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Topics for the week

• Transformers
• GNNs
• VAEs
• GANs
• Connecting the dots
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A new problem

• From a large collection of images of faces, can a 
network learn to generate new portrait
– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?
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The distribution of data
• Hypothesis: The data are distributed 

about a curved or otherwise non-linear 
manifold in high dimensional space
– The principal components of all 

instances of the target class of data lie 
on this manifold

• To generate data for this class, we must 
select a point on this manifold

• Problems: 
– Characterizing the manifold
– Having a good strategy for selecting 

points from it
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Recall : The AE

• The autoencoder captures the underlying manifold of the 
data
– “Non linear” PCA
– Deeper networks can capture more complicated manifolds

• “Deep” autoencoders
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Recap : The Decoder:

• The decoder represents a source-specific generative 
dictionary

• Exciting it will produce data similar to those from the 
source! 
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The AE for generation 

• Train AE with the pictures…
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DECODER

The face dictionary

• The decoder can now be used to generate 
instances from the “faces” manifold  
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The problem with AEs

• Improper choice of input to the decoder can result in incorrect generation

• How do we know what inputs are reasonable for the decoder?

• Solution : only choose input ( ’s) that are typical of the class
– I.e. drawn from the distribution of ’s for faces
– But what is this distribution?
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Poll 1
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Poll 1

• The decoder in an AE can only generate data on a low-
dimensional surface/manifold of the space
– True
– False

• What is true of the dimensionality of this manifold
– It cannot be predicted and can be anything
– It is no greater than the dimensionality of the latent 

representation that is input to the decoder
– It will be the same as the input to the encoder 
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Impose distribution on z

• When training the autoencoder, explicitly impose the constraint 
that the hidden representation must follow a specific distribution
– E.g is standard Gaussian  ( )
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DECODER

Generation

• To generate novel values, sample z from the prescribed distribution 
( )

• If the network is properly trained, and z is properly sampled, the 
output should be a reasonable generation
– E.g. of a face
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How to train the model

• Problem: How does one train an AE to ensure 
that the hidden representation has a specific 
distribution, e.g. 14
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How to train the model

• Problem: How does one train an AE to ensure 
that the hidden representation has a specific 
distribution, e.g.

• Encoder and decoder may have arbitrarily 
complex structure and their own parameters 

and 
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A property of isotropic Gaussians

•

• The distribution is perfectly symmetric in every direction
– The different variables ( and ) are independent!

–

– Each individually will also be isotropic: 
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A property of isotropic Gaussians

• Independence 

•

• The conditional distribution of given is also an 
isotropic Gaussian regardless of the value of 
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A property of isotropic Gaussians

• This property will hold regardless of the line/hyperplane along which you consider 
the conditional
– 𝑃 𝑍|𝑎𝑋 + 𝑏𝑌 =  𝑁 0, 𝐼

• More generally, for “nearly linear” functions
– 𝑃 𝑍|𝑍 = 𝑓(𝑋, 𝑌) =  𝑁 0, 𝐼

– “Nearly linear” : The curve 𝑓 𝑋, 𝑌 =  𝑐𝑜𝑛𝑠𝑡 does not deviate much from a hyperplane in 
high-probability regions of (𝑋, 𝑌)

• 𝐸 𝑓 𝑋, 𝑌 –  𝑙𝑖𝑛𝑒𝑎𝑟 𝑋, 𝑌 ଶ <  𝜖
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A property of isotropic Gaussians

• This property will hold regardless of the line/hyperplane along which you consider 
the conditional
– 𝑃 𝑍|𝑎𝑋 + 𝑏𝑌 =  𝑁 0, 𝐼

• More generally, for “nearly linear” functions
– 𝑃 𝑍|𝑓(𝑋, 𝑌) =  𝑁 0, 𝐼

– “Nearly linear” : The curve 𝑓 𝑋, 𝑌 =  𝑐𝑜𝑛𝑠𝑡 does not deviate much from a hyperplane in 
high-probability regions of (𝑋, 𝑌)

• 𝐸 𝑓 𝑋, 𝑌 –  𝑙𝑖𝑛𝑒𝑎𝑟 𝑋, 𝑌 ଶ <  𝜖
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Poll 2

20



Poll 2

• The X is a random vector with an isotropic 
Gaussian distribution, the conditional 
distribution of the projection of X on any 
affine plane is also isotropic
– True

– False
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Training with statistical constraints

• Minimize the error between and 

• Minimize the KL divergence between the distribution 
of and the standard Gaussian 
– Minimize the negative log likelihood of as computed 

from a standard Gaussian 
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Training with statistical constraints

• Minimize the error between and 

• Minimize the KL divergence between the distribution 
of and the standard Gaussian 
– Minimize the negative log likelihood of as computed 

from a standard Gaussian 
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Training with statistical constraints
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Poll 3
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Poll 3

