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• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk and work with other students for homework assignments.

– You can share ideas but not code, you must submit your own code. All submitted
code will be compared against all code submitted this semester and in previous
semesters using MOSS.

– You are allowed to help your friends debug, however - you are not allowed to type
code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– Meeting regularly with your study group to work together is highly encouraged.
You can even see from each other’s solution what is effective, and what is ineffec-
tive. You can even “divide and conquer” to explore different strategies together
before piecing together the most effective strategies. However, the actual code
used to obtain the final submission must be entirely your own.

• Overview:

– Part 2: This section of the homework is an open ended competition hosted on
Kaggle.com, a popular service for hosting predictive modeling and data analytics
competitions. The competition page can be found here and here.

– Part 2 Multiple Choice Questions: You need to take a quiz before you start
with HW2-Part 2. This quiz can be found on Canvas under HW2P2: MCQ
(Early deadline). It is mandatory to complete this quiz before the early
deadline for HW2-Part 2.

• Submission:

– Part 2: See the the competition page for details.
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Homework objective

After this homework, you would ideally have learned:
• To solve an image-based face classification problem using a CNN

– How to set up the CNN

– How to handle the image data

– How to use augmentation techniques for images

– How to train the model

– How to optimize the model

• To explore architectures and hyperparameters for the optimal solution

– To identify and tabulate all the various design/architecture choices, parameters
and hyperparameters that affect your solution

– To devise strategies to search through this space of options to find the best solu-
tion.

• The process of staging the exploration

– To initially set up a simple solution that is easily implemented and optimized

– To stage your data (e.g., by initially working on a subsample of the training data)
to efficiently search through the space of solutions.

– To track losses and performance on validation data to ensure the code is working
properly and the model is being trained properly

– To subset promising configurations/settings and then evaluate those on the larger
(complete) dataset

• To engineer the solution using your tools

– To use objects from the PyTorch framework to build a CNN.

– To deal with issues of data loading, memory usage, arithmetic precision etc. to
maximize the time efficiency of your training and inference.
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Checklist

Here is a checklist page that you can use to keep track of your progress as you go through
the write-up and implement the corresponding sections in your starter notebook. As you
complete each function in the notebook, you can check the corresponding boxes aligned with
each section. It is recommended that you go through this write-up and starter notebook
simultaneously, step by step.

1. Getting Started

Download starter notebook and set up the virtual environment (optional)

Install Kaggle API and create a directory

Download dataset files from Kaggle

2. Complete the training loop train model()

Create the dataloader for the training dataset

Set model in ’Training Mode’.

Clear the gradients

Compute the model output and the loss

Complete the Backward Pass

Update model weights

3. Complete inference loop evaluate model()

Set model to ’Evaluation Mode’ and create validation set dataloader

Compute model output in ”no grad” mode

Calculate validation loss using model output

Get most likely class as a prediction from the model output

Calculate the classification validation accuracy

Calculate similarity using a similarity metric and get the most likely identity

Calculate the verification validation accuracy

4. Complete Early Submission Quiz

Complete HW2P2 Early Submission Quiz

5. Classification Hyper-parameter Tuning

Make initial submission before the early submission deadline

Use Weights and Biases to log metrics for each epoch

Make sure the model is saved after every few epochs

Iterate with different hyper-parameters to reach desired cut-offs
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1 Introduction

Key new concepts: Face classification and verification, convolutional neural networks,
metric learning.

Implementation: Your solution should implement CNN-based architectures including but
not limited to ResNet, MobileNet, or ConvNeXt. You can search online for other architec-
tures that might work better for this homework and implement them.

Restrictions: You may not use any data besides that provided as a part of this homework.
You are not allowed to use pretrained models, or use models without implementing the code
yourself (e.g importing models from torchhub, or copying code from public repositories).

1.1 Executive Summary

In this homework you will work on pattern recognition problems that require position invari-
ance. Specifically you will work on the problem of recognizing or verifying faces in images.
In typical pictures of faces, the face is rarely perfectly centered. Different pictures of the
same person may have the face shifted by varying amounts. The classifier must recognize
the face regardless of this indeterminacy of position. This calls for position-invariant models,
specifically Convolutional Neural Networks, or CNNs.
A CNN is a neural network that derives representations (or embeddings) of input images
that are expected to be invariant to the precise positions of the patterns in it. These embed-
dings are subsequently classified by downstream classifiers (which may just be an additional
softmax layer, or even an MLP, appended after the convolutional layers), to achieve position-
invariant pattern recognition.

