
Deep Learning

Transformers and GNNs
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Recap

• We’ve seen 

– MLPs, 

– CNNs as scanning MLPs, 

– Recurrent nets as MLPs with time recurrence

– Attention models

• What are the generalizations and extensions

– Attention : Transformers

– CNN : Graph networks

– Autoencoders : Generative models – VAEs and GANs
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Topics for the week

• Transformers

• GNNs

• Representation learning

• Autoencoders
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Recap: Seq2Seq models

5

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
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<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Attention Models

• Encoder recurrently produces hidden representations of input word 
sequence

• Decoder recurrently generates output word sequence

– For each output word the decoder uses a weighted average of the 
hidden input representations as input “context”, along with the 
recurrent hidden state and the previous output word
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3𝒉−1

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4



𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Attention Models

• Problem: Because of the recurrence, the hidden representation for any word is 
also influenced by all preceding words
– The decoder is actually paying attention to the sequence, and not just the word

• If the decoder is automatically figuring out which words of the input to attend to 
at each time, is recurrence in the input even necessary?
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3𝒉−1

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4



𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Non-recurrent encoder

• Modification: Let us eliminate the recurrence 

in the encoder
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4



𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Non-recurrent encoder

• But this will eliminate context-specificity in the encoder embeddings

– The embedding for “an” must really depend on the remaining words
• It could be translated to “ein”, “einer”, or “eines” depending on the context.

• Solution:  Use the attention framework itself to introduce context-
specificity in embeddings
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4



𝑐5𝑐4𝑐2𝑐0 𝑐1 𝑐3

Recap: Non-recurrent encoder

• The encoder in a sequence-to-sequence model can be composed 
without recurrence.

• Use the attention framework itself to introduce context-specificity 
in embeddings

– “Self” attention 10

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

𝒉0 𝒉1 𝒉2 𝒉3

𝒔−1 𝒔0 𝒔1 𝒔2 𝒔3 𝒔4 𝒔5

𝒉4



Self attention

• First, for every word in the input sequence we 

compute an initial representation

– E.g. using a single MLP layer
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4



Self attention

• Then, from each of the hidden representations, we 
compute a query, a key, and a value.

– Using separate linear transforms

– The weight matrices 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 are learnable parameters  
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖



Self Attention

• For each word, we compute an attention weight between that word 
and all other words

– The raw attention of the 𝑖th word to the 𝑗th word is a function of 
query 𝑞𝑖 and key 𝑘𝑗

– The raw attention values are put through a softmax to get the final 
attention weights
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

𝑒𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗

𝑤𝑖0, … , 𝑤𝑖𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖0, … , 𝑒𝑖𝑁)



• The updated representation for the word is 

the attention-weighted sum of the values for 

all words

– Including itself 14

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0



• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤0𝑗 = 𝑎𝑡𝑡𝑛(𝑞0, 𝑘0:𝑁) 𝑜0 =

𝑗

𝑤0𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤1𝑗 = 𝑎𝑡𝑡𝑛(𝑞1, 𝑘0:𝑁) 𝑜1 =

𝑗

𝑤1𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑤2𝑗 = 𝑎𝑡𝑡𝑛(𝑞2, 𝑘0:𝑁) 𝑜2 =

𝑗

𝑤2𝑗𝑣𝑗

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words

𝒐3
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑞0 𝑣0𝑘0 𝑞1 𝑣1𝑘1 𝑞2 𝑣2𝑘2 𝑞3 𝑣3𝑘3 𝑞4 𝑣4𝑘4

𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖 Softmax

× × × ××

+

𝒐0

Self Attention

𝒐1 𝒐2

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words

𝒐3 𝒐4
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗
𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖
𝒐0

Self Attention

𝒐1 𝒐2 𝒐3 𝒐4

• Compute query-key-value sets for every word

• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗 = 𝑎𝑡𝑡𝑛(𝑞𝑖 , 𝑘0:𝑁)

𝑜𝑖 =

𝑗

𝑤𝑖𝑗𝑣𝑗
𝑞𝑖 = 𝑾𝑞ℎ𝑖

𝑘𝑖 = 𝑾𝑘ℎ𝑖

𝑣𝑖 = 𝑾𝑣ℎ𝑖
𝒐0

Self Attention

𝒐1 𝒐2 𝒐3 𝒐4

This is a “single-head” self-attention block



• We can have multiple such attention “heads”
– Each will have an independent set of queries, keys and values

