduce context-
specificity in embeddings

9

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4

𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Non-recurrent encoder

• The encoder in a sequence-to-sequence model can be composed
without recurrence.

• Use the attention framework itself to introduce context-specificity
in embeddings

– “Self” attention 10

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4

Self attention

• First, for every word in the input sequence we

compute an initial representation

– E.g. using a single MLP layer

11

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Self attention

• Then, from each of the hidden representations, we
compute a query, a key, and a value.

– Using separate linear transforms

– The weight matrices 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 are learnable parameters

12

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖

Self Attention

• For each word, we compute an attention weight between that word
and all other words

– The raw attention of the 𝑖th word to the 𝑗th word is a function of
query 𝑞𝑖 and key 𝑘𝑗

– The raw attention values are put through a softmax to get the final
attention weights

13

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

𝑒𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗

𝑤𝑖0, … , 𝑤𝑖𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖0, … , 𝑒𝑖𝑁)

• The updated representation for the word is

the attention-weighted sum of the values for

all words

– Including itself 14

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

15

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤0𝑗 = 𝑎𝑡𝑡𝑛(𝑞0, 𝑘0:𝑁) 𝑜0 =

𝑗

𝑤0𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

16

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤1𝑗 = 𝑎𝑡𝑡𝑛(𝑞1, 𝑘0:𝑁) 𝑜1 =

𝑗

𝑤1𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

17

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤2𝑗 = 𝑎𝑡𝑡𝑛(𝑞2, 𝑘0:𝑁) 𝑜2 =

𝑗

𝑤2𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

18

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

𝒐3

19

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

𝒐3 𝒐4

20

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗
𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖
𝒐0

Self Attention

𝒐1 𝒐2 𝒐3 𝒐4

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

21

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗
𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖
𝒐0

Self Attention

𝒐1 𝒐2 𝒐3 𝒐4

This is a “single-head” self-attention block

• We can have multiple such attention “heads”
– Each will have an independent set of queries, keys and values

– Each will obtain an independent set of attention weights

• Potentially focusing on a different aspect of the input than other heads

– Each computes an independent output

• The final output is the concatenation of the outputs of these attention heads

• “MULTI-HEAD ATTENTION” (actually Multi-head self attention) 22

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Concatenate

Attention head 0: (𝑞𝑖
0, 𝑘𝑖

0, 𝑣𝑖
0;𝑾𝑞

0 ,𝑾𝑘
0 ,𝑾𝑣

0)

• Multi-head self attention

– Multiple self-attention modules in parallel

23

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention

• Typically, the output of the multi-head self attention is
passed through one or more regular feedforward layers

– Affine layer followed by a non-linear activation such as

ReLU
24

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention

𝒚0 𝒚1 𝒚2 𝒚3 𝒚4

MLP

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

25

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention

𝒚0 𝒚1 𝒚2 𝒚3 𝒚4

MLP

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)

MULTI-HEAD SELF ATTENTION BLOCK

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

26

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention Block

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)

MULTI-HEAD SELF ATTENTION BLOCK

• The encoder can include many layers of such

blocks

• No need for recurrence…
27

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮

• Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocksBut this
still ignores relative position

– A context word one word away is different from one 10 words away

– The attention framework does not take distance into context
28

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮

• Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocks

• But this still ignores relative position

– A context word one word away is different from one 10 words away

– The attention framework does not take distance into consideration
29

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮

• Note that the inputs are actually word

embeddings

• We add a “positional” encoding to them to

capture the relative distance from one another
30

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

Word
Embeddings

31

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Word
Embeddings

Positional Encoding

• Note that the inputs are actually word

embeddings

• We add a “positional” encoding to them to

capture the relative distance from one another

• Positional Encoding: A sequence of vectors 𝑃0, … , 𝑃𝑁, to encode position

– Every vector is unique (and uniquely represents time)

– Relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 only depends on the distance between
them

𝑃𝑡+𝜏 = 𝑀𝜏𝑃𝑡

• The linear relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 enables the net to learn shift-
invariant “gap” dependent relationships 32

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Word
Embeddings

Positional Encoding

Positional Encoding

• A vector of sines and cosines of a harmonic series of frequencies

– Every 2𝑙-th component of 𝑃𝑡 is sin 𝜔𝑙𝑡

– Every 2𝑙 + 1-th component of 𝑃𝑡 is cos𝜔𝑙𝑡

• Never repeats

• Has the linearity property required
33

regenerate

𝑃𝑡 =

sin𝜔1𝑡
cos𝜔1𝑡
sin𝜔2𝑡
cos𝜔2𝑡

⋮
sin𝜔𝑑/2𝑡

sin𝜔𝑑/2𝑡

𝜔𝑙 =
1

100002𝑙/𝑑

𝑃𝑡+𝜏 = 𝑀𝜏𝑃𝑡

𝑀𝜏 = 𝑑𝑖𝑎𝑔
cos𝜔𝑙𝜏 sin𝜔𝑙𝜏
−sin𝜔𝑙𝜏 cos𝜔𝑙𝜏

, 𝑙 = 1…𝑑/2

• The linear relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 enables the
net to learn shift-invariant “gap” dependent relationships

34

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
35

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
36

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

Multi-head
Attention

Encoder Decoder

Can we use self attention to replace
recurrence in the decoder?

