
Communicated by Ronald Williams

Long Short-Term Memory

Sepp Hochreiter
Fakultät für Informatik, Technische Universität München, 80290 München, Germany

Jürgen Schmidhuber
IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland

Learning to store information over extended time intervals by recurrent
backpropagation takes a very long time, mostly because of insufficient,
decaying error backflow. We briefly review Hochreiter’s (1991) analysis of
this problem, then address it by introducing a novel, efficient, gradient-
based method called long short-term memory (LSTM). Truncating the
gradient where this does not do harm, LSTM can learn to bridge minimal
time lags in excess of 1000 discrete-time steps by enforcing constant error
flow through constant error carousels within special units. Multiplicative
gate units learn to open and close access to the constant error flow. LSTM
is local in space and time; its computational complexity per time step
and weight is O(1). Our experiments with artificial data involve local,
distributed, real-valued, and noisy pattern representations. In compar-
isons with real-time recurrent learning, back propagation through time,
recurrent cascade correlation, Elman nets, and neural sequence chunk-
ing, LSTM leads to many more successful runs, and learns much faster.
LSTM also solves complex, artificial long-time-lag tasks that have never
been solved by previous recurrent network algorithms.

1 Introduction

In principle, recurrent networks can use their feedback connections to store
representations of recent input events in the form of activations (short-term
memory, as opposed to long-term memory embodied by slowly changing
weights). This is potentially significant for many applications, including
speech processing, non-Markovian control, and music composition (Mozer,
1992). The most widely used algorithms for learning what to put in short-
term memory, however, take too much time or do not work well at all, espe-
cially when minimal time lags between inputs and corresponding teacher
signals are long. Although theoretically fascinating, existing methods do
not provide clear practical advantages over, say, backpropagation in feed-
forward nets with limited time windows. This article reviews an analysis of
the problem and suggests a remedy.

Neural Computation 9, 1735–1780 (1997) c© 1997 Massachusetts Institute of Technology



1736 Sepp Hochreiter and Jürgen Schmidhuber

The problem. With conventional backpropagation through time (BPTT;
Williams & Zipser, 1992; Werbos, 1988) or real-time recurrent learning (RTRL;
Robinson & Fallside, 1987), error signals flowing backward in time tend to
(1) blow up or (2) vanish; the temporal evolution of the backpropagated
error exponentially depends on the size of the weights (Hochreiter, 1991).
Case 1 may lead to oscillating weights; in case 2, learning to bridge long
time lags takes a prohibitive amount of time or does not work at all (see
section 3).

This article presents long short-term memory (LSTM), a novel recurrent
network architecture in conjunction with an appropriate gradient-based
learning algorithm. LSTM is designed to overcome these error backflow
problems. It can learn to bridge time intervals in excess of 1000 steps even
in case of noisy, incompressible input sequences, without loss of short-time-
lag capabilities. This is achieved by an efficient, gradient-based algorithm for
an architecture enforcing constant (thus, neither exploding nor vanishing)
error flow through internal states of special units (provided the gradient
computation is truncated at certain architecture-specific points; this does
not affect long-term error flow, though).

Section 2 briefly reviews previous work. Section 3 begins with an outline
of the detailed analysis of vanishing errors due to Hochreiter (1991). It then
introduces a naive approach to constant error backpropagation for didac-
tic purposes and highlights its problems concerning information storage
and retrieval. These problems lead to the LSTM architecture described in
section 4. Section 5 presents numerous experiments and comparisons with
competing methods. LSTM outperforms them and also learns to solve com-
plex, artificial tasks no other recurrent net algorithm has solved. Section 6
discusses LSTM’s limitations and advantages. The appendix contains a de-
tailed description of the algorithm (A.1) and explicit error flow formulas
(A.2).

2 Previous Work

This section focuses on recurrent nets with time-varying inputs (as opposed
to nets with stationary inputs and fixed-point-based gradient calculations;
e.g., Almeida, 1987; Pineda, 1987).

2.1 Gradient-Descent Variants. The approaches of Elman (1988), Fahl-
man (1991), Williams (1989), Schmidhuber (1992a), Pearlmutter (1989), and
many of the related algorithms in Pearlmutter’s comprehensive overview
(1995) suffer from the same problems as BPTT and RTRL (see sections 1
and 3).

2.2 Time Delays. Other methods that seem practical for short time lags
only are time-delay neural networks (Lang, Waibel, & Hinton, 1990) and
Plate’s method (Plate, 1993), which updates unit activations based on a



Long Short-Term Memory 1737

weighted sum of old activations (see also de Vries & Principe, 1991). Lin et
al. (1996) propose variants of time-delay networks called NARX networks.

2.3 Time Constants. To deal with long time lags, Mozer (1992) uses time
constants influencing changes of unit activations (deVries and Principe’s
1991 approach may in fact be viewed as a mixture of time-delay neural net-
works and time constants). For long time lags, however, the time constants
need external fine tuning (Mozer, 1992). Sun, Chen, and Lee’s alternative
approach (1993) updates the activation of a recurrent unit by adding the
old activation and the (scaled) current net input. The net input, however,
tends to perturb the stored information, which makes long-term storage
impractical.