– Each will obtain an independent set of attention weights

• Potentially focusing on a different aspect of the input than other heads

– Each computes an independent output

• The final output is the concatenation of the outputs of these attention heads

• “MULTI-HEAD ATTENTION” (actually Multi-head self attention) 22

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎 )

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Concatenate

Attention head 0: (𝑞𝑖
0, 𝑘𝑖

0, 𝑣𝑖
0;𝑾𝑞

0 ,𝑾𝑘
0 ,𝑾𝑣

0)



• Multi-head self attention

– Multiple self-attention modules in parallel

23

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎 )

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention



• Typically, the output of the multi-head self attention is 
passed through one or more regular feedforward layers

– Affine layer followed by a non-linear activation such as 

ReLU
24

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎 )

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention

𝒚0 𝒚1 𝒚2 𝒚3 𝒚4

MLP

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)



• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

25

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒐0 𝒐1 𝒐2 𝒐3 𝒐4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎 )

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention

𝒚0 𝒚1 𝒚2 𝒚3 𝒚4

MLP

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)

MULTI-HEAD SELF ATTENTION BLOCK



• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

26

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝑤𝑖𝑗
𝑎 = 𝑎𝑡𝑡𝑛(𝑞𝑖

𝑎 , 𝑘0:𝑁
𝑎 )

𝑜𝑖
𝑎 =

𝑗

𝑤𝑖𝑗
𝑎𝑣𝑗

𝑎

𝑞𝑖
𝑎 = 𝑾𝑞

𝑎ℎ𝑖

𝑘𝑖
𝑎 = 𝑾𝑘

𝑎ℎ𝑖

𝑣𝑖
𝑎 = 𝑾𝑣

𝑎ℎ𝑖

𝑜𝑖 = [𝑜𝑖
1; 𝑜𝑖

2; 𝑜𝑖
3; … ; 𝑜𝑖

𝐻]

Multi-head Self Attention Block

𝑦𝑖 = 𝑀𝐿𝑃(𝑜𝑖)

MULTI-HEAD SELF ATTENTION BLOCK



• The encoder can include many layers of such 

blocks

• No need for recurrence…
27

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮



• Recap: The encoder in a sequence-to-sequence model can replace 
recurrence through a series of “multi-head self attention” blocksBut this 
still ignores relative position

– A context word one word away is different from one 10 words away

– The attention framework does not take distance into context
28

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮



• Recap: The encoder in a sequence-to-sequence model can replace 
recurrence through a series of “multi-head self attention” blocks

• But this still ignores relative position

– A context word one word away is different from one 10 words away

– The attention framework does not take distance into consideration
29

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

Multi-head Self Attention Block

⋮



• Note that the inputs are actually word 

embeddings

• We add a “positional” encoding to them to 

capture the relative distance from one another
30

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

Word
Embeddings



31

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

Multi-head Self Attention Block

⋮

+ + + + +

Word
Embeddings

Positional Encoding

• Note that the inputs are actually word 

embeddings

• We add a “positional” encoding to them to 

capture the relative distance from one another



• Positional Encoding: A sequence of vectors 𝑃0, … , 𝑃𝑁, to encode position

– Every vector is unique (and uniquely represents time)

– Relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 only depends on the distance between 
them

𝑃𝑡+𝜏 = 𝑀𝜏𝑃𝑡

• The linear relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 enables the net to learn shift-
invariant “gap” dependent relationships 32

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4
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Positional Encoding

