-Artificial Neural Network-

ADALINE and MADALINE

ADALINE

 ADALINE (Adaptive Linear Neuron) is a

network model proposed by Bernard Widrow
in 1959.

X

/

p g

X3

Training Rule

The activation function used is

y=1ify in>0

y=-1ify in<O.

The training rule is called the Widrow-Hoff rule or
the Delta Rule

It can be theoretically shown that the rule
minimizes the root mean square error between
the activation value and the target value.

That’s why it’s called the the Least Mean Square
(LMS) rule as well.

The 6 Rule

The 6 rule works also works for more than one output unit.

The 6 Rule

Consider one single output unit.

The delta rule changes the weights of the neural connections so
as to minimize the difference between the net input to the
output unit y _in and the target value t.

The goal is to minimize the error over all training patterns.

However, this is accomplished by reducing the error to each
pattern one at a time.

Weight corrections can also be accumulated over a number of
training patterns (called batch updating) if desired.

The Training Algorithm

Initialize weights to small random values
Set learning rate a to a value between O and 1
while (the largest weight change < threshold) do

for each bipolar training pair s:t do

{Set activation of input units i=1..n {xi = si}

Compute net input to the output unit:
y in=b+3Ix_iw_i

Update bias and weights:

fori=1..n{

b(new) = b(old) + a(t—y_in)
w_i(new) =w_i(old) + a (t —y_in)x_i}

} //endfor

}//end while

Setting Learning Parameter a

Usually, just use a small value for a, something
like 0.1.

If the value is too large, the learning process will
not converge.

If the value of a is too small, learning will be
extremely slow (Hecht-Nielsen 1990).

For a single neuron, a practical range for ais 0.1
<nxa<l1.0, wherenisthe number of input
units (Widrow, Winger and Baxter 1988).

MADALINE

* When several ADALINE units are arranged in a single layer so
that there are several output units, there is no change in how
ADALINEs are trained from that of a single ADALINE.

* A MADALINE consists of many ADALINEs arranged in a multi-
layer net.

 We can think of a MADALINE as having a hidden layer of
ADALINEs.

MADALINE (Many Adalines)

A Madaline is composed of several Adalines

e Each ADALINE unit has a bias. There are two hidden
ADALINEs, z1 and z2. There is a single output ADALINE Y.

* Each ADALINE simply

applies a threshold function

to the unit’s net input.

Y is a non-linear function of

the input vector (x1, x2).

The use of hidden units Z1 and 72
gives the net additional power, but
makes training more complicated.

Q ON

(x |
AN
7Y
A/
.

: - ISL

<
/
N

r , N\
N7

\

of

MADALINE Training

There are two training algorithms for a MADALINE
with one hidden layer.

Algorithm MR-/ is the original MADALINE training
algorithm (Widrow and Hoff 1960).

MR-I changes the weights on to the hidden
ADALINEs only. The weights for the output unit are
fixed. It assumes that the output unit is an OR unit.

MR-II (Widrow, Winter and Baxter 1987) adjusts all
weights in the net. It doesn’t make the assumption

that the output unit is an OR unit.

MR-I Training Algorithm

Determine the weights of units (here, v1, v2 and bias b3) such that the
output unit Y behaves like an OR unit.

In other words, Y is 1 if the Z1 or Z2 (or both) is (are) 1; Y is -1 if both
Z1 and Z2 are -1.

Here a weight of 2 on each of v1, v2 and v3 works.

The weights on the hidden ADALINEs are adjusted according to MR-I
algorithm.

In this example, weights on the first ADALINE (w11 and w21) and
weights on the second ADALINE (w12 and w22) are adjusted according
to MR-l algorithm.

Remember the activation function is
f(x)= 1if x=0
-1ifx<O

MR-I Training Algorithm

Set learning parameter a //Assume bipolar units and outputs. Only 1 hidden layer.
while stopping condition is false do
for each bipolar training pair s:t do
Set activation of input unitsi=1ton {xi=si}
Compute net input to hidden units, e.g., zin1 = b1 + x1 w1l + x2 w21
Determine output of each hidden ADALINE, e.g., z1 =f(z_in1)
Determine output of net: yin = b3 + z1 vl + z2 v2; y = f(yin)
//Determine error and update weights
if t=y, then no updates are performed //no errror
if t=1, //error, the expected output is 1, the computed output is -1; at least one of the Z’s should be 1
then update weights on Z_J, the unit whose net input is closest to 1 (or closest 0, both are the same)
b J(new)=b J(old)+a(1-2z_inJ)
w_iJ (new) =w_iJ (old) + a (1 —z_inJ) xi
if t=-1, then update weights on all units Z_k that have positive net input//error
endfor
endwhile

Stopping criterion: Weight changes have stopped or reached an acceptable level or after a certain

number of iterations.

MR-I Training Algorithm

Motivation for performing updates: Update weights only if an error has
occurred.

Update weights in such a way that it is more likely for the net to produce the
desired response.

If t=1 and error has occurred (i.e., y=-1, or the OR unit is off when it should
actually be on): It means that all Z units had value -1 and at least one Z unit
needs to have value +1. Therefore, we consider Z_J to be the unit whose net
input is closest to 0 and adjust its weights.

If t=-1 and error has occurred (i.e., y=1 or the OR unit is on when it should
actually be off): It means that at least one Z unit had value +1 and all Z units
must have value -1. Therefore, we adjust the weights on all of the Z units with
positive net input.