We will consider two kinds of problems in this setting:

1. In classification, we will attempt to identify the person in a picture. This is a closed
set problem, where the subjects in the test set have also been seen in the training set,
although the precise pictures in the test set will not be in the training set. For this to
achieve high accuracy it is only required that the embeddings for (all pictures of) the
subjects in our “vocabulary” be linearly separable from each other.

2. In the second, verification, we will attempt to only determine if the person in a given
“query” picture is also present in a given gallery of images or not, with no reference to
their identity. This is a open set problem, where the subjects in the test data may not
have been seen during training at all. In order to solve this problem we will require
that the embeddings of two pictures of the same person are always closer than those
from pictures of two different people. With such embeddings, in order to solve the
gallery problem we must only determine if the embedding of any of the pictures in the
gallery is sufficiently close to that of the query.

So, in this homework, we will learn to deal with two new concepts: position-invariant pattern
classification, and how to build classifiers/detectors for novel classes that are not present in
our training data.
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1.2 Overview

In this homework, you will learn to build CNN-based architectures for face verification. The
homework will instruct you on two key concepts:

• How to build effective convolutional neural networks.

• How to generate discriminative and generalizable feature representations for data.

1.2.1 A note on the problem

Face verification refers to the task of determining whether two face images are of the same
person, without necessarily knowing who the person is. Face verification is an instance of a
larger class of problems where we attempt to determine if two data instances belong to the
same class without necessarily knowing (or having a model for) the class itself.

Such problems arise in many situations.

1. Information retrieval (e.g., Google search by image): This is a service provided by Google
that allows a user to search for images using an image as the starting point, rather
than a written or spoken search query. When you input the query image, Google will
try to find images similar to it or exact copies based on the recognition of the subject
within it. For example, if you provide an image of an animal or plant (that you do not
know anything about) as a query, Google will return several similar images showing
the same subject. This is based on the same principle of image matching (based on its
features) that we use in face verification.

2. Speaker verification: We know that a speaker’s voice contains personal traits of the
speaker, given the unique pronunciation organs and speaking manner of the speaker,
e.g., the unique vocal tract shape, accent, rhythm, etc. Therefore, it is possible to
automatically identify a speaker from his/her voice using deep learning. In speaker
verification, the input is a query spoken utterance whose identity is confirmed by
comparing it to a gallery of known speakers and getting the best match. It has a wide
range of applications, such as the voice-based authentication of personal smart devices,
such as cellular phones, vehicles, and laptops. It is also important in audio-based
information retrieval for broadcast news, meeting recordings, and telephone calls.

In each case, you will note that the problem proceeds as follows: you are given an
exemplar of a category of data (e.g., a face), and a “probe” instance, and you must determine
if the two are from the same class. Why is this not a classification problem, where the
exemplar is the training instance to train a classifier from, and the probe is the test instance
(and the “matching” task is of classifying the probe instance with the classifier trained from
the exemplar)? The obvious response – that a single training instance is insufficient to train a
classifier – is not the entire answer. The answer lies in the definition of the negative instances
– training data that are not from the class, that are also required to train a classifier. One
may, of course, try to randomly draw data from other classes as negatives, but now we are
faced with three problems:
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• Since we do not know what the class is, we cannot be sure (without additional infor-
mation or labelling) if the negative samples we have drawn are indeed negative, i.e.
they don’t belong to the same class as our exemplar;

• The space of negatives (all possible images) is so large that any sample of negatives
may not cover it sufficiently and result in a biased classifier that will incorrectly accept
some types of negatives since they were not part of our sample set;

• Finally, the expense of training an entire classifier for each “match” problem may not
be justified, in many situations. E.g., if you were using matching to perform retrieval
from a database, you would need to train a classifier for every instance in your database,
which seems excessive. E.g., for a database of a billion instances, you would need a
billion classifiers.

So we turn the problem around instead: instead of asking, “is this test instance closer to
the target class than it is to the negative class” (which is what a classifier does, effectively),
we ask, “is the test instance close enough to the target class to declare a match”, without
reference to the negative class. We need a robust and accurate way of determining if a probe
instance is close enough to an exemplar.

