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• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with / work with other students on homework assignments

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

• Submission:

– You need to go through the writeup and finish the Canvas quiz by the early submission deadline.

– You need to implement what is mentioned in the write-up (although you are free and encouraged
to explore further) and submit your results to Kaggle . We will share a Google form or an Autolab
link after the Kaggle competition ends for you to submit your code.

• TL; DR:

– In this homework you will work on a sequence-to-sequence conversion problem, in which you must
train models to transcribe speech recordings into word sequences, spelled out alphabetically.

– As in previous HWP2s, this homework too is conducted as a Kaggle competition. You can access
the kaggle for the homework at – https://www.kaggle.com/competitions/11-785-s23-hw4p2/

– You can download the training and test data directly from Kaggle using their API or this link.
Your download will include the following:

∗ The training data will be found in the train folder. It will include data pairs comprising
sequences of audio feature vectors and their transcriptions, in mfcc and transcripts folders
respectively.

∗ The validation data will be similarly found in the dev folder.

∗ The test data will be found in the test folder. It will only contain an mfcc folder.

– You must use the train data to train the model. Data in the dev folder are to be used only for
validation and not for training.

– You must transcribe the utterances in the test folder and write them out into submission.csv
following the format already specified in the file, and upload your results to Kaggle.

– You will be graded by your performance. Additional details will be posted on piazza.

Homework objectives

If you complete this homework successfully, you would ideally have learned:
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• To implement an attention-based system to solve a sequence-to-sequence problem.

– How to setup an encoder

∗ You will have an idea of synchrony/rate principles to consider in setting up the encoder

∗ How to setup the (Bidirectional) Pyramidal LSTMs/LSTMCell

– How to setup a decoder

– How to setup attention

• You would have learned how to address some of the implementation details

– How to setup a teacher forcing schedule

– How to pad-pack the variable length data

• To explore architectures and hyperparameters for the optimal solution

– To identify and tabulate all the various design/architecture choices, parameters and hyperparam-
eters that affect your solution

– To effectively explore the search space and strategically finding the best solution

• As a side benefit you would also have learned how to construct a speech recognition system using the
attention-based encoder-decoder architecture

Important: A note on presentation style and pseudocode

The following writeup is intended to be reasonably detailed and explains several concepts through pseu-
docode. However there is a caveat; the pseudocode is intended to be illustrative, not exemplary. It conveys
the concepts, but you cannot simply convert it directly to python code. For instance, most of the pro-
vided pseudocode is in the form of functions, whereas your python code would use classes (in fact, we’ve
written the pseudocode as functions with the express reason that you cannot simply translate it to your
code. Function-based DL code will be terribly inefficient. You must use classes). Please write reusable code
wherever possible, and avoid redundant calculations to make your code more efficient.

Nonetheless, we hope that when you read the entire write-up, you will get a reasonable understanding of
how to implement (at least the baseline architecture of) the homework.
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Checklist

Here is a checklist page that you can use to keep track of your progress as you go through the write-up and
implement the corresponding sections in your starter notebook. As you complete your unit tests for each
component to verify your progress, you can check the corresponding boxes aligned with each section and go
through this writeup and starter notebook simultaneously step by step.

1. Read Introduction

2. Read the writeup, and finish the Canvas quiz

3. Dataset and Dataloader

Dataset description

Refer to HW0 and implement Dataset class

4. Encoder

Listener description (refer to HW3P2)

Implement pBLSTM (refer to Appendix A of HW3P2)

Implement Encoder (refer to HW3P2)

5. Attention

Attention description

Implement Attention computation

6. Decoder

Speller description (also refer to HW4P1)

Implement Decoder

7. Training

Training description

Implement Teacher Forcing

Cross-entropy Loss with padding

8. Inference

Implement Greedy Decoding

Implement Random Decoding

Implement Beam Decoding

Implement Levenshtein Distance(Also done in HW3P2)
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1 Introduction

Key new concepts: Sequence-to-sequence conversion, Encoder-decoder architectures, Attention.

Mandatory implementation: Encoder-decoder architecture, Attention. Your solution must implement
an encoder-decoder architecture with attention. While it may be possible to solve the homework using other
architectures, you will not get marks for implementing those.

Restrictions: You may not use any data besides that provided as part of this homework. You may not use
the validation data for training. You cannot use an implementation from PyTorch or any other third-party
package for implementing any type of Attention (and optionally beam search).

1.1 Overview

In this homework you will learn to build neural networks for sequence-to-sequence conversion or transduction.

“Sequence-to-sequence” conversion refers to problems where a sequence of inputs goes into the system, which
emits a sequence of outputs in response. The need for such conversion arises in many problems, e.g.

• Speech recognition: A sequence of speech feature vectors is input. The output is a sequence of charac-
ters writing out what was spoken.

• Machine translation: A sequence of words in one language is input. The output is a sequence of words
in a different language.

• Dialog systems: A user’s input goes in. The output is the system’s response.

For this homework, we will work on the speech recognition problem. Unlike HW1P2 and HW3P2, where
the task was to predict phonemes in the speech, in this homework, we will learn to directly spell the spoken
sentence out in the English alphabet.

A key characteristic of speech recognition problems is that there may be no obvious correspondence between
the input and the output sequences. For instance, in a dialog system, a user input “my screen is blank” may
elicit the output “check the power switch”. In a speech recognition system the input may be the (feature
vector sequence for the) spoken recording for the phrase “know how”. The system output must be the
character sequence “k”, “n”, “o”, “w”, “ ”, “h”, “o”, “w” (note the blank space “ ” between know and how
– the output is supposed to be readable, and must include blank spaces as characters). There is no obvious
audio corresponding to the silent characters “k” and “w” in know, or the blank space character between
know and how, yet these characters must nevertheless be output.

As a consequence of the absence of correspondence between the input and output sequences, the usual
“vertical” architectures that we have used so far in our prior homeworks (Figure 1a), where the input is
sequentially processed by layers of neurons until the output is finally computed, can no longer be used.

Instead, we must use a two-component model, comprising two separate network blocks, one to process the
input, and another to compute the output. Such architectures are called encoder-decoder architectures. The
encoder processes the input sequence to compute feature representations (embeddings) of the input sequence.
The decoder subsequently uses the input representations computed by the encoder to sequentially compute
the output de novo, i.e. from scratch (Figure 1b).

The most important part of the model is the attention mechanism. Although the decoder’s output may not
have a direct correspondence with the input, each individual output symbol (character) nonetheless relates
more to some parts of the input than others, e.g. the blank character “ ” in our above speech recognition
example corresponds primarily to the audio at the boundary between the words “know” and “how” in the
recording. When outputting the “ ”, the decoder must somehow know to “focus” on, or “pay attention” to
this region of the input.

In this homework you will learn how to build an encoder to effectively extract features from a speech
signal, how to construct a decoder that can sequentially spell out the transcription of the audio, and how to
implement an attention mechanism between the decoder and the encoder.
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(a) Vertical architecture (b) Encoder-decoder architecture

Figure 1: (a) Standard “vertical” architectures we have seen in previous homeworks. The input is sequentially
passed through several layers until the output is computed from the final layer. This kind of architecture is not
useful for sequence-to-sequence problems with no input-output correspondence, such as the problem we deal with
in this homework. (b) General encoder-decoder architecture, comprising two separate modules, an encoder to
process the input and a decoder to generate the output. The two are linked through an attention module.

Although the specifics of the homework will be targeted towards speech recognition, please note that the
general framework (with appropriate modification of the encoder and decoder architectures) should also
apply to other types of sequence-to-sequence problems, or even to image or video captioning (you would
only need to modify the encoder to derive features from images or video respectively).

