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Resources for HW1P2

● Recitation 1c (Piazza @72): Phoneme Classification Using MLP (toy dataset)
● HW0P2 (Piazza @11): Variations of dataset class for MFCCs (Ex Dataset 3, 4, 5, 6)

● HW1P2 Writeup, Starter Notebook, Suggestions (Recitation 2 & Piazza @118)
● Neural Architecture Search on Toy Dataset (Piazza @221)
● HW1P2 Low Cutoff Architectures (Piazza @261)

https://piazza.com/class/lbz3z9om43h2n3/post/72
https://colab.research.google.com/drive/1kAOgTsIOoizTMXZDh3xVL2_8FN5UZx8X
https://piazza.com/class/lbz3z9om43h2n3/post/11
https://deeplearning.cs.cmu.edu/S23/document/homework/HW1/HW1P2_S23.pdf
https://colab.research.google.com/drive/1KPvkpxELmLfjxBHrwOg1CApQW2t8Hv3c?usp=sharing8
https://piazza.com/class/lbz3z9om43h2n3/post/118
https://piazza.com/class/lbz3z9om43h2n3/post/221
https://docs.google.com/spreadsheets/d/19k-vtiKJJ02CeJNP_MRegL2D-xKM1hNkHnl9X4PgGKU
https://piazza.com/class/lbz3z9om43h2n3/post/261


Errata - Starter Notebook

class AudioDataset(torch.utils.data.Dataset):
def __init__(self, root, phonemes = PHONEMES, context=0, partition= "train-clean-100"): 

# ⋮
# ⋮
# NOTE:
# Each mfcc is of shape T1 x 27, T2 x 27, ...
# Each transcript is of shape (T1+2) x 27, (T2+2) x 27 (T1+2, ), (T2+2, ) before removing [SOS] and 
[EOS]

# TODO: Concatenate all mfccs in self.mfccs such that 
# the final shape is T x 27 (Where T = T1 + T2 + ...) 
self.mfccs          = NotImplemented

# TODO: Concatenate all transcripts in self.transcripts such that 
# the final shape is (T,) meaning, each time step has one phoneme output
self.transcripts    = NotImplemented
# Hint: Use numpy to concatenate
# ⋮



Errata - Starter Notebook

# Model Initialization

INPUT_SIZE  = (2*CONTEXT + 1) * train_data.mfcc_feat_dim

print("Input size: ", INPUT_SIZE)

model       = Network(INPUT_SIZE, len(train_data.phonemes) 40).to(DEVICE)

summary(model, (INPUT_SIZE, ))



Errata - Writeup

Section 5.3: Cepstral Normalization

⋮

⋮

We now removed channel effects from our signal. In simple words, to our 
cepstrum, we have subtracted the average from each coefficient and divided by 
variance standard deviation to perform Cepstral Normalization.

⋮



Dataset Class

1. Create Empty List
2. Append each mfcc, 

transcript
3. Concatenate
4. Pad for Context
5. Map phoneme (str) 

to index (int)



Another Approach for Loading Data

self.mfccs, self.transcripts = [], []

for i in range(len(mfcc_names)):

    # Load a single mfcc

    mfcc        = NotImplemented

    transcript  = NotImplemented

    self.mfccs.append(mfcc)

    self.transcripts.append(transcript)        

# Concatenate into (T, 27) & (T, ) shape

self.mfccs          = NotImplemented 

self.transcripts    = NotImplemented

self.length = len(self.mfccs) # length (T)

self.mfccs = NotImplemented # Padding Zeros

# Map phoneme (str) to index (int) values

self.transcripts = NotImplemented 

# How to find T?

self.mfccs = np.zeros((T + pad, 27), 

dtype=np.float32)

self.transcripts = np.zeros((T, ), dtype=int)

cx, cy = context, 0

for i in range(length):

    mfcc        = NotImplemented

    transcript  = NotImplemented

    # Map phoneme (str) to index (int) values

    # How to find T_i?

    self.mfccs[cx:cx+T_i] = mfcc 

    self.transcripts[cy:cy+T_i] = transcript 

    cx, cy = cx + T_i, cy + T_i 



Ensembles
The󰈸󰈩’󰈼 󰇽d󰉏a󰈞t󰈀󰈇󰇵 o󰇿 d󰈎󰉏󰇵󰈹si󰉃󰉙 
in 󰈚󰈀󰈕󰈏n󰈇 󰈛is󰉃󰈀󰈕󰇵s.

So, m󰈀󰈔󰇵 i󰈞t󰈩󰈸󰇵󰈼ti󰈝󰈈 m󰈎󰈻󰉄󰇽ke󰈻!..



Ensemble Methods

●  Ensemble methods is a machine learning technique that combines several base models in 
order to produce one optimal predictive model.

● It is the process of combining multiple deep learning models to obtain a collective performance i.e., to 
improve the performance of existing models by combining several models thus resulting in one reliable 
model.



Advantages of Ensembling

● Ensemble Learning is a method of reaching a consensus in predictions by 
fusing the salient properties of two or more models.

● The final ensemble learning framework is more robust than the individual 
models that constitute the ensemble because ensembling reduces the 
variance in the prediction errors.

● Ensemble Learning tries to capture complementary information from its 
different contributing models.

● there may arise situations where different models perform better on some 
distributions within the dataset- ensembling overcomes this situation.

● Sometimes, a problem can have a complex decision boundary, and it might 
become impossible for a single classifier to generate the appropriate 
boundary.

● Ensemble learning model is information fusion for enhancing classification 
performance.