The idea is to train a model to extract discriminative features (feature vectors) from images,
which have the property that feature vectors from any two images that belong to the same
person are closer (according to some metric) than feature vectors derived from images of two
different persons. Once we have trained such a model, the solution is simple – given any
pair of facial images, we will extract feature vectors from both and compute their similarity
(according to our metric). If the similarity exceeds a threshold, we will declare a match.

1.2.2 A note on potential solutions

Now, let us discuss a few technical approaches to solve the problem of face verification:

• Approach 1: As mentioned earlier, the key aspect of the face verification task is to
be able to generate discriminative feature vectors from a person’s face. Since you are
measuring the closeness (using some metric) between these features obtained from two
faces, you also can put them into categories/classes based on that closeness. In other
words, face images of persons with similar features (i.e features for which closeness is
below a certain cutoff) will belong to the same class, and face images of persons with
different features (i.e features for which closeness is above a certain cutoff) will belong
to different classes. So what if we treat the verification task as a classification one in
order to produce high-quality feature vectors (or face embeddings)? Since classifying
an image into one of several classes also requires the model to extract discriminative
features from it, our problem will become much more simpler.

In this approach, we will perform multi-class face classification where the input to your
system will be an image of a person’s face, and the model will predict the class(out of
a total of N classes) that image belongs. In the ideal case, a face classification model
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should be able to classify any person’s face correctly, but that is an extremely difficult
task requiring huge amounts of data.

In this homework, you will work with a very large dataset called “VGGFace2” to pro-
duce “good” feature representations. Your network will consist of several convolutional
layers, the input will be a person’s image from “VGGFace2”, and the output will be
a feature vector or face embedding. You will then pass this feature vector through a
linear layer followed by Softmax to classify it among N categories. Basically,

Multi-class classifier = Feature extractor (CNN layers) + Classifier (FC layer)

You can then use cross-entropy loss to optimize your network to predict the correct
person for every training image.

• Approach 2: Although face classification is a good alternate task (as explained in
approach 1) for face verification, crossing the high cutoff for classification does not
guarantee that you will also cross the high cutoff in face verification. Let us see why
this might happen using a toy example:

Say your dataset has face images belonging to 3 classes: A, B, and C. Each point in
Figure 1 represents a feature vector produced for an image after training. From figure
1, we can see that using approach 1; you will be able to produce feature vectors that
are ’separable’ by optimizing the network using cross-entropy loss.

However, this may not be enough for the face verification task in this homework. This is
because this approach does not optimize for direct comparison of two instances (feature
vectors) to see if they belong to the same class. It may be possible that the distance
between feature vectors belonging to the same class (i.e. dPQ in Fig 1) is greater than
the distance between feature vectors belonging to different classes (i.e. dQR in Fig 1)
even though the classes are separable. This is because minimizing cross-entropy loss
only aims to make the classes linearly separable in the embedding space. It does not
guarantee production of highly discriminative feature vectors.

In order to resolve this issue and enhance the discriminative power of feature vectors,
their intra-class compactness and inter-class variability need to be simultaneously max-
imized. In other words, the distance dPQ (between feature vectors belonging to the
same class) as shown in Fig 1 needs to be minimized (for increasing compactness within
class A) and the distance dQR (between feature vectors belonging to different classes)
needs to be maximized (to increase inter-class variability between classes A and B).
The important thing to note here is that P and Q are the farthest points within class
A. Our goal is to develop a model such that even the distance between the farthest
points in each class is less than the distance between points belonging to 2 different
classes.

Several advanced loss functions have been proposed to encourage discriminative learn-
ing of features like Center loss, Sphere loss, Large-margin softmax loss, Large-margin
Gaussian mixture loss etc. Each of these losses is jointly used with cross-entropy loss to
get high-quality feature vectors. After training, the feature vectors will look as shown
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Figure 1: Not optimized for direct comparison of feature vectors.

Figure 2: Optimized for direct comparison of feature vectors.
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in Figure 2. Comparing figures 1 and 2, you can see that the feature vectors in the
same class are closer and the ones in different classes are farther.

• Approach 3: After going through the first two approaches, you may wonder: What
if the resulting embeddings do not generalize well to new faces in the test set? You
are right. In simple face verification problems, testing classes may be present in the
training set (also called closed set identification), and approach 2 will be enough for
such simple problems. But in more complex, real-world face verification problems, you
will encounter faces in the test set that belong to classes your model has never seen
before. The feature vectors learned during training need to be not only separable but
also discriminative and generalized enough to identify unseen classes in the test set.