1.2 Problem specifics

In this problem of speech recognition you will learn how to convert a sequence of feature vectors of speech to
a sequence of characters that spells out its transcription. For this, you will have to implement the following:

• An encoder that can derive high level feature vectors from the input sequence of speech
vectors. This homework derives a sequence of features from the input just like the encoder from HW3P2.

• A decoder to produce the actual output sequence. The decoder for this homework is a language
model that is like the one we saw in HW4P1, except that this one is a conditional language model that
depends on the features extracted from the encoder(conditioned on the input).

• Attention. To generate each output, the decoder receives, as input, a “context”, comprising a weighted
sum of the sequence of representation vectors computed by the encoder. Attention is the manner in which
the decoder derives information from the input for conditioning the language model. You will explore
ways of computing the attention weights such that they automatically learn to pay “attention” to the
most relevant parts of the input for each output.

• Training. And last, but not the least you will learn how to train a complicated model that has all of the
above components to do your bidding. One of the consequences of the probabilistic nature of decoding is
asynchrony between the actual and target outputs of the decoder. You will also explore ways of dealing
with this through a mechanism called “teacher forcing”, and the effect of various optimization strategies
and schedules on your models.

We provide you a baseline architecture based on “Listen, Attend and Spell”, William Chan, Navdeep
Jaitly, Quoc V. Le, Oriol Vinyals (which we highly recommend that you read), and describe the key com-
ponents of it later in Section 4. But you are also welcome to attempt other variations (for any of the
three components – encoder, decoder or attention) provided they fall within the Encoder-Decoder+Attention
framework.

Believe it or not, although this may seem like a lot, you will manage to get all this done in the course of this
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homework. In the following sections, we will outline how to complete the work.

1.3 Getting Started Early

Uniquely, HW4P2 weaves together your work from HW3P2 and HW4P1. As a result, it can, and most
likely will take a significant amount of your time compared to previous homeworks, so please start early.
Not only is implementing this HW harder than previous ones (with more moving parts, you are more likely
to encounter errors, which will take significant time to identify and debug), the models also typically take
longer to converge and produce good results.

The rest of this writeup is structured as follows – Section 3 describes the dataset and dataloader. In Section
4 we outline the baseline model, including the individual components (encoder, decoder and attention),
how to perform inference/a forward pass with it, and how to train it. Section A in the Appendices outline
debugging and specific implementation details.

2 An important note on Attention

Since the key feature of this homework is the attention mechanism, it is useful to first explain it briefly. You
will need this information for your homework. You have already encountered attention in Lecture 18. We
assume that you have an idea of attention, and the concepts behind it. If not, we recommend that you review
lectures 18 and 19 and recitation 10. Assuming this prior knowledge, we quickly recap the key concepts of
attention that apply to this homework problem before we continue.

2.1 An attention head

The encoder in an encoder-decoder model takes in an input sequence of vectors X0, · · · , XN−1 and produces
a sequence of embeddings, E0, · · · , EM−1. The length of the embedding sequence M need not be the same
as that of the input sequence, N , but each embedding vector Ei effectively represents a section of the input.
Assuming all the embeddings to be row vectors (in the standard python format), the set of embedding
vectors can be vertically stacked into a matrix E.

In the typical implementation of attention, from the embeddings Ei the encoder computes two terms, a key
Ki and a value Vi. Typically these are computed through a linear transform. Stacking all the key vectors
(assumed to be row vectors) vertically into a matrix K, and the value vectors into a matrix V, these can be
computed as V = EWV and K = EWK , where WV and WK are learnable parameters.

In the decoder, corresponding to each ouput Ok, we first compute a query vector qk, which is used to “query”
the encoder outputs to determine which portion of the input to pay most attention to, to generate Ok. When
the decoder is a recurrent network, the query is typically computed as a linear transform of the recurrent
state sk−1, and optionally also Ok−1: qk = sk−1WQ, or qk = [sk−1, Ok−1]WQ where WQ is a learnable
parameter, Ok−1 is the (embedding or one-hot representation of the) (k − 1)th output, and [sk−1, Ok−1]
represents the concatenation of sk−1 and Ok−1.

In order to produce the kth output symbol Ok, the decoder computes a context Ck from the encoder-
derived value vectors: Ck = wkV. wk is a vector of attention weights for the kth output, computed as
wk = softmax(qkK

⊤), and has the property that (a) it has as many components as the number of vectors
in E, (b) all of its components are non-negative, and (c) they sum to 1.0. Ideally, the components of wk

corresponding to Value vectors representing the region of the input most relevant to Ok will be high, and
the rest will be low. The context Ck is input to the decoder (along with any other recurrent state values
and previous outputs that your architecture considers) to generate Ok.

2.2 Multi-head attention

The attention computed using the above method (Section 2.1) computes a single context vector Ck to
compute output Ok. Ck derives and focuses on a single specific aspect of the input that is most relevant to
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Ok. It is reasonable to assume that there are, in fact, multiple separate aspects of the input that must all
be considered to compute Ok.

Multi-head attention works on this principle to derive multiple context vectors C1
k , C2

k , · · · , CL
K . Each

context vector Cl
k is computed using a separate attention module of the form explained above (Section 2.1),

with its own learnable parameters Wl
K ,Wl

V , andW
l
Q. The complete module that computes an individual

context vector Cl
k is called an attention head, thus the overall attention framework that computes multiple

context vectors is referred to as multi-head attention.

The final context vector Ck that is used to compute Ok is obtained by concatenating the individual context
vectors: Ck = [C1

k , C
2
k , · · · , CL

k ] (where L is the number of attention heads).

In this homework you will also investigate the relative advantages of multi-head attention over simple atten-
tion and the benefits to be obtained through increasing the number of attention heads.

3 Dataset

You will be working on a similar dataset as in HW1P2 and HW3P2. The training set will comprise input-
output pairs, where each input consists of a sequence of 27-dimensional mel-spectral vectors derived from
a spoken recording, and the corresponding output consists of the spelled out text transcription. The tran-
scriptions are in terms of 31 characters (the 26 characters in the English alphabet, blank space, “,” [comma]
and three special tokens: “<sos>”,“<eos>” and “<pad>”, representing the start and end of a sentence and
padding respectively).

The audio in the different training instances are of different lengths, and the output sequences too are
(obviously) of different lengths. We also provide you a Python array VOCABULARY (refer to the starter notebook)
which contains a mapping from the letters to numeric indices. You must use this list to convert letters from
transcriptions to their indices for the purposes of the competition.

3.1 Dataloader

You will need to implement the Dataset class for this HW by your own. You can refer to the dataset
implementation in HW3P2 to help you here (they are very similar). We also recommend using cepstral mean
normalization to normalize input cepstral vector sequences for this HW as provided in HW1P2 (although
this is not mandatory). Although no output labels are provided for test data during inference, we still have
to worry about length – when test data are batched, the outputs for the different inputs in a batch of test
data will all also be of different lengths. We recommend using a maximum length of 550 for generating your
outputs for test and validation data, although you are free to experiment with it. More details on how to
handle variable data length are in Appendix D.

4 Baseline Approach

The baseline model for this assignment is derived from the paper “Listen, Attend and Spell” (LAS). The
paper describes an encoder-decoder approach: The encoder in this model is called a Listener since it “listens”
to the audio, the decoder, which spells out the transcription, is called the Speller, and Attend of course refers
to the attention module. The objective of this homework is to learn all components, jointly.

A brief summary of the components of LAS are as follows:

• The Listener consists of a Pyramidal Bi-LSTM Network structure that takes in the audio feature vector
sequences of the given utterances and outputs sequence of high-level representation vectors that occur
at approximately the same rate (vectors per second) as the expected (spelled out) output of the Speller
network. (The encoder of HW3P2 is essentially the Listener for HW4P2.)