• A regular AE trained to also minimize the length of the 
hidden (latent) representation implicitly imposes an 
isotropic Gaussian distribution on the latent representation
– True
– False

• The output of an AE trained in this manner is no longer 
constrained to lie on a low dimensional manifold
– True
– False
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Training with statistical constraints

• This simple formulation does not adequately 
capture the variation in the data 
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How to train the model

• An AE can learn to generate data from a specific class
– For valid generation, the distribution of the latent 

representation z must be specified

• Problem: How does one train an AE to ensure that the 
hidden representation has a specific distribution, e.g.
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The actual model

• The “decoder” is actually a “generative” model for the data
– Has a “generative story” for how the data are produced

• A -dimensional vector is drawn from a standard -dimensional 
Gaussian and passed through the decoder
– This results in data lying on a -dimensional non-linear surface in the data 

space

• Then a full-rank, low-amplitude noise is added to it, to generate the final 
data 
– The actual data distribution is a fuzzy region around the surface. 29



The distribution of the data

• If the that went into the decoder to produce any training data 
instance is known along with ,  the decoder can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: The that could produce a given is not unique
– For any ,  we can explain assuming noise 
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The distribution of the data

• If the that went into the decoder to produce any training data 
instance is known along with ,  the decoder can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: The that could produce a given is not unique
– For any ,  we can explain assuming noise 
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The distribution of the data

• If the that went into the decoder to produce any data instance is known 
along with ,  the decoder can be estimated

థ

ଶ

• The encoder estimates the to permit us to estimate 

• Problem: Several values exist that could be modified by noise to produce a 
given 
– The that could produce a given is not unique
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The distribution of the data

33

• There is an entire distribution of s that could produce a given 
– values that correspond to more probable values of noise are more probable
– The distribution of for a given are dependent on that 

• Instead of finding the unique for any , we will find the distribution 

• The variational autoencoder
– So named because the learning procedure utilizes a variational bound on the 

likelihood of the data



The distribution of the data

• There is an entire distribution of s that could produce a given 
– values that correspond to more probable values of noise are more probable
– The distribution of for a given are dependent on that 

• Instead of finding the unique for any , we will find the distribution 

• The variational autoencoder
– So named because the learning procedure utilizes a variational bound on the 

likelihood of the data
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate theta to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be auto-encoded values that are closer 

to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on : ?
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A property of isotropic Gaussians

• This property will hold regardless of the line/hyperplane 
along which you consider the conditional
–

• More generally, for “nearly linear” functions
–
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded values that are closer to 

more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on : Make as close to the standard Gaussian as 
possible

40

Encoder Decoder 



The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate theta to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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Approximating 

• We approximate as 

– where and are estimated such that approximates 
as closely as possible

– For convenience, we will assume is a diagonal matrix, represented 
entirely by its diagonal elements

• We will use as our proxy for 
42
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
1

2
log 𝐶 −0.5 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ log 𝐶 + 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

 

• It is common to assume that all the (diagonal) entries of 𝐶 are identical, with value 𝜎ଶ

𝐿 𝜃, 𝜙, 𝜎ଶ = 𝑑 log 𝜎ଶ + ෍
1

 𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
1

2
log 𝐶 −0.5 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ log 𝐶 + 𝑥 − 𝐷(𝑧; 𝜙) ்𝐶ିଵ(𝑥 − 𝐷(𝑧; 𝜙))

(௫,௭)

 

• It is common to assume that all the (diagonal) entries of 𝐶 are identical, with value 𝜎ଶ

𝐿 𝜃, 𝜙, 𝜎ଶ = 𝑑 log 𝜎ଶ + ෍
1

 𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝐶 = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝜎ଶ = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Training the encoder

𝜃∗ = argmax
ఏ

෍ −
𝑑

2
log(𝜎ଶ) −

1

2𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

• We can learn the parameters using backpropagation, which minimizes the following loss

𝐿 𝜃, 𝜙, 𝜎ଶ = ෍ 𝑑log(𝜎ଶ) −
1

𝜎ଶ
𝑥 − 𝐷(𝑧; 𝜙) ଶ

(௫,௭)

 

• Must minimize this with respect to 𝜃

𝜃∗ = argmin
ఏ

 𝐿 𝜃, 𝜙, 𝜎ଶ
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Remember this one

Sampling 

• For each training input , is obtained as a sample from 

• We use a standard “reparametrization” step to sample 
– Draw -dimensional vector from 
– Compute 

50
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This will be specific to and to the specific sample of for that (via )



Training the encoder

ଶ ଶ
ଶ

ଶ

(௫,௭)

– ଴.ହ

– is sampled from 
∗

ఏ

ଶ

• The derivative of ଶ with respect to can be computed using the 
chain rule ఏ

ଶ
௭

ଶ  ఏ(௫,௭)

– For use in backpropagation 51
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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Training the decoder

మ

• The derivative of this w.r.t and is trivially computed for backprop
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The variational autoencoder