A better approach, in this case, would be to train a model to directly optimize the face
embeddings without explicit reference to their classes. The resulting network may be
even more efficient than the ones used in approaches 1 and 2.

This optimization can be achieved by using ’pair-wise’ loss functions, which involve
computing similarities between embeddings of pairs of inputs, with the objective of
maximizing the similarity of instances belonging to the same class while minimizing
that of instances that belong to different classes. You are encouraged to look into losses
like Triplet loss, contrastive loss, and quadruplet loss for this approach.

1.3 Problem specifics

In this homework, you will learn how to extract discriminative features from face images
that can be used to achieve a good performance in face verification. For this, you will have
to implement the following:

• A face classifier that can extract feature vectors from face images. The face
classifier consists of two main parts - the feature extractor and the classification layer.

Your model needs to be able to learn facial features (e.g., skin tone, hair color, nose
size, etc.) from an image of a person’s face and represent them as a fixed-length
feature vector called face embedding. In order to do this, you will explore architectures
consisting of multiple convolutional layers.

Stacking several convolutional layers allows for hierarchical decomposition of the input
image. For example, if the first layer extracts low-level features such as lines, then the
second layer (that acts on the output of the first layer) may extract combinations of
low-level features, such as features that comprise multiple lines to express shapes.

The feature vector you obtain at the end will then be passed through a linear layer
followed by Softmax to classify it among ’N’ categories, and use cross-entropy loss for
optimization. The feature vectors obtained after training such a model can then be
used for the verification task.

• A verification system that computes the similarity between feature vectors
of two images. Essentially, the face verification system takes two images as input
and outputs a similarity score that represents how similar the two images are and if
they are of the same person or not. The verification consists of two steps:
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1. Extracting the feature vectors from the images.

2. Comparing the feature vectors using a similarity metric.

A vanilla verification system looks like this:

1. image1 =⇒ feature extractor =⇒ feature vector1

2. image2 =⇒ feature extractor =⇒ feature vector2

3. feature vector1, feature vector2 =⇒ similarity metric =⇒ similarity score

We have framed the problem a bit differently, as a one-to-many comparisons, where
we compare one image to many images and then predict the image with the highest
similarity; instead of just comparing two images at a time and predicting if they are of
the same person or not, we are going to compare each unknown identity with all the
known identities and then predict the known identity with the highest similarity score.

Even though this is a bit different from the original problem, it is still a verification
problem, and the same verification system can be used to solve both problems. Most
of the moving parts are the same.

• Training. And last, but not the least you will learn how to train complicated models
that can perform verification as well as classification.

Note: We provide you a baseline architecture based on ResNet, from “Deep Residual Learn-
ing for Image Recognition” and describe the key components of it in Section 4.3. However,
you are also welcome to try other architectures like ConvNeXt, MobileNet, and EfficientNet.

This may seem like a lot, but believe it or not, you will manage to get all this done in
the course of this homework. In the following sections, we will outline how.

2 Kaggle Competitions

For this assignment, you will compete in two Kaggle competitions. In this way, you can
understand how classification and verification tasks resemble and differ from each other.

• Face classification

– Goal: Given an person’s face, return the identity of the face.

– Kaggle: https://www.kaggle.com/competitions/11-785-s23-hw2p2-classification

• Face verification

– Goal: Given a list of known and unknown identities, map each unknown identity
to either a known identity or a special, ”no-correspondence” label.

– Kaggle: https://www.kaggle.com/competitions/11-785-s23-hw2p2-verification

11

https://arxiv.org/pdf/1512.03385
https://arxiv.org/pdf/1512.03385
https://www.kaggle.com/competitions/11-785-s23-hw2p2-classification
https://www.kaggle.com/competitions/11-785-s23-hw2p2-verification


2.1 File Structures

The structure of the dataset folders are as follows:

2.1.1 Kaggle Classification dataset folder

• Each sub-folder in train, dev and test contains images of one person, and the name
of that sub-folder represents their ID.

– train: You are supposed to use the train set to train your model both for the
classification task and verification task.

– dev: You are supposed to use dev to validate the classification accuracy.

– test: You are supposed to assign IDs for images in test and submit your result.
Note that you should assign IDs in the range of [0, 6999]. ImageFolder dataset
by default maps each class to such an ID and you can rely on that.

• classification sample submission.csv: This is a sample submission file for face
classification competition. The first column is the image file names. Your task is to
assign a label to each image and generate a submission file as shown here.