2.4 Ring’s Approach. Ring (1993) also proposed a method for bridging
long time lags. Whenever a unit in his network receives conflicting error
signals, he adds a higher-order unit influencing appropriate connections.
Although his approach can sometimes be extremely fast, to bridge a time
lag involving 100 steps may require the addition of 100 units. Also, Ring’s
net does not generalize to unseen lag durations.

2.5 Bengio et al.’s Approach. Bengio, Simard, and Frasconi (1994) in-
vestigate methods such as simulated annealing, multigrid random search,
time-weighted pseudo-Newton optimization, and discrete error propaga-
tion. Their “latch” and “two-sequence” problems are very similar to prob-
lem 3a in this article with minimal time lag 100 (see Experiment 3). Bengio
and Frasconi (1994) also propose an expectation-maximazation approach
for propagating targets. With n so-called state networks, at a given time,
their system can be in one of only n different states. (See also the beginning
of section 5.) But to solve continuous problems such as the adding problem
(section 5.4), their system would require an unacceptable number of states
(i.e., state networks).

2.6 Kalman Filters. Puskorius and Feldkamp (1994) use Kalman filter
techniques to improve recurrent net performance. Since they use “a deriva-
tive discount factor imposed to decay exponentially the effects of past dy-
namic derivatives,” there is no reason to believe that their Kalman filter-
trained recurrent networks will be useful for very long minimal time lags.

2.7 Second Order Nets. We will see that LSTM uses multiplicative units
(MUs) to protect error flow from unwanted perturbations. It is not the first
recurrent net method using MUs, though. For instance, Watrous and Kuhn
(1992) use MUs in second-order nets. There are some differences from LSTM:
(1) Watrous and Kuhn’s architecture does not enforce constant error flow
and is not designed to solve long-time-lag problems; (2) it has fully con-
nected second-order sigma-pi units, while the LSTM architecture’s MUs



1738 Sepp Hochreiter and Jürgen Schmidhuber

are used only to gate access to constant error flow; and (3) Watrous and
Kuhn’s algorithm costs O(W2) operations per time step, ours only O(W),
where W is the number of weights. See also Miller and Giles (1993) for
additional work on MUs.

2.8 Simple Weight Guessing. To avoid long-time-lag problems of
gradient-based approaches, we may simply randomly initialize all network
weights until the resulting net happens to classify all training sequences
correctly. In fact, recently we discovered (Schmidhuber & Hochreiter, 1996;
Hochreiter & Schmidhuber, 1996, 1997) that simple weight guessing solves
many of the problems in Bengio et al. (1994), Bengio and Frasconi (1994),
Miller and Giles (1993), and Lin et al. (1996) faster than the algorithms these
authors proposed. This does not mean that weight guessing is a good algo-
rithm. It just means that the problems are very simple. More realistic tasks
require either many free parameters (e.g., input weights) or high weight pre-
cision (e.g., for continuous-valued parameters), such that guessing becomes
completely infeasible.

2.9 Adaptive Sequence Chunkers. Schmidhuber’s hierarchical chun-
ker systems (1992b, 1993) do have a capability to bridge arbitrary time lags,
but only if there is local predictability across the subsequences causing the
time lags (see also Mozer, 1992). For instance, in his postdoctoral thesis,
Schmidhuber (1993) uses hierarchical recurrent nets to solve rapidly cer-
tain grammar learning tasks involving minimal time lags in excess of 1000
steps. The performance of chunker systems, however, deteriorates as the
noise level increases and the input sequences become less compressible.
LSTM does not suffer from this problem.

3 Constant Error Backpropagation

3.1 Exponentially Decaying Error

3.1.1 Conventional BPTT (e.g., Williams & Zipser, 1992). Output unit k’s
target at time t is denoted by dk(t). Using mean squared error, k’s error signal
is

ϑk(t) = f ′k(netk(t))(dk(t)− yk(t)),

where

yi(t) = fi(neti(t))

is the activation of a noninput unit i with differentiable activation function
fi,

neti(t) =
∑

j

wijyj(t− 1)



Long Short-Term Memory 1739

is unit i’s current net input, and wij is the weight on the connection from
unit j to i. Some nonoutput unit j’s backpropagated error signal is

ϑj(t) = f ′j (netj(t))
∑

i
wijϑi(t+ 1).

The corresponding contribution to wjl’s total weight update is αϑj(t)yl(t−1),
where α is the learning rate and l stands for an arbitrary unit connected to
unit j.

3.1.2 Outline of Hochreiter’s Analysis (1991, pp. 19–21). Suppose we have
a fully connected net whose noninput unit indices range from 1 to n. Let
us focus on local error flow from unit u to unit v (later we will see that the
analysis immediately extends to global error flow). The error occurring at
an arbitrary unit u at time step t is propagated back into time for q time
steps, to an arbitrary unit v. This will scale the error by the following factor:

∂ϑv(t− q)
∂ϑu(t)

=
{

f ′v(netv(t− 1))wuv q = 1
f ′v(netv(t− q))

∑n
l=1

∂ϑl(t−q+1)
∂ϑu(t)

wlv q > 1
. (3.1)

With lq = v and l0 = u, we obtain:

∂ϑv(t− q)
∂ϑu(t)

=
n∑

l1=1

. . .

n∑
lq−1=1

q∏
m=1

f ′lm(netlm(t−m))wlmlm−1 (3.2)

(proof by induction). The sum of the nq−1 terms
∏q

m=1 f ′lm(netlm(t−m))wlmlm−1

determines the total error backflow (note that since the summation terms
may have different signs, increasing the number of units n does not neces-
sarily increase error flow).