Self attention and masked self
attention

• Self attention in encoder: Can use input

embedding at time t+1 and further to compute

output at time t, because all inputs are available

37

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4
wt-3

wt-2

wt-1

+

xt+1

wt+1wt

Self attention and masked self
attention

• Self attention in decoder: Decoder is sequential

– Each word is produced using the previous word as input

– Only embeddings until time t are available to compute the
output at time t

• The attention will have to be “masked”, forcing attention
weights for t+1 and later to 0

38

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4

wt-3 wt-2

wt-1

+

wt

Masked self-attention block

• The “masked self attention block” includes an MLP after the
masked self attention

– Like in the encoder

39

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

Masked Self Attention

MLP

𝑜𝑖 =

𝑗=0

𝑖−1

𝑤𝑖𝑗𝑣𝑗
𝑒𝑖𝑗 = 𝑞𝑖

𝑇𝑘𝑗

𝑤𝑖0, … , 𝑤𝑖𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖0, … , 𝑒𝑖𝑖)

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖

Masked multi-head self-attention

• The “masked multi-head self attention block” includes multiple
masked attention heads

– Like in the encoder

41

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑖−1
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

Masked attention head 0: (𝑞𝑖
0, 𝑘𝑖

0, 𝑣𝑖
0;𝑾𝑞

0 ,𝑾𝑘
0 ,𝑾𝑣

0)

Masked multi-head self-attention
block

• The “masked multi-head self attention block” includes multiple
masked attention heads

– Like in the encoder

42

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑖−1
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

Masked attention head 0: (𝑞𝑖
0, 𝑘𝑖

0, 𝑣𝑖
0;𝑾𝑞

0 ,𝑾𝑘
0 ,𝑾𝑣

0)

MLP

Masked multi-head self-attention
block

• The “masked multi-head self attention block” includes multiple
masked attention heads, followed by an MLP

– Like in the encoder

43

Masked Multi-head Self Attention block𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑖−1
𝑎)

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

44

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

Multi-head
Attention

Encoder Decoder

Masked Multi-head Self Attention Block

⋮

Masked Multi-head Self Attention Block

Transformer: Attention is all you need

• Transformer: A sequence-to-sequence model that replaces
recurrence with positional encoding and multi-head self attention

– “Attention is all you need”

45

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information

processing systems. 2017.

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost.
46

From “Attention is all you need”

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost.
47

From “Attention is all you need”

Why so good? Why so fast?

Recap: Vanishing/exploding gradients

48

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁. 𝛻𝑓𝑁−1.𝑊𝑁−1…𝛻𝑓𝑘+1𝑊𝑘+1

• RNNs are just very deep networks

• LSTMs mitigate the problem at the cost of 3x more matrix
multiplications

• Transformers get rid of it! To encode a full sentence, they have way
fewer layers than an unrolled RNN.

• The same goes with the vanishing memory issue to an extent.

Processing order

• Computing 𝑌(𝑇) requires 𝑌(𝑇 − 1)…

• Which requires 𝑌(𝑇 − 2), etc…

• RNN inputs must be processed in order →
slow implementation

49

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

Processing order

• 𝑞𝑛, 𝑘𝑛, 𝑣𝑛 can be computed separately.

• 𝑛2 < 𝑞𝑛, 𝑘𝑛 > dot products to compute.

• Self attention is easy to compute in parallel →
Faster implementations 50

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

Softmax

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost.
51

From “Attention is all you need”

GPT

• GPT uses only the decoder of the transformer as an LM
– “Transformer w/o aux LM”

• Large performance improvement in many tasks
52

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

GPT

• Add Task conditioning: put the nature of your task in the input (not just
LM)

• Parameters x1000
→ GPT-3 : Generalizes to more tasks, not just more inputs! 53

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

BERT

• Bert: Only uses encoder of transformer to derive word and sentence
embeddings

• Trained to “fill in the blanks”
• This is representation learning (more next lecture) 54

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models

– “Transformers”

– Requires “positional encoding” to capture positional
information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction…

55

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models

– “Transformers”

– Requires “positional encoding” to capture positional
information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction… and even computer vison problems!