2.1.2 Kaggle Verification dataset folder

• known: This is the directory of all known identities that we know.

• unknown test: This is the directory that contains the images for Verification Test.
There are 720 images of unknown identities here, which are demographically balanced.

• unknown dev: This is the directory that contains 360 images of unknown identities
which you are given the ground truth mapping for.

• verification dev.csv: This is a list of ground truth identity labels (each label maps
to a known identity in the known folder or the “no correspondence” label) for the
sorted list of images in the unknown dev folder. This will help you calculate the dev
accuracy for verification.

• verification sample submission.csv: This is a sample submission file for face ver-
ification competition. The first column is the index of the image files. Your task is to
assign a label to each image and generate a submission file as shown here.

3 Data Description

The dataset being used in this homework is a subset of the VGGFace2 dataset. This dataset
is very widely known and used in research and industry. Images are downloaded from Google
Image Search and have large variations in pose, age, illumination, ethnicity, and profession
(e.g., actors, athletes, politicians).

The dataset was collected with three goals in mind:
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1. To have a large number of both identities and images per identity.

2. To cover a large range of pose, age, and ethnicity.

3. To minimize the label noise.

The classification dataset consists of 7,000 identities. The verification dataset consists of
1080 identities. The dataset has been class-balanced, so each class has the equal number of
training images, and all the images are resized to 224 x 224 pixels.

To summarize, this assignment contains 2 parts:

• For classification, you will be given an image of a human face. What you need to do
is to learn to classify this image with the correct face identity from 7000 identities.

• For verification, you will have 1080 unknown identity images, split into 360 for the
Dev-set and 720 for the Test-set. Each of these unknown identity images will need to be
mapped either to one of 960 known identities, or to n000000, the ”no correspondence”
label, for the remaining 120 identities.

– Dev-set: Each of the 360 unknown identity images in the Dev-set will either
have an identity label or a ”no correspondence” label (n000000).

– Test-set: The 720 unknown identity images in the Test-set will not have any
corresponding, true identity label.

Note: The dataset is not a one-to-one mapping – that is, the unknown images don’t
map to a unique image in the known folder.

3.1 Dataset Class - ImageFolder

Implementing the Dataset and Dataloader class for this homework is actually very straight
forward: we will be using the ImageFolder class from the torchvision library (https://
pytorch.org/vision/0.8/datasets.html#imagefolder) and passing it the path to the
training and validation dataset. Since the folder names correspond to the classes and the
images of respective classes are placed in folders with the same names, the ImageFolder
class will automatically infer the labels and make a dataset object, which we can then pass
on to the dataloder. The only thing to remember is to also pass the image transforms to
the dataset class for doing data augmentation. (Details on how to pass image transforms
for data augmentation can be found in Pytorch documentation.) The images in subfolders
of classification data are arranged in a way that is compatible with this dataset class.
Note: ImageFolder is helpful for both Multi-class classification, and Metric Learning tasks.

4 Face Classification

4.1 How do we differentiate faces?

Before we dive into the implementation, let us ask ourselves a question: how do we differen-
tiate faces? Yes, your answers may contain skin tone, eye shapes, etc. Well, these are called
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facial features. Intuitively, facial features vary extensively across people (and make you
different from others). Your main task in this assignment is to train a CNN model to extract
and represent such important features from a person’s face image. These extracted features
will be represented in a fixed-length vector of features, known as face embeddings.

Once your model can encode sufficient discriminative facial features into face embeddings,
you can pass the face embedding to a fully-connected(FC) layer to generate the correspond-
ing ID of the given face.

4.2 How do we train CNNs to produce multi-class classification?

Now comes our second question: how should we train your CNN to produce high-quality
face embeddings? It may sound fancy, but conducting face classification is just doing a
multi-class classification: the input to your system is a face’s image, and your model
needs to predict the ID of the face.

Suppose the labeled dataset contains a total of M images that belong to N different peo-
ple (where M > N). Your goal is to train your model on this dataset to produce “good” face
embeddings. You can do this by optimizing these embeddings to predict the face IDs from
the images. The resulting embeddings will encode a lot of discriminative facial features, just
as desired. This suggests an N-class classification task.