3.1.3 Intuitive Explanation of Equation 3.2. If

| f ′lm(netlm(t−m))wlmlm−1 | > 1.0

for all m (as can happen, e.g., with linear flm ), then the largest product
increases exponentially with q. That is, the error blows up, and conflicting
error signals arriving at unit v can lead to oscillating weights and unstable
learning (for error blowups or bifurcations, see also Pineda, 1988; Baldi &
Pineda, 1991; Doya, 1992). On the other hand, if

| f ′lm(netlm(t−m))wlmlm−1 | < 1.0

for all m, then the largest product decreases exponentially with q. That is,
the error vanishes, and nothing can be learned in acceptable time.



1740 Sepp Hochreiter and Jürgen Schmidhuber

If flm is the logistic sigmoid function, then the maximal value of f ′lm is
0.25. If ylm−1 is constant and not equal to zero, then | f ′lm(netlm)wlmlm−1 | takes
on maximal values where

wlmlm−1 =
1

ylm−1
coth

(
1
2

netlm

)
,

goes to zero for |wlmlm−1 | → ∞, and is less than 1.0 for |wlmlm−1 | < 4.0 (e.g.,
if the absolute maximal weight value wmax is smaller than 4.0). Hence with
conventional logistic sigmoid activation functions, the error flow tends to
vanish as long as the weights have absolute values below 4.0, especially
in the beginning of the training phase. In general, the use of larger initial
weights will not help, though, as seen above, for |wlmlm−1 | → ∞ the relevant
derivative goes to zero “faster” than the absolute weight can grow (also,
some weights will have to change their signs by crossing zero). Likewise,
increasing the learning rate does not help either; it will not change the ratio
of long-range error flow and short-range error flow. BPTT is too sensitive
to recent distractions. (A very similar, more recent analysis was presented
by Bengio et al., 1994.)

3.1.4 Global Error Flow. The local error flow analysis above immediately
shows that global error flow vanishes too. To see this, compute∑

u: u output unit

∂ϑv(t− q)
∂ϑu(t)

.

3.1.5 Weak Upper Bound for Scaling Factor. The following, slightly ex-
tended vanishing error analysis also takes n, the number of units, into ac-
count. For q > 1, equation 3.2 can be rewritten as

(WuT )T F′(t− 1)
q−1∏
m=2

(WF′(t−m)) Wv f ′v(netv(t− q)),

where the weight matrix W is defined by [W]ij := wij, v’s outgoing weight
vector Wv is defined by [Wv]i := [W]iv = wiv, u’s incoming weight vector
WuT is defined by [WuT ]i := [W]ui = wui, and for m = 1, . . . , q, F′(t − m) is
the diagonal matrix of first-order derivatives defined as [F′(t−m)]ij := 0 if
i 6= j, and [F′(t−m)]ij := f ′i (neti(t−m)) otherwise. Here T is the transposition
operator, [A]ij is the element in the ith column and jth row of matrix A, and
[x]i is the ith component of vector x.

Using a matrix norm ‖ · ‖A compatible with vector norm ‖ · ‖x, we define

f ′max := max
m=1,...,q

{‖F′(t−m)‖A}.

For maxi=1,...,n{|xi|} ≤ ‖x‖x we get |xTy| ≤ n ‖x‖x ‖y‖x. Since

| f ′v(netv(t− q))| ≤ ‖F′(t− q)‖A ≤ f ′max,



Long Short-Term Memory 1741

we obtain the following inequality:∣∣∣∣∂ϑv(t− q)
∂ϑu(t)

∣∣∣∣ ≤ n ( f ′max)
q ‖Wv‖x ‖WuT‖x ‖W‖q−2

A ≤ n
(

f ′max ‖W‖A
)q
.

This inequality results from

‖Wv‖x = ‖Wev‖x ≤ ‖W‖A ‖ev‖x ≤ ‖W‖A

and

‖WuT‖x = ‖WTeu‖x ≤ ‖W‖A ‖eu‖x ≤ ‖W‖A,

where ek is the unit vector whose components are 0 except for the kth com-
ponent, which is 1. Note that this is a weak, extreme case upper bound; it
will be reached only if all ‖F′(t − m)‖A take on maximal values, and if the
contributions of all paths across which error flows back from unit u to unit
v have the same sign. Large ‖W‖A, however, typically result in small values
of ‖F′(t−m)‖A, as confirmed by experiments (see, e.g., Hochreiter, 1991).

For example, with norms

‖W‖A := max
r

∑
s
|wrs|

and

‖x‖x := max
r
|xr|,

we have f ′max = 0.25 for the logistic sigmoid. We observe that if

|wij| ≤ wmax <
4.0
n
∀i, j,

then ‖W‖A ≤ nwmax < 4.0 will result in exponential decay. By setting
τ := ( nwmax

4.0

)
< 1.0, we obtain∣∣∣∣∂ϑv(t− q)

∂ϑu(t)

∣∣∣∣ ≤ n (τ )q .

We refer to Hochreiter (1991) for additional results.

