Deep Learning
Transformers and GNNs



Recap

 We've seen
— MLPs,
— CNNs as scanning MLPs,
— Recurrent nets as MLPs with time recurrence
— Attention models

 What are the generalizations and extensions

— Attention : Transformers
— CNN : Graph networks
— Autoencoders : Generative models — VAEs and GANSs
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Recap: Seq2Seq models

Ich habe einen apfel gegessen <eos>
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I ate an apple<eos><sos> Ich habe einen apfel gegessen

* The input sequence feeds into a recurrent structure
 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

* Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs



Recap: Attention Models
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Ich habe einen apfel gegessen <eos>

| ate  an apple <eos> <sos> Ich habe einen apfel gegessen

* Encoder recurrently produces hidden representations of input word
sequence

 Decoder recurrently generates output word sequence

— For each output word the decoder uses a weighted average of the
hidden input representations as input “context”, along with the
recurrent hidden state and the previous output word



Recap: Attention Models
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Ich habe einen apfel gegessen <eos>

| ate  an apple <eos> <sos> Ich habe einen apfel gegessen

* Problem: Because of the recurrence, the hidden representation for any word is
also influenced by all preceding words
— The decoder is actually paying attention to the sequence, and not just the word

* |f the decoder is automatically figuring out which words of the input to attend to
at each time, is recurrence in the input even necessary?



Non-recurrent encoder

Ich habe einen apfel gegessen <eos>

.—>30 » S1 S 1S3 > S, » St

ho [ hy [h,| [hsl [hy

A Y A A 'y

| ate  an apple <eos> <sos> Ich habe einen apfel gegessen

e Modification: Let us eliminate the recurrence
in the encoder



Non-recurrent encoder

Ich habe einen apfel gegessen <eos>
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apple <eos> <sos> Ich habe einen apfel gegessen

e But this will eliminate context-specificity in the encoder embeddings
— The embedding for “an” must really depend on the remaining words

n u

* |t could be translated to “ein”, “einer”, or “eines” depending on the context.

e Solution: Use the attention framework itself to introduce context-
specificity in embeddings



Recap: Non-recurrent encoder
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Ich habe einen apfel gegessen <eos>

apple <eos> <sos> Ich habe einen apfel gegessen

The encoder in a sequence-to-sequence model can be composed
without recurrence.

Use the attention framework itself to introduce context-specificity
in embeddings

— “Self” attention 10



Self attention
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I ate an apple  <eos>

* First, for every word in the input sequence we
compute an initial representation

— E.g. using a single MLP layer



Self attention

q; = Wyh;
ki = Wyh;
VU = thi
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I ate an apple <eos>

 Then, from each of the hidden representations, we
compute a query, a key, and a value.

— Using separate linear transforms

— The weight matrices W, Wy and I, are learnable parameters

12



Self Attention

v eij =qi k;
qi = q“ Wio, -y Wiy = SOftmax(eiOJ seny eiN)
ki = Wih;
V; = thi

w;;j = attn(q;, ko.n)

I ate an apple <eo0s>

For each word, we compute an attention weight between that word
and all other words

— The raw attention of the ith word to the jth word is a function of
query q; and key k;

— The raw attention values are put through a softmax to get the final

attention weights .



q;, = Wg,h;
ki = Wyh;
v, = W,h;

w;; = attn(q;, ko.n)

Oi = Z Wijvj
Ji

I ate an apple <eo0s>

 The updated representation for the word is
the attention-weighted sum of the values for
all words

— Including itself

14



Wo; = attn(qo, Ko.n)

q;, = Wg,h;
ki - thi
v, = W,h;

ate an apple

\
h,

<e0s>

 Compute query-key-value sets for every word

* For each word

— Using the query for that word, compute attention weights for all words

using their keys

— Compute updated representation for the word as attention-weighted

sum of values of all words

15



wy; = attn(qqy, kKo.v)| |01 = Z W1;Vj
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q;, = Wg,h;
ki - thi
v, = W,h;
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I ate an apple <eo0s>
 Compute query-key-value sets for every word