A typical multi-class classifier conforms to the following architecture:

Classic multi-class classifier = feature extractor(CNN) + classifier(FC)

Figure 3: A typical face classification architecture

More concretely, your network consists of several (convolutional) layers for feature ex-
traction. The input will be (possibly a part 1 of) the image of the face. The output of the
last such feature extraction layers would be the face embedding. You will pass this face

1It depends on whether you pre-process your input images
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embedding through a linear layer whose dimension is embedding dim × num of face-ids,
followed by a Softmax, to classify the image among the N (i.e., num of face-ids) people. You
can then use cross-entropy loss to optimize your network to predict the correct person for
every training image.

The ground truth will be provided in the training data (making it supervised learning).
You are also given a validation set for fine-tuning your model. Please refer to the Dataset
section where you can find more details about what dataset you are given and how it is or-
ganized. To understand how we (and you) evaluate your system, please refer to the System
Evaluation section.

4.3 Create deeper layers with residual networks

Having a network that is good at feature extraction and being able to efficiently train that
network is the core of the classification task. This homework requires to train very deep
neural networks and, as it turns out, deep neural networks are difficult to train, because
they suffer from vanishing and exploding gradients types of problems. Here we will learn
about skip connections that allow us to take the activations of one layer and suddenly feed
it to another layer, even much deeper in the network. Using that, we can build residual
networks (resnets), which enable us to train very deep neural networks, sometimes even
networks of over one hundred layers.

Figure 4: A Residual Block

Resnets are made of something called residual blocks, which are a set of layers that are
connected to each other, and the input of the first layer is added to the output of the last
layer in the block. This is called a residual connection. This identity mapping does not have
any parameters and is just there to add the input to the output of the block. This allows
deeper networks to be built and trained efficiently.

There are several popular architectures that make use of residual blocks and residual
connections and can be used for the classification task, such as MobilNet, ResNet and
ConvNext etc. You are encouraged to read their respective research papers to understand
better how they work. Two of the most popular ones are mentioned below, for your reference.
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N.B.: Some models require the data to be normalized before being input. If you do not
normalize the image data you could run into convergence issues even if your model is im-
plemented perfectly. Data normalization is done by subtracting the mean from each pixel
and then dividing the result by the standard deviation. Each channel (RGB) would have a
separate mean and standard deviation. Once you have figured out how to calculate these
values, you can use torchvision.transforms.Normalize(). Read the PyTorch documentation to see
if it takes in images or tensors. Another approach you can use in addition, which is more
experimental is to convert the image to grayscale and use histogram equalization, then use
this equalized image as a fourth channel for the image.

4.3.1 ResNet

ResNet models were proposed in “Deep Residual Learning for Image Recognition”. Here
we have the 5 versions of ResNet models, which contain 18, 34, 50, 101, and 152 layers,
respectively. Detailed model architectures can be found in the paper linked above.

4.3.2 ConvNeXt

ConvNeXt is a very recently CNN architecture that uses inverted bottlenecks inspired by the
Swin Transformer, residual blocks, and depthwise separable convolutions instead of regular
convolutions. Comparison of the ResNet-50 and ConvNeXt-T and the detailed architecture
can be found in “A ConvNet for the 2020s”.

These may or may not be able to get you to the high cut-off, and there are many
other architectures that may give you better results, so you are encouraged to explore other
architectures as well. That’s pretty much everything you need to know for your Classification
Kaggle competition. Go for it!

5 Face Verification

Now let us switch gears to face verification. The input to your system will now be a trial,
i.e., a pair of face images that may or may not belong to the same person. Given a trial,
your goal is to output a numeric score that quantifies how similar the faces in the two images
are. A higher score indicates a higher confidence about whether the faces in the two images
are of the same person.

5.1 Building upon the multi-class classification

I hope you have not deleted your classification model. If your model yields high accuracy in
face classification, you might already have a good Feature Extractor for free. That being
said, if you remove the fully connected/linear layer, this leaves you with a CNN that ”can”
(probably can should be more accurate here) generate discriminative face embeddings, given
arbitrary face images.
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5.1.1 An architectural design suggestion

We shall all agree that the face embeddings of the same person should be similar (the dis-
tance between feature vectors generated is small) even if they are extracted from different
images. Assuming our CNN is competent to generate accurate face embeddings; we only
need to find a proper distance metric to evaluate how close given face embeddings are. If
two face embeddings are close 2 in distance, they are more likely to be from the same person 3.