3.2 Constant Error Flow: Naive Approach.

3.2.1 A Single Unit. To avoid vanishing error signals, how can we
achieve constant error flow through a single unit j with a single connec-
tion to itself? According to the rules above, at time t, j’s local error backflow
is ϑj(t) = f ′j (netj(t))ϑj(t+ 1)wjj. To enforce constant error flow through j, we
require

f ′j (netj(t))wjj = 1.0.



1742 Sepp Hochreiter and Jürgen Schmidhuber

Note the similarity to Mozer’s fixed time constant system (1992)—a time
constant of 1.0 is appropriate for potentially infinite time lags.1

3.2.2 The Constant Error Carousel. Integrating the differential equation
above, we obtain

fj(netj(t)) =
netj(t)

wjj

for arbitrary netj(t). This means fj has to be linear, and unit j’s activation has
to remain constant:

yj(t+ 1) = fj(netj(t+ 1)) = fj(wjjyj(t)) = yj(t).

In the experiments, this will be ensured by using the identity function fj :
fj(x) = x, ∀x, and by setting wjj = 1.0. We refer to this as the constant error
carousel (CEC). CEC will be LSTM’s central feature (see section 4).

Of course, unit j will not only be connected to itself but also to other
units. This invokes two obvious, related problems (also inherent in all other
gradient-based approaches):

1. Input weight conflict: For simplicity, let us focus on a single addi-
tional input weight wji. Assume that the total error can be reduced by
switching on unit j in response to a certain input and keeping it active
for a long time (until it helps to compute a desired output). Provided
i is nonzero, since the same incoming weight has to be used for both
storing certain inputs and ignoring others, wji will often receive con-
flicting weight update signals during this time (recall that j is linear).
These signals will attempt to make wji participate in (1) storing the
input (by switching on j) and (2) protecting the input (by preventing j
from being switched off by irrelevant later inputs). This conflict makes
learning difficult and calls for a more context-sensitive mechanism for
controlling write operations through input weights.

2. Output weight conflict: Assume j is switched on and currently stores
some previous input. For simplicity, let us focus on a single additional
outgoing weight wkj. The same wkj has to be used for both retriev-
ing j’s content at certain times and preventing j from disturbing k at
other times. As long as unit j is nonzero, wkj will attract conflicting
weight update signals generated during sequence processing. These
signals will attempt to make wkj participate in accessing the informa-
tion stored in j and—at different times—protecting unit k from being
perturbed by j. For instance, with many tasks there are certain short-
time-lag errors that can be reduced in early training stages. However,

1 We do not use the expression “time constant” in the differential sense, as Pearlmutter
(1995) does.



Long Short-Term Memory 1743

at later training stages, j may suddenly start to cause avoidable er-
rors in situations that already seemed under control by attempting to
participate in reducing more difficult long-time-lag errors. Again, this
conflict makes learning difficult and calls for a more context-sensitive
mechanism for controlling read operations through output weights.

Of course, input and output weight conflicts are not specific for long time
lags; they occur for short time lags as well. Their effects, however, become
particularly pronounced in the long-time-lag case. As the time lag increases,
stored information must be protected against perturbation for longer and
longer periods, and, especially in advanced stages of learning, more and
more already correct outputs also require protection against perturbation.

Due to the problems set out, the naive approach does not work well ex-
cept in the case of certain simple problems involving local input-output rep-
resentations and nonrepeating input patterns (see Hochreiter, 1991; Silva,
Amarel, Langlois, & Almeida, 1996). The next section shows how to do it
right.

4 The Concept of Long Short-Term Memory

4.1 Memory Cells and Gate Units. To construct an architecture that al-
lows for constant error flow through special, self-connected units without
the disadvantages of the naive approach, we extend the CEC embodied
by the self-connected, linear unit j from section 3.2 by introducing addi-
tional features. A multiplicative input gate unit is introduced to protect the
memory contents stored in j from perturbation by irrelevant inputs, and
a multiplicative output gate unit is introduced to protect other units from
perturbation by currently irrelevant memory contents stored in j.

The resulting, more complex unit is called a memory cell (see Figure 1).
The jth memory cell is denoted cj. Each memory cell is built around a central
linear unit with a fixed self-connection (the CEC). In addition to netcj , cj gets
input from a multiplicative unit outj (the output gate), and from another
multiplicative unit inj (the input gate). inj’s activation at time t is denoted

by yinj(t), outj’s by youtj(t). We have

youtj(t) = foutj(netoutj(t)); yinj(t) = finj(netinj(t));

where

netoutj(t) =
∑

u
woutjuyu(t− 1),

and

netinj(t) =
∑

u
winjuyu(t− 1).



1744 Sepp Hochreiter and Jürgen Schmidhuber

 

g h1.0

net
w

yin yout

net c

g yin

= g+sc sc yin

h yout

net
wc

in out

wic

c

j

j

j

j

outw

j

in

j

j

j

j j

j y

j

j

j

j

i

i i

Figure 1: Architecture of memory cell cj (the box) and its gate units inj, outj. The
self-recurrent connection (with weight 1.0) indicates feedback with a delay of
one time step. It builds the basis of the CEC. The gate units open and close access
to CEC. See text and appendix A.1 for details.

We also have

netcj(t) =
∑

u
wcjuyu(t− 1).