• The Speller takes in the high-level feature output from the Listener network and uses it to compute
a probability distribution over sequences of characters using the attention mechanism. (Notice how
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fundamentally similar the Speller is to the HW4P1 language model , except that the Speller requires
integration of attention, and you worked with words instead of characters in HW4P1.)

• Attention can be intuitively understood as trying to learn a mapping from a word vector to some regions
of the utterance map. The Listener produces a high-level representation of the given utterance and
the Speller uses parts of that representation using Attention to predict the next word in the sequence.

For this HW, we elaborate on a variant of LAS you can implement as your model because we believe that the
LAS paper has some unclear explanations. Hence, we have explained and provided additional information
for your learning. We do recommend following this approach for the HW, as it is in line with the starter code
template provided. However, you are free to develop your own model, or write a notebook from scratch.

We outline the model components, inference and training procedures below.

4.1 Model

The model has three components – the Listener (encoder), the attention module, and the Speller (decoder).

4.1.1 Listener (Encoder)

As mentioned previously, the Listener in the LAS model is essentially the encoder you built for HW3P2, to
extract meaningful latent representations from the speech that is used by the decoder to predict phonemes,
except in the case of HW4P2 - you will be transcribing the english alphabet instead.

The encoder takes in an input sequence of vectors X0, · · · , XN−1 and produces a sequence of latent repre-
sentations (or embeddings), E0, · · · , EM−1. The length of the embedding sequence M need not be the same
as that of the input sequence, N , but each embedding vector Ei effectively represents a section of the input.

In essence, you are constructing an acoustic model encoder takes into consideration the nature of the input
feature vector sequence and rate difference between the input and output of the speech recognizer.

The input sequence of speech feature vectors exhibit both short-term structural relations, and long-term
contextual dependence. The listener typically tries to capture these dependencies. There is also an approx-
imate factor of 8 difference between the rate of the feature vector sequences in the audio (100 vectors per
second) and their spelling (on average 12-15 characters per second). So the listener includes components
that effectively lower the rate of the latent representations, typically by a factor of 8 to match the ouput.

3.1.1.2 A typical listener

Here is pseudocode for a typical complete Listener that reduces the rate by a factor of 2:

Listing 1 Listener

# X = (batchsize, length, dim) array, which is a minibatch of input sequences

# The output is minibatch of embedding sequences (for the entire input minibatch).

function E = Listener(X)

O1 = 1DCNN(X, stride=1, CNNparams)

O2 = BiLSTM(O1, BLSTMwidth, BLSTMparams)

E = pBLSTM(O2, pBLSTMwidth, pBLSTMparams) # Will reduce length by 2

return E

end

This is only an example; you must devise your own architecture. Use what you have learned from HW3P2 to
implement your Listener. For reference, in the original LAS paper, there is no 1DCNN layer, one BiLSTM
layer (of width 256) and three pBLSTM layers. Please refer to the paper for more details on the architecture
they followed.

If this section is not clear to you, please refer to HW3P2 for understanding the challenges you will face in
building and training the encoder for this assignment. You will find all of the fundamental information you
need to build your listener in the HW3P2 writeup.

9



4.1.2 Attention (Attend)

The key feature of this homework (and the LAS model in general) is the attention mechanism.

Figure 2: Architecture: Here the Listener(Encoder) is the module that creates the input embeddings. The Attender
propagates these embeddings applying attention. Finally, the Speller(Decoder) spells the outputs sequence.

Conceptually, attention works as follows. Each of the encoder-derived embeddings E0, · · · , EM−1 effectively
represents a section of the input. As mentioned in Section 1, each symbol output by the decoder refers to a
different portion of the input. Information on which portion of the input to refer (or pay attention) to, and
what features to derive from it must both be decided from the encoder-derived embeddings. Both of these
are typically derived through linear functions of the embeddings.

In a typical implementation of attention, from the embeddings Ei the attention module computes two terms,
a key Ki and a value Vi, through linear transforms: Ki = EiWK , and Vi = EiWV (assuming the Eis to
be row vectors), where WK and WV are learnable weights corresponding to the keys and values. Key Ki is
used to compute the relevance of Ei to any output, and value Vi is the actual feature Ei contributes to it.

For each character embedding Dk, the attention module computes a query qk. The module uses the query
qk and the keys Kj to compute a set of attention weights wkj . Attention weights are strictly non-negative
and must sum to 1.0. They are typically computed by a softmax applied to a normalized innerproduct of
the queries and the keys. Ideally the wkj values for embeddings Ej corresponding to inputs that are most
relevant to Dk must be high, while others are low. This is expected if WK and WV are well learned. Finally
a context vector Ck is computed as Ck =

∑
j wkjVj , which is used to compute output Ok.

3.1.2.1 Computing attention for the LAS model

In the LAS model, the actual attention is computed by the attend module as follows. Assuming all the
embeddings Ei to be row vectors (in the standard python format), the set of embedding vectors can be
vertically stacked into a matrix E.

The attend module accepts a character embedding D from the decoder, and returns an attention context
vector C computed from the speech embeddings E as follows. Here K and V represent matrices formed
by a vertical stacking of the key and value vectors derived for all the embedding (the jth row of K and V
represent Kj and Vj , the key and value derived from the jth embedding Ej). w is a row vectors whose jth

component is the attention weight for Ej .

K = EWK

V = EWV

q = DWQ

w = softmax

(
1√

length(q)
qK⊤

)
C = wV

The following pseudocode explains how a context vector is computed in response to a query.
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Listing 2 Attention (single sequence)

# E = sequence_length x encoder_dim array of speech embeddings for "single input sequence"

# D = context vector computed by decoder-rnn (1,decoder_dim) row vector for "single output

character"

# query = query vector created with D(projected to be a (1,Dq) row vector)

# context = context vector computed using the encoder embeddings (1,Dv) row vector)

function Attention = Attend(E, D)

# WK and WV must also be specified in actual code

key = E * WK # WK is a (encoder_dim,Dq) matrix

value = E * WV # WV is a (encoder_dim,Dv) matrix

query = D * WQ #WQ is a (decoder_dim, Dq)

query_length = length(query)

raw_weights = (1/sqrt(query_length)) * query * transpose(key)

attention_weights = softmax(raw_weights)

context = attention_weights * value

return context, attention_weights

end

The above pseudocode only shows how to compute one context vector for a single output
symbol, computed from a single input sequence. In practice, you would be performing com-
putations on entire minibatches of inputs, pseudocode for which can be found in Appendix
F. Moreover, computing the keys and values would only be required once, since the encoder
hidden states are constant for all timesteps. You should ideally use a more modular approach
when implementing it, with object-oriented principles in python.

The attention computed above, which derives a single context vector Ck to compute an output Ok is
sometimes known as “single-head” attention. A simple extension that derives multiple such context vectors
is known as “multi-head attention”. Details of how to implement multi-head attention can be found in
Appendix H. Properly implemented multi-head attention may or may not provide performance benefits. For
the baseline implementation of the LAS paper, single-head attention should be sufficient.

4.1.3 Speller (Decoder)

The Speller is the decoder in the LAS model. It’s task is to output the most likely output character sequence
for the given audio, from the sequence of high-level representations derived for it by the Listener, and it is
a probabilistic autoregressive model that sequentially generates the output from start to end, using context
information from the encoder.

Does any of this sound familiar? Because it should – we discussed topics pertaining to language modeling
(including how to compute the probability of a complete token sequence, token embeddings, generation of a
sequence, and training methods) in the HW4P1 writeup. Therefore, you should use your existing HW4P1
language model implementation as a starting point for the speller component.