* For each word
— Using the query for that word, compute attention weights for all words
using their keys
— Compute updated representation for the word as attention-weighted
sum of values of all words iy
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q;, = Wg,h;
ki - thi
v, = W,h;
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I ate an apple <eo0s>
 Compute query-key-value sets for every word

* For each word
— Using the query for that word, compute attention weights for all words
using their keys
— Compute updated representation for the word as attention-weighted
sum of values of all words .



q;, = Wg,h;

ki = thi

v, = W,h;
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I ate an apple <eo0s>
 Compute query-key-value sets for every word

* For each word
— Using the query for that word, compute attention weights for all words
using their keys
— Compute updated representation for the word as attention-weighted
sum of values of all words s



q;, = Wg,h;

ki = thi

v, = W,h;
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I ate an apple <eo0s>
 Compute query-key-value sets for every word

* For each word
— Using the query for that word, compute attention weights for all words
using their keys
— Compute updated representation for the word as attention-weighted
sum of values of all words .



9 = Wohy 0; = Z Wijvj
ki - thi ]
v, = Wyh,
0y 01 0; 03 0,4
f f f f f
Self Attention
4 4 4 4 4

hy hy h, hs h,

2 2 2 2 yy

I ate an apple <eo0s>
 Compute query-key-value sets for every word
* For each word

— Using the query for that word, compute attention weights for all words
using their keys

— Compute updated representation for the word as attention-weighted
sum of values of all words



w;; = attn(q;, Ko.n)
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I ate an apple <eo0s>

This is a "single-head" self-attention block

21



Concatenate
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 We can have multiple such attention “heads”
— Each will have an independent set of queries, keys and values
— Each will obtain an independent set of attention weights

Potentially focusing on a different aspect of the input than other heads

— Each computes an independent output

* The final output is the concatenation of the outputs of these attention heads

e  “MULTI-HEAD ATTENTION” (actually Multi-head self attention)
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q; = Wih;
ki' = Wih;
Ul-a = WlaJhl

wij = attn(qi’, kg.n)
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| ate an apple <e0s>

e Multi-head self attention

— Multiple self-attention modules in parallel



q; = Wih;

k} = Wih,
MLP
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| ate an  apple <e0s>

* Typically, the output of the multi-head self attention is
passed through one or more regular feedforward layers

— Affine layer followed by a non-linear activation such as
RelLU



MULTI-HEAD SELF ATTENTION BLOCK
q; = Wih;
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| ate an apple <eos>

* The entire unit, including multi-head self-

attention module followed by MLP is a multi-

head self-attention block
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q; = Wih;
ki' = Wih;
Ul-a = WlaJhl

wij = attn(qi’, kg.n)
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MULTI-HEAD SELF ATTENTION BLOCK
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I ate an apple <e0s>

* The entire unit, including multi-head self-
attention module followed by MLP is a multi-

head self-attention block
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I ate an apple <eos>

 The encoder can include many layers of such
blocks

* No need for recurrence...

27



I ate an apple <eos>

Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocks

28



I ate an apple <eos>

Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocks
But this still ignores relative position
— A context word one word away is different from one 10 words away
— The attention framework does not take distance into consideration

29



Word
Embeddings |

ate an apple <e0s>

* Note that the inputs are actually word
embeddings

30
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* Note that the inputs are actually word
embeddings

* We add a “positional” encoding to them to
capture the relative distance from one another



Word
Embeddings
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Multi-head Self Attention Block
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* Positional Encoding: A sequence of vectors Py, ..., Py, to encode position
— Every vector is unique (and uniquely represents time)

ate an apple <e0s>

Positional Encoding

— Relationship between P; and P; ., only depends on the distance between

them

Prir = M Py

* The linear relationship between P, and P;,; enables the net to learn shift-
invariant “gap” dependent relationships
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Positional Encoding

regenerate

Sin wgq /ot

Sinwg/pt)