The summation indices u may stand for input units, gate units, memory
cells, or even conventional hidden units if there are any (see section 4.3). All
these different types of units may convey useful information about the cur-
rent state of the net. For instance, an input gate (output gate) may use inputs
from other memory cells to decide whether to store (access) certain infor-
mation in its memory cell. There even may be recurrent self-connections
like wcjcj . It is up to the user to define the network topology. See Figure 2 for
an example.

At time t, cj’s output ycj(t) is computed as

ycj(t) = youtj(t)h(scj(t)),

where the internal state scj(t) is

scj(0) = 0, scj(t) = scj(t− 1)+ yinj(t)g
(
netcj(t)

)
for t > 0.

The differentiable function g squashes netcj ; the differentiable function h
scales memory cell outputs computed from the internal state scj .

4.2 Why Gate Units? To avoid input weight conflicts, inj controls the
error flow to memory cell cj’s input connections wcji. To circumvent cj’s
output weight conflicts, outj controls the error flow from unit j’s output



Long Short-Term Memory 1745

 

1 1 2

output

hidden

input

out 1

in 1

out 2

in 2

1cell

block block

1cell

block block
2

cell 2 cell 2

Figure 2: Example of a net with eight input units, four output units, and two
memory cell blocks of size 2. in1 marks the input gate, out1 marks the output
gate, and cell1/block1 marks the first memory cell of block 1. cell1/block1’s archi-
tecture is identical to the one in Figure 1, with gate units in1 and out1 (note that
by rotating Figure 1 by 90 degrees anticlockwise, it will match with the corre-
sponding parts of Figure 2). The example assumes dense connectivity: each gate
unit and each memory cell sees all non-output units. For simplicity, however,
outgoing weights of only one type of unit are shown for each layer. With the
efficient, truncated update rule, error flows only through connections to output
unit, and through fixed self-connections within cell blocks (not shown here; see
Figure 1). Error flow is truncated once it “wants” to leave memory cells or gate
units. Therefore, no connection shown above serves to propagate error back to
the unit from which the connection originates (except for connections to output
units), although the connections themselves are modifiable. That is why the trun-
cated LSTM algorithm is so efficient, despite its ability to bridge very long time
lags. See the text and the appendix for details. Figure 2 shows the architecture
used for experiment 6a; only the bias of the noninput units is omitted.

connections. In other words, the net can use inj to decide when to keep or
override information in memory cell cj and outj to decide when to access
memory cell cj and when to prevent other units from being perturbed by cj
(see Figure 1).

Error signals trapped within a memory cell’s CEC cannot change, but
different error signals flowing into the cell (at different times) via its out-
put gate may get superimposed. The output gate will have to learn which



1746 Sepp Hochreiter and Jürgen Schmidhuber

errors to trap in its CEC by appropriately scaling them. The input gate will
have to learn when to release errors, again by appropriately scaling them.
Essentially the multiplicative gate units open and close access to constant
error flow through CEC.

Distributed output representations typically do require output gates.
Both gate types are not always necessary, though; one may be sufficient.
For instance, in experiments 2a and 2b in section 5, it will be possible to
use input gates only. In fact, output gates are not required in case of local
output encoding; preventing memory cells from perturbing already learned
outputs can be done by simply setting the corresponding weights to zero.
Even in this case, however, output gates can be beneficial: they prevent the
net’s attempts at storing long-time-lag memories (which are usually hard to
learn) from perturbing activations representing easily learnable short-time-
lag memories. (This will prove quite useful in experiment 1, for instance.)

4.3 Network Topology. We use networks with one input layer, one hid-
den layer, and one output layer. The (fully) self-connected hidden layer
contains memory cells and corresponding gate units (for convenience, we
refer to both memory cells and gate units as being located in the hidden
layer). The hidden layer may also contain conventional hidden units pro-
viding inputs to gate units and memory cells. All units (except for gate units)
in all layers have directed connections (serve as inputs) to all units in the
layer above (or to all higher layers; see experiments 2a and 2b).

4.4 Memory Cell Blocks. S memory cells sharing the same input gate
and the same output gate form a structure called a memory cell block of size
S. Memory cell blocks facilitate information storage. As with conventional
neural nets, it is not so easy to code a distributed input within a single cell.
Since each memory cell block has as many gate units as a single memory cell
(namely, two), the block architecture can be even slightly more efficient. A
memory cell block of size 1 is just a simple memory cell. In the experiments
in section 5, we will use memory cell blocks of various sizes.

4.5 Learning. We use a variant of RTRL (e.g., Robinson & Fallside, 1987)
that takes into account the altered, multiplicative dynamics caused by input
and output gates. To ensure nondecaying error backpropagation through
internal states of memory cells, as with truncated BPTT (e.g., Williams &
Peng, 1990), errors arriving at memory cell net inputs (for cell cj, this includes
netcj , netinj , netoutj ) do not get propagated back further in time (although they
do serve to change the incoming weights). Only within memory cells, are
errors propagated back through previous internal states scj .

2 To visualize

2 For intracellular backpropagation in a quite different context, see also Doya and
Yoshizawa (1989).



Long Short-Term Memory 1747

this, once an error signal arrives at a memory cell output, it gets scaled by
output gate activation and h′. Then it is within the memory cell’s CEC, where
it can flow back indefinitely without ever being scaled. When it leaves the
memory cell through the input gate and g, it is scaled once more by input
gate activation and g′. It then serves to change the incoming weights before
it is truncated (see the appendix for formulas).