• A vector of sines and cosines of a harmonic series of frequencies

– Every 2𝑙-th component of 𝑃𝑡 is sin 𝜔𝑙𝑡

– Every 2𝑙 + 1-th component of 𝑃𝑡 is cos𝜔𝑙𝑡

• Never repeats

• Has the linearity property required
33

regenerate

𝑃𝑡 =

sin𝜔1𝑡
cos𝜔1𝑡
sin𝜔2𝑡
cos𝜔2𝑡

⋮
sin𝜔𝑑/2𝑡

sin𝜔𝑑/2𝑡

𝜔𝑙 =
1

100002𝑙/𝑑

𝑃𝑡+𝜏 = 𝑀𝜏𝑃𝑡

𝑀𝜏 = 𝑑𝑖𝑎𝑔
cos𝜔𝑙𝜏 sin𝜔𝑙𝜏
−sin𝜔𝑙𝜏 cos𝜔𝑙𝜏

, 𝑙 = 1…𝑑/2



• The linear relationship between 𝑃𝑡 and 𝑃𝑡+𝜏 enables the 
net to learn shift-invariant “gap” dependent relationships

34
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• The self-attending encoder!!
35
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• The self-attending encoder!!
36
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Can we use self attention to replace
recurrence in the decoder?



Self attention and masked self 
attention

• Self attention in encoder: Can use input 

embedding at time t+1 and further to compute 

output at time t, because all inputs are available

37
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Self attention and masked self 
attention

• Self attention in decoder: Decoder is sequential

– Each word is produced using the previous word as input

– Only embeddings until time t are available to compute the 
output at time t

• The attention will have to be “masked”, forcing attention 
weights for t+1 and later to 0

38
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Masked self-attention block

• The “masked self attention block” includes an MLP after the 
masked self attention

– Like in the encoder

39
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Masked Self Attention

MLP
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𝑘𝑖 = 𝑾𝑘ℎ𝑖
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Masked multi-head self-attention

• The “masked multi-head self attention block” includes multiple 
masked attention heads

– Like in the encoder

41
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Masked multi-head self-attention 
block

• The “masked multi-head self attention block” includes multiple 
masked attention heads

– Like in the encoder
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Masked multi-head self-attention 
block

• The “masked multi-head self attention block” includes multiple 
masked attention heads, followed by an MLP

– Like in the encoder
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Transformer: Attention is all you need

• Transformer: A sequence-to-sequence model that replaces 
recurrence with positional encoding and multi-head self attention

– “Attention is all you need”

45

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information 

processing systems. 2017.



Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost. 
46

From “Attention is all you need”



Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost. 
47

From “Attention is all you need”

Why so good? Why so fast?



Recap: Vanishing/exploding gradients

48

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁. 𝛻𝑓𝑁−1.𝑊𝑁−1…𝛻𝑓𝑘+1𝑊𝑘+1

• RNNs are just very deep networks

• LSTMs mitigate the problem at the cost of 3x more matrix 
multiplications

• Transformers get rid of it! To encode a full sentence, they have way 
fewer layers than an unrolled RNN.

• The same goes with the vanishing memory issue to an extent.



Processing order

• Computing 𝑌(𝑇) requires  𝑌(𝑇 − 1)…

• Which requires 𝑌(𝑇 − 2), etc…

• RNN inputs must be processed in order →
slow implementation

49

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)



Processing order

• 𝑞𝑛, 𝑘𝑛, 𝑣𝑛 can be computed separately.

• 𝑛2 < 𝑞𝑛, 𝑘𝑛 > dot products to compute.

• Self attention is easy to compute in parallel →
Faster implementations 50
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Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance

• The final two columns show computational cost. 
51

From “Attention is all you need”



GPT

• GPT uses only the decoder of the transformer as an LM
– “Transformer w/o aux LM”

• Large performance improvement in many tasks 
52

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training



GPT

• Add Task conditioning: put the nature of your task in the input (not just 
LM)

• Parameters x1000
→ GPT-3 : Generalizes to more tasks, not just more inputs! 53

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training



BERT

• Bert: Only uses encoder of transformer to derive word and sentence 
embeddings

• Trained to “fill in the blanks”
• This is representation learning (more next lecture) 54



Attention is all you need

• Self-attention can effectively replace recurrence in 
sequence-to-sequence models

– “Transformers”

– Requires “positional encoding” to capture positional 
information

• Can also be used in regular sequence analysis settings as a 
substitute for recurrence

• Currently the state of the art in most sequence 
analysis/prediction…

55



Attention is all you need

• Self-attention can effectively replace recurrence in 
sequence-to-sequence models

– “Transformers”

– Requires “positional encoding” to capture positional 
information

• Can also be used in regular sequence analysis settings as a 
substitute for recurrence

• Currently the state of the art in most sequence 
analysis/prediction… and even computer vison problems!