For this homework, however, each decoder step does not depend on the entire sequence of embedding vectors
E, but rather only on an attended context vector derived from it. In particular, in the listener described in
the LAS paper, the context vector at any timestep is used twice, once to compute character probabilities at
that timestep, and as input to the decoder at the next timestep. So the sequence of operations for any step
of the decoder, as followed by (our variant of) the LAS paper, can be written as:

D(t) = Embedding(O(t− 1))

S(t) = LSTMstep([D(t), C(t− 1)], S(t− 1))

C(t) = Attend(E, S(t))

PO(t) = CharacterDistributionNet([S(t), C(t)])

O(t) = DrawFrom(PO(t))

where LSTMStep() is one step of the decoding process, E is the set of high-level input representations
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(embeddings) obtained from the encoder, D(t) is the embedding created from the last word, S(t) is the
recurrent hidden state of the decoder, PO(t) is the probability distribution over output symbols computed for
the tth output symbol, and DrawFrom() is some process that draws an output symbol from the distribution
PO(t) (more on this later). The above example assumes first-order autoregression; you may choose to use
higher orders. Note the similarity of this process to the language modeling problem of HW4P1 – decoding
is an extension of the language generation problem.

Figure 3 illustrates this process. LSTMStep() is a single step of LSTM computation in the Decoder. This
step is also referred to as the RNN Step in the HW4P1 writeup. Here CharacterDistributionNet() is
a module that computes the probability distribution PO(t) from the context C(t) and hidden state S(t).
In its simplest form it is just implemented by a linear layer followed by a softmax. In a more complex
implementation, it could be an entire MLP with a final softmax output layer.

Figure 3: At timestep t, S(t) represents the hidden representation obtained after LSTM step. Speech Embeddings
obtained from the encoder are represented by E. CDN represents the Character Distribution Network. PO(t)
represents the probability distribution over characters. O(t) is the output symbol drawn from PO(t) obtained
from CDN.

One thing you must resolve with the above autogressive recurrence is the initial context C(−1). This is
typically set to simply be an all-zero row vector initially.
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3.1.3.1 A typical speller

The pseudocode for the entire Speller (single instance) is thus as follows:

Listing 3 Speller

function O = Speller(E)

t = 0,

output_symbols(t) = <sos> # Initialize all the values

context(t) = [0,0, ...] # A vector of zeros

attention_weights(t) = [0, 0, ...] # A vector of zeros

hidden_states(t) = [([0,0,0..],[0,0,0,..]), ...] # A vector hidden and cell states for each

lstm_cell

do

t = t+1

D(t) = embedding(output_symbols(t-1)) # We actually work with embeddings of characters

LSTM_input = [D(t),context(t-1)] # Concatenate the Embedding and the context

hidden_states(t) = LSTMstep(LSTM_input, hidden_states(t-1))

context(t), attention_weights(t) = Attend(E,hidden_states(t)) # Calculate the context, and

attention weights

prob_dist(t) = Character_Distribution_Net([hidden_states(t),context(t)])

output_symbols(t) = DrawFromDistribution(prob_dist(t))

until (output_symbols(t) == <eos>)

return output_symbols

end

Listing 4 LSTMStep

function S = LSTMStep(lstm_input, hidden_states(t-1))

for j = 1 to num_lstm_cells #Loop over number of lstm_cells

hidden_states(t-1)(j) = lstm_cells(j)(lstm_input, hidden_states(t-1)(j))

lstm_input = hidden_states(t-1)(j)(0)

return hidden_states(t-1)

end

In order to implement the Speller using Pytorch, we recommend you use LSTMCells as you have already
done in HW4P1. This is a consequence of invoking the attention module at each timestep to generate a
context for that timestep, to generate output symbols. You will have to explicitly use LSTM cells (instead
of LSTM layers), at each time step. In the pseudocode we have used two LSTM cells, but you could use
more or less, depending on your setup.

We have now described nearly all the components of the LAS model (except for DrawFromDistribution()),
and are now ready to explain the two key procedures: inference with the model, and training the model.
The one unexplained component, DrawFromDistribution() will be explained as part of inference.

4.2 Inference

Inference in a sequence-to-sequence model attempts to find the most likely transcription for the given audio.
Given the model and an input (audio), the process for obtaining the output (transcription) is very straight-
forward: first encode the audio,and then run the decoder on the derived hidden representations. So the
entire process can be encapsulated by the following pseudocode:

Listing 5 Inference

# X is the input audio feature vector sequence

# O is the output transcription

function O = Inference(X)

E = Listener(X)
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O = Speller(E)

end

(The code above is for a single instance; we leave it to you to work out the generalization to a minibatch).

However, the above code still requires specification of a key component of the Speller – the operation
DrawFromDistribution(P). Recall that the objective of the decoder is to find the most likely output sequence
for any given input. This will depend on the specific implementation of DrawFromDistribution(P). There are
multiple possible ways of implementing this.

4.2.1 Greedy Search

The naive approach is greedy search, also the easiest decoding method for inference. All you would have
to do is to draw the character with the highest probability at each time step from the output probability
distribution for the entire batch of predictions you get from your model. Pseudocode would look like this -

Listing 6 Greedy Decoding

function O = DrawFromDistribution(P)

return argmax(P)

While this usually generates reasonable results, due to the autoregressive nature of the model, the greedy
method does not however guarantee that the final output sequence is the most likely one. Hence, in order
to get the most likely final output, exploring other techniques like random search and beam search, are
introduced below and elaborated further in Appendix J and Appendix K respectively.

4.2.2 Random Search

An alternate strategy is to simply draw outputs randomly according to the distribution P :

Listing 7 Random Decoding

function O = DrawFromDistribution(P)

return Sample(P)

Here Sample() is a function that randomly draws an output according to a distribution P . Once again,
random sampling this does not guarantee that the final output sequence is the most likely one, although,
strangely enough, random sampling can sometimes result in sequences that are more probable overall than
greedy outputs.

In practice, when using the random sampling procedure, one would generate several decodes (100, or even
1000), by rerunning the decoder multiple times. Since only the decoder is being run (the encoder only needs
to be run once), this is relatively inexpensive. We would then choose the decode with the highest probability.

4.2.3 Beam Search

To actually obtain the most likely output sequence, we need a rather more complex decoder than the one
described above in the pseudocode – we need beam search. This is the method chosen in the LAS paper.

However, implementing this will involve not using the basic decoder and have a completely different approach
to the decoding strategy given above. To select the most probable output sequence we must, ideally, now
explicitly evaluate all possible sequences and select the most likely. This is infeasible. Instead, we use a
beam search, which iteratively expands out the K most probable paths, until it finds a most likely path that
ends in a <eos>. Pseudocode for beam search can be found in Appendix K.
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4.3 Training

Finally, we come to training. In the type of neural networks we dealt with previously, the process of training
was simple. To compute parameter gradients from an input, we ran an initial inference – a “forward pass” –
over the input to get an output, and computed a loss that compared the network output to the target output.
The derivatives of the loss were propagated backward through the net to compute parameter gradients and
update the model.

In the sequence-to-sequence setting, however, this is challenging or even infeasible for a simple reason – there
may be no correspondence at all between the output of the inference and the target output. For instance,
a training instance may have the ground-truth transcription of “know how”, whereas the decoder output
may be “it it it it it it it it it it”. This sort of absurd output is not at all unlikely, particularly in the initial
stages of training when the model is poor. The two sentences “know how” and “it it it it it it it it it it” are
not comparable in length, and have no obvious alignment that could be used to compute a loss that can be
differentiated.

In order to be able to compute a differentiable loss, we would ideally require the forward pass to generate an
output that is not only comparable in length to the ground truth, must also have character-wise correspon-
dence with the ground truth character sequence. In order to achieve this, the forward pass itself must be
modified for training. Instead of making it autoregressive, we will explicitly use the ground truth as input
in the decoder. This is what is referred to as teacher forcing.

