
HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models

Fall 2022

Eshani Agrawal | Vedant Bhasin

Logistics

• Early submission is due March 26th, 11:59PM ET
• Kaggle submission a with Lev. Dist <= 20

• Canvas MCQ

• On time submission deadline: April 7th, 11:59PM ET

• Constraints: No attention

Problem at hand

MODEL [’B’, ‘IH’, ‘K’, ’SH’, ‘A’]

Input Utterance MFCC Sequence of Phonemes

27

Data and Task

• Features: Same as HW1P2 (27D)

• Labels: Order synchronous but not time synchronous

• Should output sequence of phonemes
• [‘B’, ‘IH’, ‘K’, ‘SH’, ‘A’] (precisely the indexes)

• Loss: CTCLoss

• Metric: mean Levenshtein distance
• Can import (given in starter notebook)

• Sequence of Phonemes -> String and then calculate distance (Use CMUdict

and ARPABet)

Batch of Variable Length Inputs: Padding

• HW1, HW2: Equal length inputs

• HW3: Variable Length sequences

• Steps:
• Padding

• Packing

Batch of Variable Length Inputs: Padding

• Padding
Padded to equal lengths

Need to store unpadded lengths as well.
Have the variables lengths_x, lengths_y in

the starter notebook

Ref: 11785 Fall 21 Bootcamp

Inefficient with space

(B, *, 27) →(B, T, 27)
Problematic Example (When padding on whole
dataset)

Batch of Variable Length Inputs: Packing

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Packing

Ref: 11785 Fall 21 Bootcamp

Packed Sequence

● Pad_sequence()
○ Pads to equal length for batching

● pack_padded_sequence()

○ Packs batch of padded sequences

○ Requires sequences + sequence lengths

● X = pad_packed_sequence()

○ Unpacks back to a batch of padded sequences

○ Outputs sequences + sequence lengths

● Collate Function
○ Dataloader argument

○ Helpful when altering data for batch

Parts of a Sequence Model

Embedding
Layer

Sequence
Model

Classification
Layer

Encoder - Decoder set up

Embedding
Layer

Sequence
Model

Classification
Layer

Encoder Decoder*

*Not exactly a decoder in this HW as decoding happens outside the model.

Encoder

● Typically used to generate high-level representations

of given input data.

● There are no labels used to train encoders

● Are trained jointly with decoders.

● Can be any network, CNN, RNN or Linear

Decoder

● It is a network that takes in the feature representation from the

Encoder and tries to generate the closest match to the expected

output.

● Loss function is applied on the output of the Decoder.

● Can also be trained without encoders, encoders are basically to amplify

the results of the decoder

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

Embedding
Layer

Sequence
Model

Classification
Layer

Encoder Decoder*

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

• Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

1

0

0

…
0

0

0

1

0

…
0

0

0

0

1

…
0

0

‘deep’ ‘neural’ ‘net’

Shape
10,000 x 1

0.2

1

…
0.7

0.3

0.5

…
0.4

0.2

1.2

…
0.6

Shape
emb_dim x 1

Real valued
vectors

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

• Our task:
• Input dim = 27

• Expand to emb_dim > 27 for feature extraction

Ref: HW1P2 Write-up

27

Embedding Layer: Conv1d Layers

• Consider the below as an input having 3 features at each time instant

Time steps →

<-
-

Fe
at

u
re

s

Embedding Layer: Conv1d Layers

• We can use Convolution which increases the channels of the input as

we go deeper.

Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input

as we go deeper.

• No. Filters = 5
• Kernel= 3; Padding= 1; Stride= 1
• Kernel= 5; Padding= 2; Stride= 1

(Or anything similar)

Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input

as we go deeper.

• No. Filters = 5
• Kernel= 3; Padding= 1; Stride= 1
• Kernel= 5; Padding= 2; Stride= 1

(Or anything similar)

3D
5D

Embedding Layer: Conv1d Layers

• Our input is of shape (B, T, 27) (after padding). How can we change

it to (B, T, 64) ?