1

“1U'= 700002074

M, = diag(

|

Piyr = M P;

COSw;T Sinw;T
—sin w;T CcosSw;T

],l=1...d/2>

A vector of sines and cosines of a harmonic series of frequencies
— Every 2[-th component of P, is sin w;t

— Every 21 + 1-th component of P, is cos w;t

Never repeats

Has the linearity property required

33




Encoder : Decoder
|

Ich habe einen apfel gegessen<eos>
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I ate an  apple <eos>

* The linear relationship between P; and P;,, enables the
net to learn shift-invariant “gap” dependent relationships
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Encoder Decoder

Ich habe einen apfel gegessen<eos>

Multi-head
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<sos> Ich habe einen apfel gegessen

I ate an  apple <eos>

* The self-attending encoder!!
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Encoder Decoder

Ich habe einen apfel gegessen<eos>

|
Multi-head

A A A A A
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<sos> Ich habe einen apfel gegessen

Can we use self attention to replace
recurrence in the decoder?

I ate an  apple <eos>

* The self-attending encoder!!
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Self attention and masked self
attention ﬁyt
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N N W A R
< - /= -

. i -2 i Xe1 X

t+1

e Self attention in encoder: Can use input
embedding at time t+1 and further to compute
output at time t, because all inputs are available
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Self attention and masked self
attention

» Self attention in decoder: Decoder is sequential
— Each word is produced using the previous word as input

— Only embeddings until time t are available to compute the
output at time t

* The attention will have to be “masked”, forcing attention
weights for t+1 and later to 0

38




Masked self-attention block

q; = Wqh |
ki =Wyh| |ej=4ai'k; =
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* The “masked self attention block” includes an MLP after the
masked self attention

— Like in the encoder



Masked multi-head self-attention

q; = Wgh;
kia - Wﬁhl
’Ulq = Wghi

wij = attn(q’, kg.i—q)
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]

Masked attention head O: (q?, k?, vlp; W?p W,‘l, WS)
T T T T T

 The “masked multi-head self attention block” includes multiple
masked attention heads

— Like in the encoder
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Masked multi-head self-attention

q; = Wgh;
kia - Wﬁhl
’Ulq = Wghi
wii = attn(qf, kg,

block

Masked attention head O: (q?, k?, vlp; W?p W,‘l, WS)

T T T T T

 The “masked multi-head self attention block” includes multiple
masked attention heads

— Like in the encoder
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Masked multi-head self-attention
block
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 The “masked multi-head self attention block” includes multiple
masked attention heads, followed by an MLP

— Like in the encoder
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Decoder

Encoder

Ich-, habe.einen- apfel - gegessen<eos>

<sos> | Ich 'habe e¢inen | apfel gegessen

I ate an  apple <eos>
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Transformer: Attention is all you need

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems. 2017.

Qutput
Probabilities

Feed
Forward
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| SSEEEN—
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At
— J
Positional Positional
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Input Qutput
Embedding Embedding
Inputs Qutputs
(shifted right)

Transformer: A sequence-to-sequence model that replaces
recurrence with positional encoding and multi-head self attention

— “Attention is all you need”
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Transformer

From “Attention is all you need”

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 246  39.92 2.3-10% 1.4.10%°
ConvS2S [9] 25.16  40.46 9.6-10'® 1.5.10%°
MOoE [32] 26.03  40.56 2.0-10¥ 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-102%0
GNMT + RL Ensemble [38] 2630  41.16 1.8-102° 1.1.10%
ConvS2S Ensemble [9] 2636  41.29 7.7-10°  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%

performance as state-of-art translation models

The last row in the table shows transformer performance
The final two columns show computational cost.