4.3.1 Teacher Forcing

In the modified form of the decoder that we use for training, the pseudocode will change to the following.

# Y(1:Tlen) are the sequence of characters in the ground-truth transcriptions

# We are assuming that Y(0) has been set to <sos> and Y(Tlen+1) has been set to <eos>

function prob_dist = TeacherForcedSpeller(E, Y)

t = 0, hidden_states(t) = [([0,0,0..],[0,0,0,..]), ...]

output_symbols(t) = <sos> # Initialize all the values

context(t) = [0,0, ...] # A vector of zeros

attention_weights = [0,0, ...]

for t = 1:Tlen

D(t) = embedding(Y(t-1)) # We actually use the correct character

LSTM_input = [D(t),context(t-1)] # Concatenate the Embedding and the context

hidden_states(t) = LSTMstep(LSTM_input, hidden_states(t-1))

context(t), attention_weights(t) = Attend(E,hidden_states(t))) # Calculate the context, and

weights

prob_dist(t) = Character_Distribution_Net([hidden_states(t),context(t)])

output_symbols(t) = DrawFromDistribution(prob_dist(t))

end

return output_symbols

end

Note that this has actually changed only marginally from the decoder in Section 4.1.3.

• The Speller now also takes in the ground truth Y.

• We no longer draw output_symbol(t) from prob_dist(t). Instead, LSTMstep() is directly fed the embedding
of the ground truth Y(t). This is the “teacher forcing” – the “teacher”, i.e. the ground truth, is being
forced as input to the decoder, instead of an output that would usually be drawn from prob_dist(t).

• Instead of looping until the drawn sample is <eos>, we now simply loop until we run out of characters in
the ground truth.

Figure 4a illustrates this process.
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Figure 4: (a) Full teacher forcing. “CDN” is the Character Distribution Net. The T(i)s are teacher-forced inputs.
(b) Partial teacher forcing. “Draw” is DrawFromDistribution. Dotted lines represent drawn inputs.

Note how, because the decoder is now only actually predicting the next symbol at any time (since the inputs
are deterministically the ground truth), at any time, there is strict correspondence between the predicted
output and the target output at that time. The loss is now computed between the sequence outout probability
distributions PO(t) and the ground truth sequence. Loss computation is described in Section 4.3.2.

The approach in the above pseudocode inputs the ground truth to the decoder at every time step (as opposed
to autoregressively feeding in the drawn output as mentioned earlier). This process is very different from
actual inference on test data, where such ground truth will obviously not be available to provide as input.
As a result, the process can result in suboptimal models.

An intermediate option between full inference for the forward pass (which cannot be used for training as
we saw) and a fully teacher-forced decode in the forward pass is partial teacher forcing, where, for some of
the time we actually provide a drawn sample instead of the ground truth as input to the decoder. This still
maintains one-to-one correspondence between the decoder output and the ground truth, and permits loss
computation. The modified pseudocode for this operation is given below. Here the variable tf_ratio in the
code is the teacher-forcing ratio, which is the fraction of time for which the input is teacher forced. When
tf = 1, every input is teacher-forced and we get back the situation in the pseudocode above (Figure 4a).

# Y(1:Tlen) are the sequence of characters in the ground-truth transcriptions

# We are assuming that Y(0) has been set to <sos> and Y(Tlen+1) has been set to <eos>

function prob_dist = TeacherForcedSpeller(E, Y, tf_ratio)

t = 0, hidden_states(t) = 0, output_symbols(t) = <sos> # Initialize all the values

context(t) = [0,0, ...] # A vector of zeros

attention_weights(t) = [0,0, ...]

for t = 1:Tlen

if (t > 1) # At the first time step the input symbol is always <sos>

p = generateuniformrandomnumber()

if (p <= tf_ratio)

inputsymbol = Y(t-1)

else

inputsymbol = output_symbols(t-1)

end

D(t) = embedding(inputsymbol) # We actually work with embeddings of characters

LSTM_input = [D(t),context(t-1)] # Concatenate the Embedding and the context

hidden_states(t) = LSTMstep(LSTM_input, hidden_states(t-1))

context(t), attention_weights(t) = Attend(E, hidden_states(t)) # Calculate the context, and

weights

prob_dist(t) = Character_Distribution_Net([hidden_states(t),context(t)])

output_symbols(t) = DrawFromDistribution(prob_dist(t))

end

return prob_dist

end
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(The above code is written for a single instance. You must adapt this to work over minibatches.)

Figure 4b illustrates this process. The DrawFromDistribution() may be an argmax, or a random sample (the
latter is generally preferred, however the former is easier to implement). The loss is now computed as before
between the sequence of distributions prob_dist(t) and the ground truth sequence Y.

It is important to note that any teacher-forcing ratio above 0 introduces a mismatch between the decodes
performed in training and those in inference. However, equally importantly, teacher-forcing ratios below 1.0
introduce a misalignment between the decoder output and ground truth output (i.e. the decoder may want
to now output a longer or shorter sequence than the ground truth, and thus the output distribution may
end up being compared to the wrong ground-truth character) and training will not converge.

So, we typically set tf ratio initially to 1.0, and as the model converges and becomes more likely to generate
an aligned output, the tf ratio is gradually reduced, although reducing it below 0.5 will result in poor
convergence and bad models.

The manner in which the tf ratio is reduced with iterations is called teacher-force scheduling. Some pointers
regarding teacher force scheduling:

• Reducing your teacher forcing ratio below 0.5 might cause instability in training. However, you are
welcome to try lower values if they work for you.

• Reducing your teacher forcing ratio by small amounts consecutively seems to give better performance
than reducing it by a larger amount at once.

• A low teacher forcing ratio with a high learning rate can cause your model to diverge suddenly. Monitor
both parameters if you experience sudden divergence in the middle of training.

• Explore different scheduling methods - use learning rate schedulers as inspiration and have fun!

4.3.2 Cross-Entropy Loss with Padding

We use the cross-entropy loss to optimize the model. Since, with teacher forcing, there is one-to-one cor-
respondence between the network output and ground truth, the X-ent loss is just the sum of the losses for
individual symbols and can be computed using the following code:

Listing 8 Loss Computation

#prob_dist is a sequence of probability distribution vectors.

#Y(1:Tlen+1) is the ground truth sequence *including* the final <eos>. Y(0) is not considered

function Loss = XEntLoss(prob_dist, Y)

loss = 0

for t = 1:Tlen+1

# The Xent loss is just the negative of the log probability of the target symbol

loss = loss - log(prob_dist(Y(t))

end

return loss

end

The above code only computes the loss for a single instance, and is presented only as an explanation of
loss computation. In practice, you will be training over minibatches, and the output will be a 3D array (a
minibatch of arrays of probability distributions). Since you will use Pytorch’s CrossEntropyLoss, you’ll need
to modify your output and label data as such to accommodate to these dimensions by reshaping. Make sure
to study the Pytorch CrossEntropyLoss documentation for more information.

Next, it is important to note that your inputs will be of different lengths and will be padded to uniform
length in a minibatch. The predictions and ground truth transcripts consist of padding indices that we
created in our dataloader. Hence to calculate the loss, we need to mask out the padding indices so that they
do not affect your gradients. The most straightforward way to do this is using the ignore_index parameter in
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PyTorch for CrossEntropyLoss. More (manual) ways of doing this that demonstrate what exactly happens,
can be found in Appendix G.