4.6 Computational Complexity. As with Mozer’s focused recurrent back-
propagation algorithm (Mozer, 1989), only the derivatives ∂scj/∂wil need to
be stored and updated. Hence the LSTM algorithm is very efficient, with
an excellent update complexity of O(W), where W the number of weights
(see details in the appendix). Hence, LSTM and BPTT for fully recurrent
nets have the same update complexity per time step (while RTRL’s is much
worse). Unlike full BPTT, however, LSTM is local in space and time:3 there
is no need to store activation values observed during sequence processing
in a stack with potentially unlimited size.

4.7 Abuse Problem and Solutions. In the beginning of the learning
phase, error reduction may be possible without storing information over
time. The network will thus tend to abuse memory cells, for example, as
bias cells (it might make their activations constant and use the outgoing
connections as adaptive thresholds for other units). The potential difficulty
is that it may take a long time to release abused memory cells and make
them available for further learning. A similar “abuse problem” appears if
two memory cells store the same (redundant) information. There are at least
two solutions to the abuse problem: (1) sequential network construction
(e.g., Fahlman, 1991): a memory cell and the corresponding gate units are
added to the network whenever the error stops decreasing (see experiment 2
in section 5), and (2) output gate bias: each output gate gets a negative initial
bias, to push initial memory cell activations toward zero. Memory cells with
more negative bias automatically get “allocated” later (see experiments 1,
3, 4, 5, and 6 in section 5).

4.8 Internal State Drift and Remedies. If memory cell cj’s inputs are
mostly positive or mostly negative, then its internal state sj will tend to drift
away over time. This is potentially dangerous, for the h′(sj)will then adopt
very small values, and the gradient will vanish. One way to circumvent this
problem is to choose an appropriate function h. But h(x) = x, for instance,
has the disadvantage of unrestricted memory cell output range. Our simple

3 Following Schmidhuber (1989), we say that a recurrent net algorithm is local in space if
the update complexity per time step and weight does not depend on network size. We say
that a method is local in time if its storage requirements do not depend on input sequence
length. For instance, RTRL is local in time but not in space. BPTT is local in space but not
in time.



1748 Sepp Hochreiter and Jürgen Schmidhuber

but effective way of solving drift problems at the beginning of learning is
initially to bias the input gate inj toward zero. Although there is a trade-off
between the magnitudes of h′(sj) on the one hand and of yinj and f ′inj

on the
other, the potential negative effect of input gate bias is negligible compared
to the one of the drifting effect. With logistic sigmoid activation functions,
there appears to be no need for fine-tuning the initial bias, as confirmed by
experiments 4 and 5 in section 5.4.

5 Experiments

Which tasks are appropriate to demonstrate the quality of a novel long-
time-lag algorithm? First, minimal time lags between relevant input signals
and corresponding teacher signals must be long for all training sequences.
In fact, many previous recurrent net algorithms sometimes manage to gen-
eralize from very short training sequences to very long test sequences (see,
e.g., Pollack, 1991). But a real long-time-lag problem does not have any
short-time-lag exemplars in the training set. For instance, Elman’s training
procedure, BPTT, offline RTRL, online RTRL, and others fail miserably on
real long-time-lag problems. (See, e.g., Hochreiter, 1991; Mozer, 1992.) A
second important requirement is that the tasks should be complex enough
such that they cannot be solved quickly by simple-minded strategies such
as random weight guessing.

Recently we discovered (Schmidhuber & Hochreiter, 1996; Hochreiter &
Schmidhuber, 1996, 1997) that many long-time-lag tasks used in previous
work can be solved more quickly by simple random weight guessing than by
the proposed algorithms. For instance, guessing solved a variant of Bengio
and Frasconi’s parity problem (1994) much faster4 than the seven methods
tested by Bengio et al. (1994) and Bengio and Frasconi (1994). The same is
true for some of Miller and Giles’s problems (1993). Of course, this does not
mean that guessing is a good algorithm. It just means that some previously
used problems are not extremely appropriate to demonstrate the quality of
previously proposed algorithms.

All our experiments (except experiment 1) involve long minimal time
lags; there are no short-time-lag training exemplars facilitating learning.
Solutions to most of our tasks are sparse in weight space. They require either
many parameters and inputs or high weight precision, such that random
weight guessing becomes infeasible.

We always use online learning (as opposed to batch learning) and logistic
sigmoids as activation functions. For experiments 1 and 2, initial weights
are chosen in the range [−0.2, 0.2], for the other experiments in [−0.1, 0.1].
Training sequences are generated randomly according to the various task

4 Different input representations and different types of noise may lead to worse guess-
ing performance (Yoshua Bengio, personal communication, 1996).



Long Short-Term Memory 1749

descriptions. In slight deviation from the notation in appendix A.1, each
discrete time step of each input sequence involves three processing steps:
(1) use current input to set the input units, (2) compute activations of hidden
units (including input gates, output gates, memory cells), and (3) compute
output unit activations. Except for experiments 1, 2a, and 2b, sequence ele-
ments are randomly generated online, and error signals are generated only
at sequence ends. Net activations are reset after each processed input se-
quence.