Example of Use of MRI

e, e ey [TTTT e mme —ma -

* Solving the XOR problem using MRI
* The training patterns are:

-1 -1 -1

Step 0.
The weights into Z, and into Z, are small random values; the weights into Y are

those found in Example 2.19. The learning rate, a,is .3.

Weights into Z, Weights into 2: Weights into Y
Wil L] b, Wi2 W22 b2 Uy U2 b3
05 2 3 N 2 A5 S S S

Step 1. Begin training.
Step 2. For the first training pair, (1, 1): =1

Step 3. x; =1, x; =1
Step 4. zin; =.3 + .05 +

2 = .55,
2 = .45.

Madaline
Training
for XOR
Using
MR1
Algorithm

Step5. =1,

22 =1
Step 6. y-in=.54+ .5+ .5

y =L
Step 1. t-y=-1-1= -2#0,soanerroroccurred.
Since t = —1, and both Z units have positive net input,

update the weights on unit Z, as follows:

bi(new) = by(old) + a(—1 — z_in,)

3+ (5)(—1.55)
= — 475
wi(new) = wn(old) + a(—1 — z.in))x,
05+ (.5)(—1.55)
—-.725

wa(new) = wa(old) + a(—1 — z_in)x;

2 + (S5)(—1.55)
-.575

update the weights on unit Z> as follows:

ba(new) = by(old) + a(—1 — z_iny)
= .15 + (.5)(—1.45)
= —-.575
wia(new) = wia(old) + al(—1 — z_ins)x,
= .1 + (.5)(—1.45)
= —.625
wa(new) = wy(old) + a(—=1 — z_inz)x;

2 + (5)(—1.45)
—-.525

After four epochs of training, the final weights are found to be:

= —0.73

1.53
-0.99

Wi = 1.27
Wiy = — 1.33
bz = -]09

Geometric Interpretation of Madaline MR1 weights

* The positive response region for the Madaline trained in the previous
example is the union of the regions where each of the hidden units have
a positive response.

* The decision boundary for each hidden unit can be calculated as

described in Section 2.1.3 of Fausette’s book.
For hidden unit Z,, the boundary line is

Wiy b,

xz=———x_—~

W2 Wit

0.73 0.99
= —-x‘ +~ —

1.53 1.53

= 0.48 x, + 0.65

For hidden unit Z,, the boundary line is

w b

Xp= =22, _ 22
22 W22
_lm L
1.337" 7 1.33

16
= 0.96 x;, — 0.82

Geometric Interpretation of Madaline MR1 weights

* We see the positive response regions for Z1 and Z2, and then the positive
response region for the output Y unit which is the intersection of the two Z1 and
/2 regions.

Figure225 Positiveresponseregion for
Z,.

x2

Figure 227 Positive response region for MapALINE for Xor function.

Figure2.26 Positive response region for

Za. 17

MR-l Training Algorithm

There is no assumption that the output unit acts as a logical OR.

The goal is to change weights in all layers of the net, i.e., in all
hidden layers when we have several hidden layers + output layer.

But, we also want to cause the least disturbance in the net so that it
remains stable from iteration to iteration.

This causes least “unlearning” of the patterns for which the net has
been trained previously.

This is sometimes called the “don’t rock the boat” principle.

Several output nodes may be used; the total error for any input
pattern is the sum of the squares of the errors at each output unit.

MR-l Training Algorithm

The MR-II algorithm is considerably different from the back-
propagation algorithm we will learn later.

The weights are initialized to small random values and training
patterns are presented repeatedly in epochs.

The algorithm modifies the weights for the nodes in hidden
layer=1, then layer=2, .. up to the output layer.

The training algorithm is a trial-and-error procedure following
the minimum disturbance principle.

Nodes that can affect the output error incurring the least
change in their weights have precedence in the learning process.

MR-l Training Algorithm

Set learning rate a
while stopping condition is false do
for each bipolar training pair s:t do
Compute output of the net based on current weights and activation function
if t#y, then for each unit whose net input is sufficiently close to O
(say, between -a and o, with =0.25) do
{Sort all such units in the network at all levels based on their net input values.
Start with the unit whose net is closest to 0, then for the next closest, etc.
Change the unit’s output from +1 to -1, or vice versa
If modifying the output of this node improves network performance
(i.e., reduces error on test set)
then //if the error is not reduced, undo the reversal
adjust the weights on this unit to achieve the output reversal} //how to do is not given
endfor
endwhile

Stopping criterion: Weight changes have stopped or reached an acceptable level or after a
certain number of iterations.

21

MR-l Training Algorithm

Algorithm MRII;

repeat
Present & training pattern { t¢ the metwork;
Comwpute outputs of all hidden nodes and the ocutput node;
Let Ai==1;
while the pattern is misclaspified
and # < the number of hidden layers, do
Sort the Adalines in layer A, in the order of
increasing net input magnitude (IE; w;i;]),
but omitting nodes for which |3 ;w;i;| > 8,
where f is a predetermined threshold;
Let S=(A4,,..., A;) be the sorted sequence;
while network output differs from desired omtput,
and § contains nodes not yet examined
in this iteration, do
if rever=zing output of the next element A;<$
can improve network performamce,
then Nodify connection weights leading into Aj;
to accomplish the output raversal;
end-if;
end-while
hi=h41;
end-while
until performance is considered satigfactory or the upper
bound on the number of iterations has besn reached.

22