4.3.3 Overall training

The overall training procedure is simple now:

# X is the input audio, T is its ground-truth transcription

# tf is the current setting of teacher-force ratio according to your scheduler

function gradient = ComputeGradient(X,T,tf)

E = Listen(X)

PO = TeacherForcedSpeller(E,T,tf)

L = XEntLoss(PO, T)

gradient = BackPropagate(L)

end

BackPropagate() is the gradient packpropagation that Pytorch’s autograd will compute. The gradient is
used to update the models. Observe how TeacherForcedSpeller is used instead of the regular speller, in the
forward pass for training.

There is, however, a few more issues to factor in (we did promise you that this was a tricky homework).

• When the teacher-force ratio is less than 1, some of the inputs to the decoder are obtained by
DrawFromDistribution() – these are shown by the dotted line in Figure 4(b). When backpropagat-
ing gradients, the derivatives must ideally also be backpropagated through this operation. However,
DrawFromDistribution(P) is typically either an argmax or random sampling from P, neither of which
is a differentiable operation if performed the usual way. In order to address that, we must modify
these operations – by replacing embedding(argmax(P)) with embedding(softmax(P)), or by using the
Gumbel-noise reparametrization as a replacement for sampling. We discuss this in Appendix O.

• While simply training as given above would work, sometimes it can help to pretrain the listener and
speller separately before including them in the overall training. The listener can be pretrained either
using a CTC criteron (as in HW3P2) or as an autoencoder. The speller can be pretrained as a
language model (as you did on HW4P1) on the character transcripts of HW4P2. (Hint: You don’t
need to implement a dataloader for this, think about it! ). It is also worth noting that some have found
this pre-training step helpful, others have found that training end-to-end works better. These are
discussed in Appendix Q.

5 More Approaches

There are many ways to approach this problem - using LAS, Transformers, etc. In any methodology you
choose, we require you to use an attention-based system like the one mentioned in the baseline (or another
kind of attention) so that you achieve good results. If you want to understand more about attention, please
read the following papers (you can click the texts):

• “Listen, Attend and Spell”

• “Show, Attend and Tell (Optional)”

• Annotated “Attention is All You Need”

6 Practical Implementation Details

You will have to implement the baseline (LAS) model to clear the early submission cutoff. Using the
regularization methods suggested in M will help you clear the medium cutoff comfortably. Using data
augmentation techniques as done previously in HW1P2 and HW3P2, with a good teacher forcing schedule
will also help you reach the high cutoff.
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You can also try using different types of attention - additive, scaled-dot product, cosine, multi-head or self
attention. You are also welcome to try things such as language models to rescore your output as mentioned
in Appendix Q, use CNNs/CNN blocks from HW2P2, or a transformer (Watch Recitation 11 if you want to
learn how to code one).

7 Conclusion

This homework is a true litmus test for your understanding of concepts in Deep Learning. It is not easy to
implement, and the competition is going to be tough. But we guarantee you, that if you manage to complete
this homework by yourself, you can confidently claim that you are now a Deep Learning Specialist!

Good luck and enjoy the challenge!
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Appendices

A Debugging

A.1 Toy Dataset

In addition to the real datasets, we provide a toy dataset - for debugging your attention implementation. The
code for downloading it and the dataset will be given in the starter notebook. It has fixed length sequences,
and the transcripts are phonemes, not characters. It is meant to give you an idea of how you can use
attention for phonetic transcription, a step above HW3P2. Using the toy dataset as a test for convergence
and ensuring you get the right attention plots will be extremely useful for your HW.

We attach two examples of attention plots you can expect from the toy dataset. Note that all toy utterances
from a given split are stored in a single file as opposed to multiple files like the real training data.

Note that some portions of the plots are fuzzy and do not show clean lines (the right plot has more fuzzy
areas than the left one). A correct attention implementation can result in both plots as well as fuzzier ones.

The toy dataset is simple and not reflective of the actual dataset. Please be mindful that the knowledge
(e.g. hyperparameters, model architectures) you gain from playing around with the toy dataset may not
transfer to the actual dataset. We recommend you use this to check for the correctness of the attention
implementation and move on as soon as you see a diagonal shape that is close to the provided plots.

A.2 Mixed Precision

When implementing mixed precision, students typically overlook a common error - scaling and unscaling the
optimizer when using gradient clipping. Please refer to this article by Pytorch that has code examples. Not
unscaling the optimizer before gradient clipping can result in convergence delays.

Listing 9 Mixed Precision

scaler = GradScaler()

for epoch in epochs:

for input, target in data:

optimizer.zero_grad()

with autocast():

output = model(input)

loss = loss_fn(output, target)

scaler.scale(loss).backward()
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# Unscales the gradients of optimizer’s assigned params in-place

scaler.unscale_(optimizer)

# Since the gradients of optimizer’s assigned params are unscaled, clips as usual:

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)

# optimizer’s gradients are already unscaled, so scaler.step does not unscale them,

# although it still skips optimizer.step() if the gradients contain infs or NaNs.

scaler.step(optimizer)

# Updates the scale for next iteration.

scaler.update()

B Character Based vs Word Based

We are giving you raw text in this homework, so you have the option to build a character-based or word-
based model. Word-based models won’t have incorrect spelling and are very quick in training because the
sample size decreases drastically. The problem is, it cannot predict rare words (i.e words in testing set that
are not present in your training set), thus resulting in a drop in performance. You would have to come up
with strategies to handle OOV (Out of Vocabulary) words.

The paper describes a character-based model. Character-based models are known to be able to predict some
really rare words but at the same time they are slow to train because the model needs to predict character by
character. In this homework, we strongly recommend you to implement a character based model, since:

• According to the statistic from last semester, almost all students will implement LAS or its variants,
and LAS is a character based model.

• Most TAs are familiar with the character-based model, so you can receive more help for debugging.

C Transcript Processing

HW4P2 transcripts contain letters. You should make use of the LETTER_LIST array (consisting of all char-
acters/letters in the vocabulary) provided in the starter notebook and convert the transcripts into their
corresponding numerical indices to train your model.

Each transcript/utterance is a separate sample that is a variable length. We want to predict all characters,
so we need a [start] and [end] character added to our vocabulary, which are <sos> and <eos>, respectively.

Hints/Food for thought:

• Think about special characters that are included in the vocabulary.

• You need to build a mapping from char to index, and vice versa. Reverse mapping is required to
convert output, i.e., index, back to char.

• How do you deal with the length of the final output when evaluating on validation/test sets?

D Variable Length Inputs

Similar to HW3P2, you will be dealing with variable length transcripts as well as variable length utterances.
We list one way you should deal with this problem, and another way that is useful for debugging only.
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D.1 Built-in pack padded sequence and pad packed sequence

Idea: PyTorch already has functions you can use to pack your data. Use this!

• All the RNN modules directly support packed sequences.

• The slicing optimization mentioned in the previous item is already done for you! For LSTM’s at least.

• Probably the fastest possible implementation.

• IMPORTANT: There might be issues if the sequences in a batch are not sorted by length. If you do not
want to go through the pain of sorting each batch, make sure you put in the parameter ’enforce sorted
= False’ in ’pack padded sequence’. Read the docs for more info.

D.2 Batch size one training instances

Idea: Give up on using mini-batches. Only use this for debugging!

• Trivial to implement with basic tools in the framework

• Helps you focus on implementing and testing the functionality of your modules

• Is not a bad choice for validation and testing since those aren’t as performance critical.

• IMPORTANT: Once you decide to allow non-1 batch sizes, your code will be broken until you make
the update for all modules.

E CNNs over pBLSTMs

As mentioned in HW3P2, some architectural variations you can try include using CNN layers with pBLSTMs,
or replace pBLSTMs with CNNs, residual connections, etc. You can also try using a variation of your HW2P2
architectural blocks from networks such as ResNets, ConvNeXt, MobileNet, etc. Feel free to experiment and
potentially enlighten us with an architecture that works well with CNNs over/with pBLSTMs! Again, keep
in mind that we don’t recommend downsampling by a factor higher than 8.