For comparisons with recurrent nets taught by gradient descent, we give
results only for RTRL, except for comparison 2a, which also includes BPTT.
Note, however, that untruncated BPTT (see, e.g., Williams & Peng, 1990)
computes exactly the same gradient as offline RTRL. With long-time-lag
problems, offline RTRL (or BPTT) and the online version of RTRL (no ac-
tivation resets, online weight changes) lead to almost identical, negative
results (as confirmed by additional simulations in Hochreiter, 1991; see also
Mozer, 1992). This is because offline RTRL, online RTRL, and full BPTT all
suffer badly from exponential error decay.

Our LSTM architectures are selected quite arbitrarily. If nothing is known
about the complexity of a given problem, a more systematic approach would
be to: start with a very small net consisting of one memory cell. If this does
not work, try two cells, and so on. Alternatively, use sequential network
construction (e.g., Fahlman, 1991).

Following is an outline of the experiments:

• Experiment 1 focuses on a standard benchmark test for recurrent nets:
the embedded Reber grammar. Since it allows for training sequences
with short time lags, it is not a long-time-lag problem. We include it
because it provides a nice example where LSTM’s output gates are truly
beneficial, and it is a popular benchmark for recurrent nets that has
been used by many authors. We want to include at least one experiment
where conventional BPTT and RTRL do not fail completely (LSTM,
however, clearly outperforms them). The embedded Reber grammar’s
minimal time lags represent a border case in the sense that it is still
possible to learn to bridge them with conventional algorithms. Only
slightly longer minimal time lags would make this almost impossible.
The more interesting tasks in our article, however, are those that RTRL,
BPTT, and others cannot solve at all.

• Experiment 2 focuses on noise-free and noisy sequences involving nu-
merous input symbols distracting from the few important ones. The
most difficult task (task 2c) involves hundreds of distractor symbols at
random positions and minimal time lags of 1000 steps. LSTM solves it;
BPTT and RTRL already fail in case of 10-step minimal time lags (see
also Hochreiter, 1991; Mozer, 1992). For this reason RTRL and BPTT
are omitted in the remaining, more complex experiments, all of which
involve much longer time lags.



1750 Sepp Hochreiter and Jürgen Schmidhuber

• Experiment 3 addresses long-time-lag problems with noise and sig-
nal on the same input line. Experiments 3a and 3b focus on Bengio et
al.’s 1994 two-sequence problem. Because this problem can be solved
quickly by random weight guessing, we also include a far more diffi-
cult two-sequence problem (experiment 3c), which requires learning
real-valued, conditional expectations of noisy targets, given the inputs.

• Experiments 4 and 5 involve distributed, continuous-valued input rep-
resentations and require learning to store precise, real values for very
long time periods. Relevant input signals can occur at quite different
positions in input sequences. Again minimal time lags involve hun-
dreds of steps. Similar tasks never have been solved by other recurrent
net algorithms.

• Experiment 6 involves tasks of a different complex type that also has
not been solved by other recurrent net algorithms. Again, relevant
input signals can occur at quite different positions in input sequences.
The experiment shows that LSTM can extract information conveyed
by the temporal order of widely separated inputs.

Section 5.7 provides a detailed summary of experimental conditions in
two tables for reference.

5.1 Experiment 1: Embedded Reber Grammar.

5.1.1 Task. Our first task is to learn the embedded Reber grammar
(Smith & Zipser, 1989; Cleeremans, Servan-Schreiber, & McClelland, 1989;
Fahlman,1991). Since it allows for training sequences with short time lags
(of as few as nine steps), it is not a long-time-lag problem. We include it
for two reasons: (1) it is a popular recurrent net benchmark used by many
authors, and we wanted to have at least one experiment where RTRL and
BPTT do not fail completely, and (2) it shows nicely how output gates can
be beneficial.

Starting at the left-most node of the directed graph in Figure 3, sym-
bol strings are generated sequentially (beginning with the empty string)
by following edges—and appending the associated symbols to the current
string—until the right-most node is reached (the Reber grammar substrings
are analogously generated from Figure 4). Edges are chosen randomly if
there is a choice (probability: 0.5). The net’s task is to read strings, one sym-
bol at a time, and to predict the next symbol (error signals occur at every
time step). To predict the symbol before last, the net has to remember the
second symbol.

5.1.2 Comparison. We compare LSTM to Elman nets trained by Elman’s
training procedure (ELM) (results taken from Cleeremans et al., 1989), Fahl-
man’s recurrent cascade-correlation (RCC) (results taken from Fahlman,



Long Short-Term Memory 1751

 

B

T

S
X

X P

V

T

P V

S

E

Figure 3: Transition diagram for the Reber grammar.

 

B

T

P

E

T

P

GRAMMAR

GRAMMAR

REBER

REBER

Figure 4: Transition diagram for the embedded Reber grammar. Each box rep-
resents a copy of the Reber grammar (see Figure 3).



1752 Sepp Hochreiter and Jürgen Schmidhuber

1991), and RTRL (results taken from Smith & Zipser, 1989), where only the
few successful trials are listed). Smith and Zipser actually make the task
easier by increasing the probability of short-time-lag exemplars. We did not
do this for LSTM.