56

Vision Transformers

• Divide your image in patches with pos. encodings

• Apply Self-Attention!

→ Sequential and image problems are similar when using
transformers

57

Dosovitskiy et al, An
Image is Worth 16x16
Words: Transformers
for Image Recognition
at Scale, 2020

Impact of Transformers

• Transformers have played a major role in the
“uniformization” of DL-based tasks:

– Find a pretrained “BERT-like” transformer (Text, Image, Speech)

– Fine-tune on your task – or not! (Prompting…)

• This has helped democratize Deep Learning considerably

• But…

58

Caveat 1

• Not all transformers are the same: Big/small,

fast/slow, mono-/multilingual, contrastive/

generative, regressive/autoencoding…

• Pick the right one!

59

Caveat 2

• Transformers are not always the right choice.

• They often require more parameters than

LSTMs at equal performance

→ Tricky on small hardware (phones, IoT, etc)

60

Topics for the week

• Transformers

• GNNs

61

Input structure

• We’ve seen models for

– Static, fixed-sized inputs

• MLP

– Shift invariant pattern recognition

• CNN

– Inputs arranged in a sequence

• RNN

• What about Graph-structured inputs?

62

What is a graph?

• A structured representation of sets of entities
with pair-wise interactions

63

C

E
D

A
B

What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (E)

• System : Network, Graphs (G)

• Node Attributes : Feature vectors (X)

64

C

E
D

A
B

What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (G)

• Node Attributes : Feature vectors (X)

65

C

E
D

A
B

What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (𝐺)

• Node Attributes : Feature vectors (X)

66

C

E
D

A
B

𝐺 = (𝑉, 𝐸)

What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (𝐺)

• Node (and edge) Attributes : Feature vectors (𝑋)

67

C

E
D

A
B

𝐺 = (𝑉, 𝐸)

Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks: Nodes are people, links are connections

– World wide web: Sites point to one another

– Citation networks: Papers cite one another

– Molecules: Atoms and their connections
68

Social Networks

Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks: Nodes are people, links are connections

– World wide web: Sites point to one another

– Citation networks: Papers cite one another

– Molecules: Atoms and their connections
69

Social Networks
World Wide Web or
Citation Networks

Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks: Nodes are people, links are connections

– World wide web: Sites point to one another

– Citation networks: Papers cite one another

– Molecules: Atoms and their connections
70

Social Networks
World Wide Web or
Citation Networks

Molecules

Representing data as graphs

• Any data with relational structure can be
represented as a graph

– Data instances with pair-wise relations

• Like the examples we just saw

• And other, more surprising instances

71

Surprising graphs

• Images are graphs!

– Nodes are pixel positions

• Pixel values are node attributes

– Relations are adjacency

• Each node is connected to the four adjacent nodes

72

Directed and undirected edges

• Edges in a graph can be directed or undirected

– An undirected edge is actually an edge that points both ways

• We will assume directed edges, but everything generalizes
to undirected graphs

73

C

E

D

A
B C

E

D

A
B

Recap: Data can be represented as
graphs

• Many types of data can be represented as graphs

– With nodes representing instances and edges representing pair-wise
relationships

– Even images and time series can be viewed as graphs

• Classification and prediction tasks can also be performed on graphs

74

Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling
salesman problem

75

NLP or CV?

Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems, predicting bond types

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling
salesman problem

76

Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems, predicting bond types

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling
salesman problem

77

Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling
salesman problem

78

Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling salesman problem

79

All of these tasks can be performed using Graph Neural Networks

Graph Neural Nets
(through an example)

• Given a citation network, classify a paper topic
into either Natural Language Processing (NLP)
or Computer Vision (CV) paper.

– Based on its content and its citations

• Problem of node classification (NLP or CV)

80

Step 0: Setup

• Graph representing a citation network with labels

• Each node has a feature vector initialized with
some heuristic

– E.g. word count vectors

81

C

E
D

A
B

NLP

NLP

NLP

CV

CV

Step 0: Setup

• Graph representing a citation network with labels

• Each node has a feature vector

– E.g. word count vectors

• Objective: Learn to compute an embedding for each node
in the graph from the node features and graph structure

82

C

E
D

A
B

NLP

NLP

NLP

CV

CV

Step 0: Setup

• Graph : 𝐺 = (𝑉, 𝐸)

• Node features: 𝑋 ∈ 𝑅𝑑×|𝑉|

• To estimate : embeddings 𝑧𝑢 for all nodes 𝑢 ∈ 𝑉
83

C

E
D

A
B

NLP

NLP

NLP

CV

CV

Step 0: Setup

• We will use a multi-layer network which also computes
intermediate values:

• Intermediate terms

– 𝑘th-layer node activation ℎ𝑢
𝑘 ∀ 𝑢 ∈ 𝑉

– 𝑘th-layer edge activation ℎ𝑢,𝑣
𝑘 ∀ 𝑢, 𝑣 ∈ 𝑉

84

C

E
D

A
B

NLP

NLP

NLP

CV

CV

Step 0: Setup

• We will use a multi-layer network which also computes
intermediate values:

• Intermediate terms

– Kth-layer node activation ℎ𝑢
𝑘 ∀ 𝑢 ∈ 𝑉

– Kth-layer edge activation ℎ𝑢,𝑣
𝑘 ∀ 𝑢, 𝑣 ∈ 𝑉 85

C

E
D

A
B

NLP

NLP

NLP

CV

CV

For node classification, only need node embeddings
(but discussion generalizes to link-embedding
models)

Step 1: Update node vectors

• Next step: Update all the node vectors using “context” information from
all their neighbors

• Aggregate information from neighboring nodes to compute an incoming
“message” 𝑚𝑢

𝑘

• Update the activation ℎ𝑢
𝑘 at each node by combining ℎ𝑢

𝑘 with the message
𝑚𝑢

𝑘 to obtain the updated vector ℎ𝑢
𝑘+1

86

C

E
D

A
B

NLP

NLP

NLP

CV

CV

Step 1: Update node vectors

• AGGREGATE is an order-invariant operation, such as sum or max

• UPDATE is typically a regular MLP layer (linear layer plus activation)
87

C

E
D

A
B

NLP

NLP

NLP

CV

CV

𝑚𝑢
𝑘 = AGGREGATEk {ℎ𝑣

𝑘 , ∀𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)}

ℎ𝑢
𝑘+1 = UPDATEk ℎ𝑢

𝑘 , 𝑚𝑢
𝑘

Step 1.1: AGGREGATE (with sum)

88

C

E
D

A
B

𝑚𝑢
𝑘 =

𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)

ℎ𝑣
𝑘

𝑚𝐴
𝑘 = ℎ𝐵

𝑘 + ℎ𝐶
𝑘 + ℎ𝐸

𝑘

Step 1.1: AGGREGATE (with sum)

89

C

E
D

A
B

𝑚𝑢
𝑘 =

𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)

ℎ𝑣
𝑘

• Compute messages for all nodes

– Some nodes may have zero message in a directed graph

Step 1.2: UPDATE

90

C

E
D

A
B

ℎ𝑢
𝑘+1 = 𝜎 𝑊𝑠𝑒𝑙𝑓

𝑘 ℎ𝑢
𝑘 +𝑊𝑚𝑠𝑔

𝑘 𝑚𝑢
𝑘 + 𝑏𝑘

Learnable parameters

• Updates may change the size of the embeddings

• Typical activation functions are tanh and ReLU

Original embedding

message

Step 1: Estimating embeddings

91

C

E
D

A
B

• After 𝐾 layers of aggregate/update steps, we

obtain our final embedding

𝑧𝑢 = 𝑚𝑢
𝐾

𝑚𝑢
𝑘 = AGGREGATEk {ℎ𝑣

𝑘 , ∀𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)}

ℎ𝑢
𝑘+1 = UPDATEk ℎ𝑢

𝑘 , 𝑚𝑢
𝑘

Step 2: Classification

92

C

E
D

A
B

• We can add a final classification layer to the

embedding for the final classification

NLP/CV ?
NLP/CV ?

NLP/CV ?

NLP/CV ?NLP/CV ?

Model Parameters

93

C

E
D

A
B

ℎ𝑢
𝑘+1 = 𝜎 𝑊𝑠𝑒𝑙𝑓

𝑘 ℎ𝑢
𝑘 +𝑊𝑚𝑠𝑔

𝑘 𝑚𝑢
𝑘 + 𝑏𝑘

Learnable parameters

• The learnable parameters of the network are

the self and message weights and bias, for all

the 𝐾 layers

Training and Inference

94

• The divergence with respect to the ground truth labels of
nodes (on training data) can minimized via
backpropagation, to learn the parameters

• Nodes on novel graphs can now be labelled using these
parameters for inference

C

E
D

A
B

Div(YC,NLP)
Div(YA,NLP)

Div(YB,NLP)

Div(YE,CV)
Div(YD,CV)

NLP NLP

NLP

CV

CV

GNN uses

• Molecular properties/materials chemistry/drug design

• Social network analysis

• Maps…

95

Breakthrough in GNN

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Breakthrough in GNN

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Next up: Representation learning

98