• Think about what you did in downsampling blocks for HW2P2:

○ increase the number of channels

○ decrease spatial dimensions

Assuming batch_first = True
(You may also have it as (T, B,
27)

Embedding Layer: Conv1d Layers

Objective:

change input from (B, T, 27) to (B, T, 64)

● Transpose/Permute:

○ PyTorch conv1d expects tensors of shape (N, C, L)

 i.e. (batch size, in channels, length)

○ Permuting the input aligns the feature dim with C:

(B, T, 27) → (B, 27, T)

● Apply convolution (B, 27, T) → (B, 64, T)
● Transpose/Permute: (B, 64, T) → (B, T, 64)

● Pack and pass to sequence model

Assuming batch_first = True
(You may also have it as (T, B, 27)

Embedding Layer: Conv1d Layers

If stride > 1, we effectively reduce the time steps

stride=1

stride=2

Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.
• However, too much reduction in time steps will lead to loss of

information (we don’t recommend downsampling more than 4x)

Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.
• However, too much reduction in time steps will lead to loss of

information (we don’t recommend downsampling more than 4x)

•Note: Stride > 1 alters number of time steps. You need to change
lengths_x accordingly

• Use convolution formula (X – K + 2*P)//S (or)
• Clamp lengths to length of embedding (torch function)

• You can try convolution layers based on
residual blocks

• Hint: Remember HW2P2!

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Embedding Layer: Conv1d Layers

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Sequence Model

Embedding
Layer

Sequence
Model

Classification
Layer

Encoder Decoder*

Sequence Model

• Can use RNN, GRU, LSTM (recommended) from torch.nn

http://colah.github.io/posts/2015-08-Understandin
g- LSTMs/

http://colah.github.io/posts/2015-08-Understanding-
http://colah.github.io/posts/2015-08-Understanding-

Sequence Model

• Important parameters/hyper parameters in nn.LSTM()
▪ input_size (27 or embedding_size)

▪ hidden_dim

▪ num_layers

▪ dropout

▪ bidirectional

▪ Note: when bidirection = True, LSTM outputs a shape of hidden_dim in the

forward direction and hidden_dim in the backward direction

total, 2*hidden_dim)

(in

pBLSTM

● pyramidal Bi-directional LSTM. Described in the Listen-Attend-Spell paper

● The pBLSTM is a variant of Bi-LSTMs that downsamples sequences by a factor of 2

by concatenating adjacent pairs of inputs before running a conventional Bi-LSTM

on the reduced-length sequence

● This can be implemented using reshape

https://arxiv.org/abs/1508.01211

Pyramidal Bi-LSTM (pBLSTM)

•Downsampling + Bi-LSTM

BLSTM

Input= 2*3, Hidden= 5

Notice the
dimension is
2*hidden since
the LSTM is
bidirectional

pBLSTM - pseudocode

Classification Layer

Embedding
Layer

Sequence
Model

Classification
Layer

Encoder Decoder*

Classification Layer

• Same as HW1P2 - just an MLP

• Output from the sequence model goes to the classification layer

• Variations
• Deeper

• Wider

• Different activations

• Dropout

Hyperparameters and Regularization

• Cepstral Normalization:

X → (X – mean)/std

• Different weight initialization (for Conv and Linear layers)

• Weight decay with optimizer

Hyperparameters and Regularization

• Scheduler is very important
• ReduceLRonPlateau (Most of our ablation)

• Lev distance might start to oscillate at lower values

• Cosine Annealing
• Try with higher number of epochs

Hyperparameters and Regularization

● Dropout is key
○ Can use dropout in all the 3 layers: Embedding, Sequence model and

classification

○ You can also start with a small dropout rate and increase after the model gets trained

● Locked Dropout for LSTM layer
○ Locked Dropout can be used to apply the same dropout mask to every time step
○ You can refer to PyTorch NLP’s implementation of locked dropout here
○ Pay attention to whether modules adhere to batch first format or not

https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/nn/lock_dropout.html

Hyperparameters and Regularization

• Addition of Noise (only during training)

• Gaussian Noise

• Gumbel Noise

• Need not add to all samples. Implement

your module AddNoise(nn.module) in such

a way that it adds noise to random inputs

https://en.wikipedia.org/wiki/Gumbel_distribution

https://en.wikipedia.org/wiki/Normal_distribution

Hyperparameters and Regularization

• Torch Audio Transforms [docs]
• Time Masking

• Frequency Masking

Hyperparameters and Regularization

• Beam width
• Higher beam width may give better results (advisable to keep test beam width

below 50 for computation purposes)

• Sometimes bw = 1 (greedy search) also gives good results

• Tip: Don’t use a high beam width while validating in each epoch (time per

epoch will be higher)

Final Tips

• Make sure to split work within your study groups

All the best!