Transformer: tremendous decrease in model computation for similar
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Qutput
Probabilities

Transformer

From “Attention is all you need”

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the

English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 246  39.92 2.3-101% 1.4.10%°
ConvS2S [9] 25.16  40.46 9.6-10'® 1.5.102°
MOoE [32] 26.03  40.56 2.0-10¥ 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-102%0
GNMT + RL Ensemble [38] 2630  41.16 1.8-1020 1.1-10%

41.29

38.1
41.8

ConvS2S Ensemble [9]

Transformer (base model)
Transformer (big)

28.4

. 1021

Why so good?

performance as state-of-art translation models
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_t At 4
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Input Qutput
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(shifted right)
[ J
[ J
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The last row in the table shows transformer performance
The final two columns show computational cost.

Why so fast?

Transformer: tremendous decrease in model computation for similar



Recap: Vanishing/exploding gradients
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* RNNs are just very deep networks

 LSTMs mitigate the problem at the cost of 3x more matrix
multiplications

* Transformers get rid of it! To encode a full sentence, they have way
fewer layers than an unrolled RNN.

 The same goes with the vanishing memory issue to an extent. 48



Processing order
!

Y (0) Y(1) Y(2) Y(T 2) Y(T-1) Y(T)

TV
R - B

X(0) X(1) X(2) X(T-2) X(T-1) X

Computing Y (T) requires Y(T — 1)...
* Which requires Y (T — 2), etc...

RNN inputs must be processed in order =2
slow implementation
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Processing order

!

\6(0/@ ak

h, h, h; h; h,
3 3 3 3 7y

I ate an apple <eo0s>

* gn, k,, v, can be computed separately.
e n% < q,,k, > dot products to compute.

 Self attention is easy to compute in parallel -2
Faster implementations .



Qutput
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Transformer

From “Attention is all you need”

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 246  39.92 2.3-10% 1.4.10%°
ConvS2S [9] 25.16  40.46 9.6-10'® 1.5.10%°
MOoE [32] 26.03  40.56 2.0-10¥ 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-102%0
GNMT + RL Ensemble [38] 2630  41.16 1.8-102° 1.1.10%
ConvS2S Ensemble [9] 2636  41.29 7.7-10°  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%

performance as state-of-art translation models

The last row in the table shows transformer performance
The final two columns show computational cost.

Transformer: tremendous decrease in model computation for similar
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GPT

Qutput
Probabilities

Alec Radford et. al., Improving Language Understanding by Generative Pre-

Training
Feed . . . . . .
Forward Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
l_1=|‘-i of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

(_C N Add & Norm

—~L{Add&Noh | Multi-Head
Feed Attention Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE
Forward] T 7 Nx (mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
— e Transformer w/ aux LM (full) 74.7 454 913 823 820 703 818 881 560

Nx Add & Norfn ) . —
- Masked Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
i Mult Head Transformer w/o aux LM 75.0 479 920 849 832 698 8l1 869 544
T St LSTM w/ aux LM 69.1 303 905 83.2 71.8 681 737 81.1  54.6
— J v,
Positional D ¢ Positional
Encoding Encodin
Input Qutput
Embedding Embedding
Inputs Qutputs
hifted right)

* GPT uses only the decoder of the transformer as an LM
— “Transformer w/o aux LM”

* Large performance improvement in many tasks
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GPT

Qutput
Probabilities

Alec Radford et. al., Improving Language Understanding by Generative Pre-

Training
Feed . . . . . .
Forward Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
l_1=|‘-i of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

(_C N Add & Norm

—~L{Add&Noh | Multi-Head
Feed Attention Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE
Forward] T 7 Nx (mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
— e Transformer w/ aux LM (full) 74.7 454 913 823 820 703 818 881 560

Nx Add & Norfn ) . —
- Masked Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
i Mult Head Transformer w/o aux LM 75.0 479 920 849 832 698 8l1 869 544
T St LSTM w/ aux LM 69.1 303 905 83.2 71.8 681 737 81.1  54.6
— J v,
Positional D ¢ Positional
Encoding Encodin
Input Qutput
Embedding Embedding
Inputs Qutputs
hifted right)