56



Vision Transformers

• Divide your image in patches with pos. encodings

• Apply Self-Attention!

→ Sequential and image problems are similar when using 
transformers

57

Dosovitskiy et al, An 
Image is Worth 16x16 
Words: Transformers 
for Image Recognition 
at Scale, 2020



Impact of Transformers

• Transformers have played a major role in the 
“uniformization” of DL-based tasks:

– Find a pretrained “BERT-like” transformer (Text, Image, Speech)

– Fine-tune on your task – or not! (Prompting…)

• This has helped democratize Deep Learning considerably

• But…

58



Caveat 1

• Not all transformers are the same: Big/small, 

fast/slow, mono-/multilingual, contrastive/ 

generative, regressive/autoencoding…

• Pick the right one!

59



Caveat 2

• Transformers are not always the right choice.

• They often require more parameters than 

LSTMs at equal performance

→ Tricky on small hardware (phones, IoT, etc)

60



Topics for the week

• Transformers

• GNNs

61



Input structure

• We’ve seen models for

– Static, fixed-sized inputs

• MLP

– Shift invariant pattern recognition

• CNN

– Inputs arranged in a sequence

• RNN

• What about Graph-structured inputs?

62



What is a graph?

• A structured representation of sets of entities 
with pair-wise interactions

63

C

E
D

A
B



What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (E)

• System : Network, Graphs (G)

• Node Attributes : Feature vectors (X)

64
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What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (G)

• Node Attributes : Feature vectors (X)

65
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What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (𝐺)

• Node Attributes : Feature vectors (X)

66
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What is a graph?

• Objects/Data points : Nodes, Vertices (𝑉)

• Interactions/Relations : Links, Edges (𝐸)

• System : Network, Graphs (𝐺)

• Node (and edge) Attributes : Feature vectors (𝑋)

67
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Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks:  Nodes are people, links are connections

– World wide web:  Sites point to one another

– Citation networks:  Papers cite one another

– Molecules: Atoms and their connections
68
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Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks:  Nodes are people, links are connections

– World wide web:  Sites point to one another

– Citation networks:  Papers cite one another

– Molecules: Atoms and their connections
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Representing data as graphs

• Many types of data are naturally represented as graphs

– Social networks:  Nodes are people, links are connections

– World wide web:  Sites point to one another

– Citation networks:  Papers cite one another

– Molecules: Atoms and their connections
70
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Representing data as graphs

• Any data with relational structure can be 
represented as a graph

– Data instances with pair-wise relations

• Like the examples we just saw

• And other, more surprising instances

71



Surprising graphs

• Images are graphs!

– Nodes are pixel positions

• Pixel values are node attributes

– Relations are adjacency

• Each node is connected to the four adjacent nodes

72



Directed and undirected edges

• Edges in a graph can be directed or undirected

– An undirected edge is actually an edge that points both ways

• We will assume directed edges, but everything generalizes 
to undirected graphs

73
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Recap: Data can be represented as 
graphs

• Many types of data can be represented as graphs

– With nodes representing instances and edges representing pair-wise 
relationships

– Even images and time series can be viewed as graphs

• Classification and prediction tasks can also be performed on graphs

74



Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling 
salesman problem

75

NLP or CV?



Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems, predicting bond types

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling 
salesman problem
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Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems, predicting bond types

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling 
salesman problem
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Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling 
salesman problem
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Tasks on a graph

• Node Classification : Topic Classification

• Link Prediction : Recommendation Systems

• Graph Classification : Image Classification

• Also, various combinatorial optimization problems, e.g. travelling salesman problem

79

All of these tasks can be performed using Graph Neural Networks



Graph Neural Nets 
(through an example)

• Given a citation network, classify a paper topic 
into either Natural Language Processing (NLP) 
or Computer Vision (CV) paper.