F Single Head Attention (Minibatch)

The following pseudocode describes context computation, as outlined in Section 4.1.2, for a minibatch. We
use loops in the pseudocode – actual python code would be smarter and use tensor operations.

Listing 10 Attention (minibatch)

# E(:,:,:) = batchsize x max_sequence_length x dim array of embeddings for a minibatch

# mask(:,:) = batchsize x max_sequence_length array of binary masks (1 for valid, 0 for invalid)

# q(:,:) = batchsize x Dq matrix of query vectors

# C(:,:) = batchsize x Dv matrix of computed context vectors

# attention_weights = batchsize x max_sequence_length array of attention weights

function C, attention_weights = Attend(E, D, mask=None)

# WK, WV, WQ must also be specified in actual code

query_length = length(D(1,:))

for b = 0:batchsize-1 # Goes over the entire minibatch

instance_embeddings = E(b,:,:)

K = instance_embedding * WK # WK is a dim x Dq matrix

V = instance_embedding * WV # WV is a dim x Dv matrix

Q = D(b,:,:) * WQ

raw_weights = (1/sqrt(query_length)) * Q * transpose(K)

if mask != None:

# Mask attention weights manually here if not using ignore_index, or if you require a

causal mask in the case of a transformer

attention_weight = softmax(raw_weights) # Renormalize to sum to 1
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attention_weights(b,:) = attention_weight

C(b,:) = attention_weight * V

end

return C, attention_weights

end

G Masking Padding Indices

Here we provide some more detail on alternative ways to come up with a mask to discard padding indices
in your predictions/attention. The recommended method is to still use ignore_index, but these methods
should give you a better intuition of what happens under the hood.

G.1 Method 1 - For Loop

You can use a nested for loop to create a mask by looping through the batch, retrieving the label length for
the instance, and setting all time instances before the label length as true and all time instances after label
length as false. If you use this approach, your code should look something like this (again, this is psuedocode!):

Listing 11 Mask using For Loop

#let B be batch size, let T be time step length

mask = array of size B*T

for b in range(B)

length = label length of instance

for i in range(T):

if i < length:

#you guys can figure this out :)

else:

# ????

G.2 Method 2 - Boolean Mask

This method involves creating a boolean mask over all the sequences in a minibatch such that for each
sequence, the corresponding mask has values that are True for all positions that aren’t padding, and False
for all padding indices (vice-versa also works). If you take this approach, your code should look something
like this (this is pseudocode!):

Listing 12 Boolean Mask using broadcasting

#let B be batch size, T be time step length

#let sequenceLength be a list of sequence lengths of each transcript in the batch of size B

lst = #how can we make an list of length T that starts at 0 and counts up to T-1?

mask = lst < sequenceLength #or lst >= sequenceLength

#The code above by itself will cause dimension issues - how can you use squeeze/unsqueeze lst

and/or sequenceLength to fix this?

For masking your loss calculation, you have a few options:

• Use the mask to index the relevant parts of your inputs and targets, and use those only for loss.

• Send your inputs and targets to the loss calculation (set reduction=’none’), then use the Boolean mask
to zero out anything that you don’t care about.

• Use the ignore index parameter in Xentropy Loss and set all of your padding to a specific value.
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For masking your attention, we suggest you use the masked_fill function from Pytorch to replace the
masked indices with a value of choice. Remember, you want to make sure your padding has no impact when
performing the softmax operation. (Hint: Think about what value to use for masked_fill, such that the
softmax of padding indices becomes 0).

G.3 Method 3 - PackedSequence

Another easy way to mask your loss is to use PackedSequence. If you remember how we have used packing
and padding so far, we pad sequences to a fixed length and pack the output sequences from the model with
the respective array of sequence lengths. Following this line of thought, we can pack the predictions obtained
from our model, and the ground truth transcripts from the dataloader, and use those to calculate the loss. If
your inputs and outputs are Packed-Sequence, then you can run your loss function on sequence.data directly.
Refer to Pytorch’s PackedSequence documentation for more information.

# ly is the lengths array from the dataloder

predictions = model(input)

packed_predictions = PackPaddedSequence(predictions, ly, enforce_sorted=False)

packed_transcripts = PackPaddedSequence(y, ly, enforce_sorted=False)

loss = XentropyLoss(packed_predictions.data, packed_transcripts.data)

Typically, we will use the sum over the sequence and the mean over the batch. That means take the sum of
all of the losses (modified by the mask) and divide by batch size. If you’re wondering “why” consider this:
if your target is 0 and your predicted logits are a uniform 0, is your loss 0 or something else?

The concept to keep in mind is that your mask should be reflective of the corresponding lengths of the ground
truth transcripts, i.e your mask should negate all values from the padding that comes after the length of
the ground truth transcripts. Easiest way to check if you have the right mask would be to make sure the
sum of your mask (or the negated mask, depending on how you implemented it) along the sequence length
dimension adds up to the lengths of the ground truth transcripts.

H Multi-Head Attention

The attention computed in (Section 4.1.2) computes a single context vector Ck to compute output Ok. Ck

derives and focuses on a single specific aspect of the input that is most relevant to Ok. It is reasonable to
assume that there are multiple separate aspects of the input that must all be considered to compute Ok.

Figure 5

Multi-head attention works on this principle to derive multiple context vectors C1
k , C

2
k , · · · , CL

K . Each context
vector Cl

k is computed using a separate attention module of the form explained above (Section 4.1.2), with
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its own learnable parameters Wl
K ,Wl

V , andW
l
Q. The complete module that computes an individual context

vector Cl
k is called an attention head, thus the overall attention framework that computes multiple context

vectors is referred to as multi-head attention.

The final context vector Ck that is used to compute Ok is obtained by concatenating the individual context
vectors: Ck = [C1

k , C
2
k , · · · , CL

k ] (where L is the number of attention heads).

Following is the pseudocode for multi-head attention:

Listing 13 Multihead Attention

# E = (sequence_length, dim) array of speech embeddings for \textit{single} input

# D = (sequence_length, dim) array of character embeddings for \textit{single} input

# context = context vector computed (1,Dv) row vector)

# no_of_heads = number of attention heads

function Attention = MultiHead(E, D, mask=None)

key = E * WK # WK is a (dim, Dk) matrix

value = E * WV # WV is a (dim, Dv) matrix

query = D * WQ # WQ is a (dim, Dq) matrix

# Reshape Q,K,V to compute attention in parallel for each head

query = reshape(query, (1, no_of_heads, Dq//no_of_heads))

key = reshape(key, (sequence_length, no_of_heads, Dk//no_of_heads))

value = reshape(value, (sequence_length, no_of_heads, Dv//no_of_heads))

# Transpose to (no_of_heads, 1, Dkv//no_of_heads)

query = transpose(query)

# Transpose to (no_of_heads, sequence_length, Dkv//no_of_heads)

key = transpose(key)

value = transpose(value)

mask = ? #Similar to single head attention, but now have one for each head

context, attention_weights = Attend(query,key,value,mask) #Assuming Attend works on

minibatches, Attend here just computes the dotproducts instead of projecting the matrices

again

context = reshape(context, (1, Dv))

context = context * W_O #W_O is a (Dv,Dv) matrix

return context, attention_weights

end

I Speller (minibatch)

The following pseudocode generalizes the implementation of Speller found in 4.1.3 for minibatches.