Here, we propose two prevalent distance metrics, but you have to experiment yourself
from there. (Hint: check Appendix A)

• Cosine Similarity

• Euclidean Distance

If you follow this design, your system should look like the Figure below. Please notice
that the Feature Extractor in Figure 5 is the same one, even though it is drawn twice.

Figure 5: face verification architecture

5.2 Compare images to verify

The verification problem is to check if two images are of the same person or not, and this is
a complicated problem. We will achieve this by first using a feature extractor that is good at
extracting discriminative features from the images, and then by using the extracted feature
vectors to compare the images.

The comparison is done by using a similarity metric, which is a function that takes two
feature vectors as input, and outputs a number that represents how similar the two feature

2How close is close?
3Now, do you understand why we use fixed-length vector as face embeddings?
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vectors are: If the number is high, then the two feature vectors are similar, and if the number
is low, then the two feature vectors are not similar. We will use this property to compare
the images and predict whether or not they are of the same person.

The way this problem is set up is that you will be given a dataset of images, half of
which are known identities and the other half of unknown identities. Some of the unknown
identities have a one-to-one mapping with the known identities, and some of them do not.
Identities that do not have a mapping in known identities will have a low similarity value
– therefore, you first need to set a threshold: If your maximum similarity score between
an unknown identity and every known identity is below this threshold, we can say that the
unknown identity is not presented in the known set. Otherwise, for those similarity scores
that are above the threshold, your job is to predict the correct mapping. Essentially, for
each unknown identity, you will have to predict the known identity that it corresponds with
(i.e. with highest similarity value) or, if the similarity score is below the threshold, predict
that it is not represented in the known set.

Hence, for this problem, you have to find the similarity between each unknown identity
and all known identities, and then predict the pair with the highest similarity. This oper-
ation is called a one-to-many comparison and can be vectorized using Pytorch’s similarity
functions. You can easily get an N x M matrix of similarities (where N is the number of
known identities and M is the number of unknown identities) as well as the index of the
highest similarity wrt each unknown identity.

5.2.1 To improve accuracy...

We have heard a rumor that a good job in classification is only guaranteed to help you reach
the medium cutoff in verification. Hence, you are encouraged to try other advanced loss func-
tions such as Center-loss [1], LM [2], L-GM[3], and other architectures such as SphereFace
[4], CosFace[5], ArcFace[6] and UniformFace[7] to go beyond this.

Alternatively, you can remove the layer entirely and optimize the net using comparator-
losses, that optimize the network for the verification task. (E.g., triplet-loss[8], pair wise
loss[9])

We also encourage you to explore the interconnection between classification accuracy and
verification performance.
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Figure 6: One to one mapping of the unknown identities to known identities

6 Evaluation System

6.1 Kaggle 1: Face Classification

This is quite straightforward,

accuracy =
# correctly classified images

total images

6.2 Kaggle 2: Face Verification

This is also quite straightforward,

accuracy =
# correctly matched unknown identities

total unknown identities
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7 Submission

Following are the deliverables for this assignment:

• Kaggle submission for Face Classification.

• Kaggle submission for Face Verification.

8 Conclusion

Nicely done! Here is the end of HW2P2, and the beginning of a new world. As always, feel
free to ask on Piazza if you have any questions. We are always here to help.

Good luck and enjoy the challenge!
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Appendix A

A.1 Cosine Similarity VS Euclidean Distance

You may struggle with selecting a proper distance metric for the verification task. The
two most popular distance metrics used in verification are cosine similarity and Euclidean
distance. Both metrics are able to reach state-of-the-art score for this homework, but you
should get an intuition on when, for what kind of problem, to choose one or the other.
The metric should be training-objective-specific, where training objective refers to the loss
function.

Let us start with revisiting Softmax cross entropy, where Yi is the label of Xi:

Loss = − 1

N

N∑
i=1

log
eW

T
Yi

Xi∑N
j=1 e

WT
Yj

Xi
(1)

If you take a thorough look at this formula, you will find that the objective is to make the
vector(embedding) Xi closer to the vector WYi

and further away from other vectors WYj
.

Under this rule, the WYi
is actually the center of i-th class. Because you are performing dot

product between the class center and the embedding, each embedding would be similar to
its center in the Angular Space, as illustrated in Figure 7. So during verification, you are
strongly suggested to apply cosine similarity rather than Euclidean distance to compute the
similarity score.

Figure 7: Angular Space [4]

Furthermore, if we design our own loss function e.g., in Eq. 3, you are suggested to apply
Euclidean distance metric to compute similarity. (Is this a radial basis function?)