– Based on its content and its citations

• Problem of node classification (NLP or CV)

80



Step 0: Setup

• Graph representing a citation network with labels

• Each node has a feature vector initialized with 
some heuristic

– E.g. word count vectors
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Step 0: Setup

• Graph representing a citation network with labels

• Each node has a feature vector

– E.g. word count vectors

• Objective: Learn to compute an embedding for each node 
in the graph from the node features and graph structure
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Step 0: Setup

• Graph : 𝐺 = (𝑉, 𝐸)

• Node features:  𝑋 ∈ 𝑅𝑑×|𝑉|

• To estimate : embeddings  𝑧𝑢 for all nodes 𝑢 ∈ 𝑉
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Step 0: Setup

• We will use a multi-layer network which also computes 
intermediate values:

• Intermediate terms

– 𝑘th-layer node activation ℎ𝑢
𝑘 ∀ 𝑢 ∈ 𝑉

– 𝑘th-layer edge activation ℎ𝑢,𝑣
𝑘 ∀ 𝑢, 𝑣 ∈ 𝑉
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Step 0: Setup

• We will use a multi-layer network which also computes 
intermediate values:

• Intermediate terms

– Kth-layer node activation ℎ𝑢
𝑘 ∀ 𝑢 ∈ 𝑉

– Kth-layer edge activation ℎ𝑢,𝑣
𝑘 ∀ 𝑢, 𝑣 ∈ 𝑉 85
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For node classification, only need node embeddings
(but discussion generalizes to link-embedding
models)



Step 1: Update node vectors

• Next step: Update all the node vectors using “context” information from 
all their neighbors

• Aggregate information from neighboring nodes to compute an incoming 
“message” 𝑚𝑢

𝑘

• Update the activation ℎ𝑢
𝑘 at each node by combining ℎ𝑢

𝑘 with the message 
𝑚𝑢

𝑘 to obtain the updated vector ℎ𝑢
𝑘+1
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Step 1: Update node vectors

• AGGREGATE is an order-invariant operation, such as sum or max

• UPDATE is typically a regular MLP layer (linear layer plus activation)
87
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𝑚𝑢
𝑘 = AGGREGATEk {ℎ𝑣

𝑘 , ∀𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)}

ℎ𝑢
𝑘+1 = UPDATEk ℎ𝑢

𝑘 , 𝑚𝑢
𝑘



Step 1.1: AGGREGATE (with sum)
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Step 1.1: AGGREGATE (with sum)
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𝑘 = 

𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)

ℎ𝑣
𝑘

• Compute messages for all nodes

– Some nodes may have zero message in a directed graph



Step 1.2: UPDATE
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ℎ𝑢
𝑘+1 = 𝜎 𝑊𝑠𝑒𝑙𝑓

𝑘 ℎ𝑢
𝑘 +𝑊𝑚𝑠𝑔

𝑘 𝑚𝑢
𝑘 + 𝑏𝑘

Learnable parameters

• Updates may change the size of the embeddings

• Typical activation functions are tanh and ReLU
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Step 1: Estimating embeddings
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• After 𝐾 layers of aggregate/update steps, we 

obtain our final embedding

𝑧𝑢 = 𝑚𝑢
𝐾

𝑚𝑢
𝑘 = AGGREGATEk {ℎ𝑣

𝑘 , ∀𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑢)}

ℎ𝑢
𝑘+1 = UPDATEk ℎ𝑢

𝑘 , 𝑚𝑢
𝑘



Step 2: Classification
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• We can add a final classification layer to the 

embedding for the final classification
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Model Parameters
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ℎ𝑢
𝑘+1 = 𝜎 𝑊𝑠𝑒𝑙𝑓

𝑘 ℎ𝑢
𝑘 +𝑊𝑚𝑠𝑔

𝑘 𝑚𝑢
𝑘 + 𝑏𝑘

Learnable parameters

• The learnable parameters of the network are 

the self and message weights and bias, for all 

the 𝐾 layers



Training and Inference
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• The divergence with respect to the ground truth labels of 
nodes (on training data) can minimized via 
backpropagation, to learn the parameters

• Nodes on novel graphs can now be labelled using these 
parameters for inference
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GNN uses

• Molecular properties/materials chemistry/drug design

• Social network analysis

• Maps…
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Breakthrough in GNN

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Breakthrough in GNN

Image Credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Next up: Representation learning
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