* Add Task conditioning: put the nature of your task in the input (not just
LM)

* Parameters x1000
- GPT-3 : Generalizes to more tasks, not just more inputs! 53



Qutput
Probabilities

Feed
Forward

Y (Add & Nom ﬁ

) Muft-Head
Feed Attention
Forward 7 Nx
| —
Nix ([4dd & Norm_J—,
"’M‘.M Masked
Multi-Head ulti-Head
Attention Attention
At /)
— J ¥,
ositional D ¢ Positional
coding Encoding
Input Qutput
Embedding Embedding
Inputs Qutputs
(shifted right)

BERT

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgasE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTarGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

* Bert: Only uses encoder of transformer to derive word and sentence

embeddings

 Trained to “fill in the blanks”

e This is representation learning (more next lecture)
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Attention is all you need

Self-attention can effectively replace recurrence in
sequence-to-sequence models

— “Transformers”

— Requires “positional encoding” to capture positional
information

Can also be used in regular sequence analysis settings as a
substitute for recurrence

Currently the state of the art in most sequence
analysis/prediction...



Attention is all you need

Self-attention can effectively replace recurrence in
sequence-to-sequence models

— “Transformers”

— Requires “positional encoding” to capture positional
information

Can also be used in regular sequence analysis settings as a
substitute for recurrence

Currently the state of the art in most sequence
analysis/prediction... and even computer vison problems!



Vision Transformers

Vision Transformer (ViT)

[ |
|
|
MLP \ I
Head I
|
Transformer Encoder I :
|
e l 3
s+ 00 @) Hodd | |[Tme
|
|
|
|
|
1

Transformer Encoder

A

qu_)‘;
| wmp |

om )

Extra learnable . . .
[class] embedding [ Linear Projection of Flattened Patches ] A A
SHE Norn

1 O I
wER-  -REHEHENEESE
o

Embedded
Patches

Dosovitskiy et al, An
Image is Worth 16x16
Words: Transformers
for Image Recognition
at Scale, 2020

* Divide your image in patches with pos. encodings

* Apply Self-Attention!

- Sequential and image problems are similar when using

transformers
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Impact of Transformers

Transformers have played a major role in the
“uniformization” of DL-based tasks:
— Find a pretrained “BERT-like” transformer (Text, Image, Speech)
— Fine-tune on your task — or not! (Prompting...)

This has helped democratize Deep Learning considerably

distilgpt2
[ ]

e All models

& huggingface.co/models bert-base-uncased

But...



Caveat 1

* Not all transformers are the same: Big/small,
fast/slow, mono-/multilingual, contrastive/

generative, regressive/autoencoding...

* Pick the right one!



Caveat 2

* Transformers are not always the right choice.

* They often require more parameters than
LSTMs at equal performance

- Tricky on small hardware (phones, 10T, etc)



Topics for the week

* Transformers

* GNNs




Input structure

e \We’ve seen models for
— Static, fixed-sized inputs
e MLP

— Shift invariant pattern recognition
* CNN

— Inputs arranged in a sequence
e RNN

* What about Graph-structured inputs?



What is a graph?

oo

e A structured representation of sets of entities
with pair-wise interactions
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What is a graph?

* Objects/Data points : Nodes, Vertices (V)
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What is a graph?

o2 —o

* Objects/Data points : Nodes, Vertices (V)
* Interactions/Relations : Links, Edges (E)
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What is a graph?

oo

G = (V,E)

* Objects/Data points : Nodes, Vertices (V)
* Interactions/Relations : Links, Edges (E)

* System : Network, Graphs (G)

66



What is a graph?

oo

G = (V,E)

Objects/Data points : Nodes, Vertices (V)
Interactions/Relations : Links, Edges (E)

System : Network, Graphs (&)