• The encoder computes the distribution for any 
• The decoder tries to convert a randomly sampled from to 

• Training the encoder: 
– Estimate theta to make the s that can be encoded to more probable

• Training the decoder:
– Estimate to make the noise between and more probable

• Constraint on :   Make as close to the standard Gaussian as 
possible
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The constraint on P(z)

• The KL between 𝑄 𝑧; 𝑥 = 𝑁(𝑧; 𝜇 𝑥; 𝜃 , Σ 𝑥; 𝜃 ) and the standard Gaussian 𝑁(𝑧; 0, 𝐼) works out to

𝐾𝐿 𝑄 𝑧, 𝑥; 𝜃 , 𝑁(𝑧; 0, 𝐼) =
1

2
𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ் 𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

– This is a function of encoder parameters 𝜃

• The overall loss thus becomes:
𝐿 𝜃, 𝜑, 𝜎ଶ

= ෍ 𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ் 𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

௫∈௑

+
1

 𝜎ଶ ෍ (𝑥 − 𝐷(𝑧; 𝜙)) ଶ

௫,௭ ∈[௑,௓]

+ 𝑑 log 𝜎ଶ

• This must be minimized to train the VAE
– The derivatives of all terms w.r.t. are easily computed using backprop
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The constraint on P(z)

• The KL between 𝑄 𝑧; 𝑥 = 𝑁(𝑧; 𝜇 𝑥; 𝜃 , Σ 𝑥; 𝜃 ) and the standard Gaussian 𝑁(𝑧; 0, 𝐼) works out to

𝐾𝐿 𝑄 𝑧, 𝑥; 𝜃 , 𝑁(𝑧; 0, 𝐼) =
1

2
𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ் 𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

– This is a function of encoder parameters 𝜃

• The overall loss thus becomes:
𝐿௏஺ா 𝜃, 𝜑, 𝜎ଶ

= ෍ 𝑡𝑟 Σ 𝑥; 𝜃 + 𝜇 𝑥; 𝜃 ் 𝜇 𝑥; 𝜃 − 𝑑 − log Σ 𝑥; 𝜃

௫∈௑

+
1

 𝜎ଶ ෍ (𝑥 − 𝐷(𝑧; 𝜙)) ଶ

௫,௭ ∈[௑,௓]

+ 𝑑 log 𝜎ଶ

• This must be minimized to train the VAE
– The derivatives of all terms w.r.t. are easily computed using backprop
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The complete training pipeline

• Initialize and 

• Iterate:
– Sample ௫,ఌ from for each 

training instance

– Reestimate ଶ from 

௏஺ா
ଶ

௫∈௑

்

ଶ
ଶ

௫,௭ ∈[௑,௓]

ଶ

57
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But where are the neural nets?
• is a neural network

• and are generally modelled 
by a common network with two outputs
– The combined parameters of the network 

are 
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The VAE for generation

• Once trained the encoder can 
be discarded

• The rest of the network gives us 
a generative model for 

• Generating data using this part 
of the model should (ideally) 
give us data similar to the 
training data

59

ଶ



Recap: The VAE

• An autoencoder with statistical 
constraints on the hidden 
representation
– The encoder is a statistical model that 

computes the parameters of a Gaussian
– The decoder converts samples from the 

Gaussian back to the input

• The decoder is a generative model 
that, when excited by standard 
Gaussian inputs, generates samples 
similar to the training data
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The Variational AutoEncoder

61
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Encoder

Decoder

The decoder is the actual
generative model.

The encoder is primarily needed
for training.
It can also be used to generate the 
(approximate) distribution of latent
space representations conditioned 
on specific inputs (much like a 
regular autoencoder).

is a latent-space representation 
of the data.

can also be used as a expected 
latent representation of .



Poll 4
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Poll 4
• A variational autoencoder is a generative extension of autoencoders that 

models probability distributions
– True
– False

• Select the true statements
– The standard VAE assumes a latent representation that has an isotropic 

Gaussian PDF
– The VAE model requires addition of Gaussian noise to the output of a 

regularized AE in order to permit the output to fill space beyond a lower-
dimensional manifold

– The decoder of the VAE can be used to generate samples from the 
distribution of the data it is trained on, if the input to the decoder is drawn 
from a standard Gaussian
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VAE examples

• Top: VAE trained on 
MNIST and used to 
generate new data

• Below: VAE trained 
on faces, and used 
to generate new 
data
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VAE and latent spaces

• The latent space often captures 
underlying structure in the data 
in a smooth manner
– Varying continuously in different 

directions can result in plausible 
variations in the drawn output

• Reproductions of an input can 
be manipulated by wiggling 
around its expected value 
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VAE conclusions
• Simple statistical extension of the autoencoder

• Excellent generative models for the distribution 
of data 
– Various extensions such as Conditional VAEs, which 

model conditional distributions, such as 
• Straight-forward extension where the conditioning variable 

is an additional input to the encoder and decoder

• Read the literature on the topic, it is vast
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