Listing 14 Speller (minibatch)

# hidden_states(:,:,:) = (batchsize,timestep,lstm_hidden_size) array of lstm hidden states

# query(:,:) = (batch_size, Dq) matrix of query vectors

# context(:,:,:) = (batchsize, timestep,Dv) matrix of computed context vectors

# prob_dist(:,:,:) = (batch_size,timestep,vocab_size) array of probability distributions

# output_symbols(:,:,:) = batch_size x timestep x 1 array of output symbols for each sequence

# predictions = (batch_size,) list of variable length sequences of predicted transcripts

function predictions = Speller(E)

hidden_states(:,0,:) = [([0,0 ...],[0,0, ...]) ... ]

output_symbols(:,0,:) = [<sos>, <sos> ... ]

prob_dist = []

D(:,0,:) = embedding(output_symbols(:,0,:))

context(:,t,:) = attention(E, D) #or, alternaetely, as V[0]

for t = 1:Tmax

D(:,t,:) = embedding(output_symbols(:,t-1,:))

LSTM_input = [D(:,t:,), context(:, t-1, :)]
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hidden_states(:,t,:) = LSTMstep(LSTM_input, hidden_states(:,t-1,:))

context(:,t,:) = attention(E, hidden_states(:,t,:))

prob_dist(:,t,:) = Character_Distribution_Net([context(:,t,:), hidden_states(:,t,:)])

output_symbols(:,t,:) = DrawFromDistribution(prob_dist(:,t,:))

predictions = concat(predictions, output_symbols(:,t,:))

return predictions

end

J Inference - Random Search

As we saw in Section 4.2.2, random search would involve generating several decodes by rerunning the decoder
multiple times. We outline a procedure for you to do it as follows -

• Pass only the utterance and the <sos> character to your model.

• Generate text from your model by sampling from the predicted distribution for some number of steps.

• Generate many samples in this manner for each test utterance (100s or 1000s). You only do this on
the test set to generate the Kaggle submission so the run time shouldn’t matter.

• Calculate the sequence lengths for each generated sequence by finding the first <eos> character.

• Now run each of these generated samples back through your model to give each a loss value.

• Take the randomly generated sample with the best loss value, optionally re-weighted or modified in
some way like the paper.

K Inference - Beam Search

Ideally, to select the most probable output sequence we must explicitly evaluate all possible sequences and
select the most likely. This is infeasible. Instead, we use a beam search, which iteratively expands out the K
most probable paths, until it finds a most likely path that ends in a <eos>. This is the method chosen in the
LAS paper. Note that if you want to implement this, you are not allowed to use any third party packages.
Implementing this will involve not using the basic decoder and have a completely different approach to the
decoding strategy given in 4.1.3.

We provide pseudocode for beam search here, for you to get started:

Listing 15 LSTM Beam Search

# k = beam_width

function beam_decoder(E):

O(t) = <sos>, query = [0,0,...]

log_probs = 0.0, init_hidden_states = 0

out_seq = [] #List to maintain output sequence of symbols for path

path_end = False #Boolean to signify if we path reached <eos>

initial_context = attention(E, query) #or, alternatively as V[0] or zeros

beams = [[log_probs, out_seq, hidden_states, initial_context, path_end]] #Super list of all

paths

for t = 1:Tmaxlength-1: #Loop over timesteps till max length

new_beams = [] #Temporary list of paths for current sequence at timestep t

for path in beams: #Loop over all paths in your beams list

#Each path has log_probs, out_seq, hidden_states, context and path_end as attributes

if path has encountered <eos>:

#Save path, continue to the next

else:

26



#Search not concluded if all paths have not encountered <eos> symbol yet.

#How can you maintain a check for this condition?

S(t-1) = hidden_states.copy() #Copy of hidden_states from current path list

#We do this to use the last hidden state of path so far to get the next symbol from

LSTMStep, in our search

D(t) = embedding(O(t-1))

LSTM_input = [D(t), C(t-1)]

S(t) = LSTMStep(LSTM_input, S(t-1))

C(t) = Attend(E, S(t))

PO(t) = Character_Distribution_Net([C(t), S(t)])

candidate_paths = topkpaths(log_softmax(PO(t))) #Topkpaths gets the top beam_width

possible output symbols from the log softmax of the probabilities in the

distribution

for i = 0:k #Loop over each possible output symbol until beam_width

path_symbol = #Get output symbol for path i from candidate paths

path_log_prob = #Get log probabilities of path i from candidate paths

#Add new path to new_beams as follows:

#update path log probabilities, path sequence with new output path symbol,

#update hidden states and path_end if search for this path has ended with <eos>

beams = prune(sort(new_beams)) #Sort new beams by probability score and prune top k

#if all paths have encountered <eos>, break here

#return concatenated output sequence of top path in beams

L Levenshtein Distance

Kaggle will evaluate your outputs with the Levenshtein distance, aka edit distance : number of character
modifications needed to change the sequence to the gold sequence. To use that on the validation set, you
can use the python-Levenshtein package.

Implementing it is fairly similar to how you did it in HW3P2. You would first need to create the predicted
transcript based on your inference method for each item in the batch. Calculate and sum the Levenshtein
distance between the predicted transcript and the ground truth for each pair, during your inference loop.
Finally, average the sum to obtain the levenshtein distance for the entire batch. Make sure you do not
include <sos> and <eos> tokens in your transcripts when calculating the distance and test predictions.

M Weight Initialization and Regularization

As you may have noticed in HW3, a good initialization significantly improves training time and the final
validation error. We recommend referring to the LAS paper for initialization strategies they have mentioned
and using the same for this task. You are welcome to explore different initialization strategies either way.

As you have done in HW4P1, you will have to use regularization methods including Locked Dropout, Weight
tying, Embedding Dropout, etc. Using these techniques is key to achieving great performance on your model.
Using Data Augmentation is also a key way to achieving better performance. We recommend using time
masking and frequency masking as you may have used in previous homeworks.
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N Optimizer and Learning Rate

From our empirical studies, we recommend you use Adam or AdamW and start with a learning rate of
1e−3, and experiment with the scheduling methods. On the other hand, the LAS paper uses ASGD as the
optimizer with a learning rate of 0.2. The learning schedule involved a geometric decay of 0.98 per 3M
utterances (i.e., 1/20-th of an epoch). Feel free to try that if it works for you.

O Gumbel Noise

One way to deal with the problem addressed in Section 4.3.3, is by using the Gumbel Noise Reparameter-
ization Trick. We reparameterize our output samples, as coming from a sum of the mean of a probability
distribution (gumbel distribution) plus some stochastic noise. We can then use argmax to draw the outputs.
The gumbel distribution is specifically used as it is stable under max operations. This is also equivalent to
computing the softmax over a set of stochastically sampled outputs. You can implement gumbel noise easily
using Pytorch (refer to the gumbel softmax function).

P Pretraining Listener

You can pretrain the listener in the baseline model with an autoencoder architecture with a separate encoder
and decoder block. You would separately train the Listener with the audio input to get hidden representations
and use a decoder block consisting of 1-d transpose CNNs that dilate the embeddings back to the input
dimensions, using L2 loss as your divergence metric. It should help make training faster in terms of iterations
required for convergence.

Q Language Models and Pretraining Speller

In HW4P2, you can train a language model to generate character level transcripts (similar to just HW4P1).One
strategy is to pre-train the speller (decoder) before starting the real training. You can use the train tran-
scripts as a train data and train just your decoder, like you would train a language model (e.g. HW4P1).
During the pre-training stage, you can set the attended context to zeros or random values, concatenate with
your input embeddings, and train with a language modeling objective.

Another strategy is to train LAS and add its outputs to your trained Language Model outputs at each
time-step. LAS is then only trying to learn how utterances change the posterior over transcripts, and the
prior over transcripts is already learned. It can make training much faster (not in terms of processing speed
obviously, but in terms of iterations required for convergence).
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