Node (and edge) Attributes : Feature vectors (X)
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Representing data as graphs

.
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Social Networks

Many types of data are naturally represented as graphs
— Social networks: Nodes are people, links are connections
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Representing data as graphs
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Social Networks

World Wide Web or
Citation Networks

 Many types of data are naturally represented as graphs
— Social networks: Nodes are people, links are connections
— World wide web: Sites point to one another
— Citation networks: Papers cite one another



Representing data as graphs

T
@ N N
A M2
@ - 0O~ N N
@ . ) @ ©) I
& |'/_ S B ﬂ
\-/ @ Molecules

Social Networks

World Wide Web or
Citation Networks

 Many types of data are naturally represented as graphs
— Social networks: Nodes are people, links are connections
— World wide web: Sites point to one another
— Citation networks: Papers cite one another

— Molecules: Atoms and their connections .



Representing data as graphs

* Any data with relational structure can be
represented as a graph

— Data instances with pair-wise relations

* Like the examples we just saw
* And other, more surprising instances



Surprising graphs

@ QQ-Q-Q-Q-Q-Q.Q. ./

° Images are graphs!
— Nodes are pixel positions
* Pixel values are node attributes

— Relations are adjacency
* Each node is connected to the four adjacent nodes
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Directed and undirected edges

e Edges in a graph can be directed or undirected

— An undirected edge is actually an edge that points both ways

 We will assume directed edges, but everything generalizes
to undirected graphs
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Recap: Data can be represented as

graphs
P - J\IA,N/
o A\'T' | N)

® e
(™ \ @ { /'\
\f_:, l':(;)l =
)

 Many types of data can be represented as graphs

— With nodes representing instances and edges representing pair-wise
relationships

— Even images and time series can be viewed as graphs

* C(lassification and prediction tasks can also be performed on graphs
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Tasks on a graph

NLP or CV?

Node Classification : Topic Classification
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Tasks on a graph

\ON/
N
;\J\/D

orrlN

Node Classification : Topic Classification
Link Prediction : Recommendation Systems, predicting bond types
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Node Classification : Topic Classification
Link Prediction : Recommendation Systems, predicting bond types
Graph Classification : Image Classification
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Tasks on a graph

Node Classification : Topic Classification
Link Prediction : Recommendation Systems
Graph Classification : Image Classification

Also, various combinatorial optimization problems, e.g. travelling
salesman problem
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Tasks on a graph

Node Classification : Topic Classification
Link Prediction : Recommendation Systems
Graph Classification : Image Classification

Also, various combinatorial optimization problems, e.g. travelling salesman problem

All of these tasks can be performed using Graph Neural Networks
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Graph Neural Nets
(through an example)

* Given a citation network, classify a paper topic
into either Natural Language Processing (NLP)
or Computer Vision (CV) paper.

— Based on its content and its citations

* Problem of node classification (NLP or CV)



Step 0: Setup

NLP

é/’a

CV

NLP

. ©

CV

* Graph representing a citation network with labels
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Step 0: Setup

NLP

06

NLP
0.3
0.1
0.2

0

NLP o2

0.6
0
-0.4

0.2

0.2

0.2
0.2

CV

0.4

cV
Graph representing a citation network with labels

Each node has a feature vector

— E.g. word count vectors

Objective: Learn to compute an embedding for each node
in the graph from the node features and graph structure
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Step O: Setup

0.6
0s NLP

NLP e
0.6
. G/
. 0.2

0.2 CV

NLP

0.3
0.1
0.2

0.4
CV

* Graph:G = (V,E)
e Node features: X € RV

* To estimate : embeddings z, for all nodesu € V
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Step 0: Setup

0.6

NLP

0.2

NLP e
0.6
. G/

0.2

NLP
0.3
0.1
0.2

0

0.2

0.2
0.2

CV

-0.4

CV

* We will use a multi-layer network which also computes
intermediate values:

* Intermediate terms
— kth-layer node activation AKX Vu € V
— kth-layer edge activation hfj,v VuveVlV
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Step 0: Setup

0.6

NLP

0.2

NLP e
0.6
. G/

0.2

NLP
0.3
0.1
0.2

0.2

0.2

0.2

CV

0.4

CV

We will use a multi-laver network which also computes

intermediate valt For node classification, only need node embeddings
(but discussion generalizes to link-embeddin
9 9

Intermediate tery models)

—_—

@ayer node activation hX V u € D

— Kth-layer edge activation h{‘w Yu,velvlV
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Step 1: Update node vectors

NLP

0.6

NLP
0.3
0.1
0.2

0.2

NLP

0.6
0
-0.4

0.2

0.2

0.2 CV

-0.4

CV

Next step: Update all the node vectors using “context” information from
all their neighbors

Aggregate information from neighboring nodes to compute an incoming

“message” my

Update the activation hX at each node by combining h¥ with the message

mXk to obtain the updated vector hX+1 .



Step 1: Update node vectors

0.6

NLP

NLP
0.3
0.1
0.2

0.2

NLP

0.6
0
0.4

0.2

0.2

0.2

CV

-0.4

CV

m¥ = AGGREGATEX({h¥, vv € Neighbor(u)})

hk+1 = UPDATEX(hE, mk)

 AGGREGATE is an order-invariant operation, such as sum or max
e UPDATE is typically a regular MLP layer (linear layer plus activation)
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Step 1.1: AGGREGATE (with sum)

0.2
Io.s
|
o8 03
: 0.1
0.4 02
02
0.2
0

mk= ) kb

VENeighbor(u)

my = h% + h¥ + h¥
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Step 1.1: AGGREGATE (with sum)

mE= ) hE

vENeighbor(u)

 Compute messages for all nodes

— Some nodes may have zero message in a directed graph



message

Learnable parameters

* Updates may change the size of the embeddings

e Typical activation functions are tanh and RelU

90



Step 1: Estimatin@g embeddings
o—%—o!
@%E

mk = AGGREGATEk({h’,j, Vv € Neighbor(u)})

hk+1 = UPDATEX(hE, mk)

» After K layers of aggregate/update steps, we

obtain our final embedding

Zuzmtlf
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Step 2: Classification

% NLP/CY 7 % NLP/CV ?

% NLP/CV ? % NLP/CV ?

 We can add a final classification layer to the

embedding for the final classification
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Model Parameters

o—2—o

Learnable parameters X‘\

hitt = o(Wie shi + Wifsymi + b¥)

 The learnable parameters of the network are
the self and message weights and bias, for all
the K layers N



Training and Inference

Div(Y,,NLP)
% Div(Y,,NLP) B
ﬂ// \ﬂ% DiV(YB,NLP)

% Div(Y,,CV)
DIV(Y ,CV)

 The divergence with respect to the ground truth labels of
nodes (on training data) can minimized via
backpropagation, to learn the parameters

 Nodes on novel graphs can now be labelled using these
parameters for inference
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GNN uses

-
) “ Q e nn -~ Q
& o ? nJ ~ -0\ ’. jod 'D [5)
g: . - ﬂ an ﬂ "*IL o
, 8 i 2
QR g a ? P "oi*- L/
Ah -\. ;n“" &C :- 9 A
NH2 o X4 F RN »2a
As_‘ B ﬁ\-u g ." 7 ;ﬁ a
- ’ e , Py o) -
~a o o A Q ¥
a A a ~
9

* Molecular properties/materials chemistry/drug design
e Social network analysis

* Maps...
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Breakthrough in GNN

Predictions

Google Maps
API

Analysed Training

data

J

Google'Maps Candidate Google Maps
[EETR user routes PR
system A-+B

The model architecture for determining optimal routes and their travel time.

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks



https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
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Breakthrough in GNN

Google Maps ETA Improvements Around the World

Bangkok
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Next up: Representation learning