Kinds of Ensembling

● Majority Voting: The class with Majority predictions is output.
● Max Rule : The class prediction of the classifier that predicts with the highest 

confidence score is deemed the prediction of the ensemble framework.
● Probability Averaging: The probability scores for multiple models are first 

computed. Then, the scores are averaged over all the models for all the classes in 
the dataset. The class that has the highest probability after the averaging operation 
is assigned as the predicted class. 

● Weighted Probability Averaging:Similar to the previous method, the probability or 
confidence scores are extracted from the different contributing models.But here, 
unlike the other case, we calculate a weighted average of the probability. 

For more info, check the PyTorch Documentation - 
https://pytorch.org/functorch/1.13/notebooks/ensembling.html

https://pytorch.org/functorch/1.13/notebooks/ensembling.html


Neural 
Architecture 

Search

Fin󰇷󰈎󰈞g 󰉃󰈋󰇵 be󰈻󰉄 m󰈡󰇷󰇵󰈘 an󰇷 
h󰉘󰈦er󰈥󰈀󰈹󰇽me󰉃󰈩󰈹s… is 󰈚󰈡󰈹󰇵 of 󰈀󰈝 
ar󰉃 󰉄h󰈀󰈝 󰇽 󰈼ci󰈩󰈝󰇸󰇵.

P󰈠: I p󰈸e󰇿󰈩r E󰈝󰈈󰈏ne󰈩󰈸󰈏󰈞g.



Grid Search

MAX_HIDDEN_SIZE = 8000

MAX_CONTEXT = 64

hidden_size = (int)(x1 * MAX_HIDDEN_SIZE)

context = (int)(x2 * MAX_CONTEXT)

in_size = 2*context + 1

model = torch.nn.Sequential(

  torch.nn.Linear(in_size, hidden_size),

  torch.nn.ReLU(),

  torch.nn.Linear(hidden_size, out_size),

)



Random Grid Search

MAX_HIDDEN_SIZE = 8000

MAX_CONTEXT = 64

hidden_size = (int)(x1 * MAX_HIDDEN_SIZE)

context = (int)(x2 * MAX_CONTEXT)

in_size = 2*context + 1

model = torch.nn.Sequential(

  torch.nn.Linear(in_size, hidden_size),

  torch.nn.ReLU(),

  torch.nn.Linear(hidden_size, out_size),

)



Random Grid Search & WandB Team Ablations



Random Grid Search - Code

input_size = 250

target_size = 40

max_parameters = 10_000_000

unused_parameters  = 

max_parameters

used_parameters   = 0

min_width = target_size

layers = []

while used_parameters < max_parameters:

    max_width  = unused_parameters // (input_size +  

target_size)

    if max_width <= min_width:

        break

    output_size = np.random.randint(min_width,  

max_width)

    used_parameters   += input_size * output_size

    unused_parameters -= input_size * output_size

    layers.append(output_size)

    input_size = output_size

used_parameters += output_size * target_size



Visualizing 1 Million Samples from Simple NAS

Depth vs No. of Samples Drawn Layer Width vs No. of Samples Drawn



Residual 
Connections



Residual Connections
● In traditional feedforward neural networks, data flows through each layer 

sequentially: The output of a layer is the input for the next layer.
● Residual connection provides another path for data to reach latter parts of 

the neural network by skipping some layers. 



Residual Connections

● The residual connection first applies identity mapping to x
● Then it performs element-wise addition F(x) + x. 
● The whole architecture that takes an input x and produces output F(x) + x is usually called a 

residual block or a building block. 
● Quite often, a residual block will also include an activation function such as ReLU applied to 

F(x) + x.



How do they help??

For feedforward neural networks, training a deep network is usually very difficult, due to problems 
such as exploding gradients and vanishing gradients. 

On the other hand, the training process of a neural network with residual connections is 
empirically shown to converge much more easily, even if the network has several hundreds layers.

It is easier to learn Zero weights than an Identity mapping, if the residual connections aren’t 
present.



Basic and Bottleneck Block

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.



Residual Connection - Basic Block

class BasicBlock(torch.nn.Module):

  def __init__(self, n_h):

    self.linear0 = torch.nn.Linear(n_h, n_h)

    self.linear1 = torch.nn.Linear(n_h, n_h)

    self.bn0 = torch.nn.BatchNorm1d(n_h)

    self.bn1 = torch.nn.BatchNorm1d(n_h)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):

    R0  = A0

    Z0  = self.linear0(A0)

    BZ0 = self.bn0(Z0)

    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)

    BZ1 = self.bn1(Z1)

    A2  = self.relu(BZ1 + R0)

    return A2



Residual Connection - Bottleneck Block

class Bottleneck(torch.nn.Module):

  def __init__(self, n_h):

    self.residual = torch.nn.Linear(n_h, n_h*4)

    self.linear0 = torch.nn.Linear(n_h, n_h  )
    self.linear1 = torch.nn.Linear(n_h, n_h  )
    self.linear2 = torch.nn.Linear(n_h, n_h*4)
        
    self.bn0 = torch.nn.BatchNorm1d(n_h  )
    self.bn1 = torch.nn.BatchNorm1d(n_h  )
    self.bn2 = torch.nn.BatchNorm1d(n_h*4)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):
    R0  = self.residual(A0)

    Z0  = self.linear0(A0)
    BZ0 = self.bn0(Z0)
    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)
    BZ1 = self.bn1(Z1)
    A2  = self.relu(BZ1)

    Z2  = self.linear2(A2)
    BZ2 = self.bn2(Z2)
    A3  = self.relu(BZ2 + R0)        

    return A3