Loss = − 1

N

N∑
i=1

log
e||WYi

−Xi||2∑N
j=1 e

||WYj
−Xi||2

(2)
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A question we leave to you: what metric is probably better if you were to start with metric
learning and apply the loss function shown in Eq. 2?

However, the aforementioned conclusions are not definitively true. Sometimes Euclidean
distance is also good when you apply softmax XE in Eq. 3 and cosine similarity is also good
when you apply Eq. 3 as loss function. We would just give you the following hint and let
you explore it.

||U − V ||22 = ||U ||22 + ||V ||22 − 2UTV (3)

Appendix B

B.1 Deep Metric Learning

The multi-class classification method has a flaw here: in the real world, we can not make our
model to recognize every person on Earth. What if a new person is added to the dataset?
Do you want to re-train the whole network whenever a new person is added?

A second approach is called deep metric learning(DML): instead of modeling the classes,
you directly model the similarity between two images in DML. The general goal is to make
the minimum distance between negative pairs larger than the maximum distance between
positive pairs 4.

Another potential approach is to build a Siamese Neural Network [10] and apply a Con-
trastive loss function as follows:

L =
1

N

N∑
i=1

[y ∗ d(Pi) + (1− y) ∗ (m− d(Pi))] (4)

Where d denotes Euclidean distance, m is a margin, N denotes total number of training
objectives, and y = 1/0 indicates the pair Pi is positive/negative respectively.

To make pairs for your verification system, there are two popular approaches:

• Offline selection: pairs are generated before passed through the neural network. For
offline selection, please pay attention to the ratio of #negative pairs to #positive pairs.
You are advised to set this ratio as 5:5, 6:4, 7:3.

• Online selection: pairs are generated in the mini-batch during training. For online
selection, one straightforward method is to select all B(B−1)

2
pairs within a mini-batch

of size B. You can also just select hard 5 pairs within the mini-batch, which is also
referred to as Hard Sample Mining[11] [12].

4Two instances in the positive pair should be from the same identity. Two instances in the negative pair
should be from different identities.

5Large similarity for negative pairs and small similarity for positive pairs.

22



Instead of measuring the similarity between pairs, you can also apply Triplet loss [13]
or Quadruplet loss [14] to model the similarities among triplets or quadruplets. If you’re
wondering if there exists a Quintuplets, Sextuplets, Septuplets or even Octuplets loss, you
can refer to the N-pair Loss [15], Lifted-Structure Loss [16], and Softtriplet Loss [17] papers.
It may also be possible for other advanced loss functions such as Pair-Wise Loss [18], Multi-
Similarity(MS) [19], and Mask Proxy(MP) [20] to give state-of-the-art (SOTA) verification
performance.

B.2 B-way Classification

In this appendix, we are going to introduce you to a metric learning strategy called B-way
classification, in which B refers to batch size. The following figure gives an intuition of this
manner:

Figure 8: B-way classification for metric learning

Note that everything happens only within a mini-batch and batch size is 5 in this figure.
For the notation, in Xij and Eij , i is the label information(1 ≤ i ≤ BatchSize) and j is the
index of samples for each class. Here we set number of samples in each class as 2. To claim
again, if the batch size is B, then you will get 2 × B embeddings and 2 for each class. Your
task is just to classify these B classes:

L = −
B−1∑
i=0

log
eE

T
i1Ei2∑B−1

j=0 eE
T
i1Ej2

(5)
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This is actually called Prototypical loss, which is one of the SOTA metric learning losses
currently and which is likely to give you a better AUC score than classification methods
(even better than margin-based Softmax loss functions like CosFace/ArcFace). To apply
this loss function, you may care about the following points:

• There is only one CNN backbone within a mini-batch though we present 5 in the
example. (You can also apply Siamese Network.)

• Label information is ignored when computing the loss objective. Labels are just
0,1,...B-1. Labels are only useful when building your dataset.

• You need to build a powerful dataset/dataloader to pass these B × 2 data points into
the network, which is the most pivotal part in the whole work

• ET
i1Ei2 could be replaced by a ·ET

i1Ei2 + b , in which a and b are learnable parameters.
It would usually be better to normalize embeddings.

• There is no supervision signal in the loss objective unlike multi-class classification. (Is
this unsupervised learning?)

Just feel free to go through this method!
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