5.1.3 Training/Testing. We use a local input-output representation (seven
input units, seven output units). Following Fahlman, we use 256 training
strings and 256 separate test strings. The training set is generated ran-
domly; training exemplars are picked randomly from the training set. Test
sequences are generated randomly, too, but sequences already used in the
training set are not used for testing. After string presentation, all activations
are reinitialized with zeros. A trial is considered successful if all string sym-
bols of all sequences in both test set and training set are predicted correctly—
that is, if the output unit(s) corresponding to the possible next symbol(s)
is(are) always the most active ones.

5.1.4 Architectures. Architectures for RTRL, ELM, and RCC are reported
in the references listed above. For LSTM, we use three (four) memory cell
blocks. Each block has two (one) memory cells. The output layer’s only
incoming connections originate at memory cells. Each memory cell and
each gate unit receives incoming connections from all memory cells and
gate units (the hidden layer is fully connected; less connectivity may work
as well). The input layer has forward connections to all units in the hidden
layer. The gate units are biased. These architecture parameters make it easy
to store at least three input signals (architectures 3-2 and 4-1 are employed
to obtain comparable numbers of weights for both architectures: 264 for 4-1
and 276 for 3-2). Other parameters may be appropriate as well, however. All
sigmoid functions are logistic with output range [0, 1], except for h, whose
range is [−1, 1], and g, whose range is [−2, 2]. All weights are initialized in
[−0.2, 0.2], except for the output gate biases, which are initialized to−1,−2,
and −3, respectively (see abuse problem, solution 2 of section 4). We tried
learning rates of 0.1, 0.2, and 0.5.

5.1.5 Results. We use three different, randomly generated pairs of train-
ing and test sets. With each such pair we run 10 trials with different initial
weights. See Table 1 for results (mean of 30 trials). Unlike the other methods,
LSTM always learns to solve the task. Even when we ignore the unsuccessful
trials of the other approaches, LSTM learns much faster.

5.1.6 Importance of Output Gates. The experiment provides a nice exam-
ple where the output gate is truly beneficial. Learning to store the first T
or P should not perturb activations representing the more easily learnable
transitions of the original Reber grammar. This is the job of the output gates.
Without output gates, we did not achieve fast learning.



Long Short-Term Memory 1753

Table 1: Experiment 1: Embedded Reber Grammar.

Number of Learning
Method Hidden Units Weights Rate % of Success After

RTRL 3 ≈ 170 0.05 Some fraction 173,000
RTRL 12 ≈ 494 0.1 Some fraction 25,000
ELM 15 ≈ 435 0 >200,000
RCC 7–9 ≈ 119–198 50 182,000
LSTM 4 blocks, size 1 264 0.1 100 39,740
LSTM 3 blocks, size 2 276 0.1 100 21,730
LSTM 3 blocks, size 2 276 0.2 97 14,060
LSTM 4 blocks, size 1 264 0.5 97 9500
LSTM 3 blocks, size 2 276 0.5 100 8440

Notes: Percentage of successful trials and number of sequence presentations until success
for RTRL (results taken from Smith & Zipser, 1989), Elman net trained by Elman’s pro-
cedure (results taken from Cleeremans et al., 1989), recurrent cascade-correlation (results
taken from Fahlman, 1991), and our new approach (LSTM). Weight numbers in the first
four rows are estimates, the corresponding papers do not provide all the technical details.
Only LSTM almost always learns to solve the task (only 2 failures out of 150 trials). Even
when we ignore the unsuccessful trials of the other approaches, LSTM learns much faster
(the number of required training examples in the bottom row varies between 3800 and
24,100).

5.2 Experiment 2: Noise-Free and Noisy Sequences.

5.2.1 Task 2a: Noise-Free Sequences with Long Time Lags. There are p + 1
possible input symbols denoted a1, . . . , ap−1, ap = x, ap+1 = y. ai is locally
represented by the p+ 1-dimensional vector whose ith component is 1 (all
other components are 0). A net with p + 1 input units and p + 1 output
units sequentially observes input symbol sequences, one at a time, per-
manently trying to predict the next symbol; error signals occur at every
time step. To emphasize the long-time-lag problem, we use a training set
consisting of only two very similar sequences: (y, a1, a2, . . . , ap−1, y) and
(x, a1, a2, . . . , ap−1, x). Each is selected with probability 0.5. To predict the fi-
nal element, the net has to learn to store a representation of the first element
for p time steps.

We compare real-time recurrent learning for fully recurrent nets (RTRL),
back-propagation through time (BPTT), the sometimes very successful
two-net neural sequence chunker (CH; Schmidhuber, 1992b), and our new
method (LSTM). In all cases, weights are initialized in [−0.2, 0.2]. Due to
limited computation time, training is stopped after 5 million sequence pre-
sentations. A successful run is one that fulfills the following criterion: after
training, during 10,000 successive, randomly chosen input sequences, the
maximal absolute error of all output units is always below 0.25.



1754 Sepp Hochreiter and Jürgen Schmidhuber

Table 2: Task 2a: Percentage of Successful Trials and Number of Training Se-
quences until Success.

Learning Number of % Successful Success
Method Delay p Rate Weights Trials After

RTRL 4 1.0 36 78 1,043,000
RTRL 4 4.0 36 56 892,000
RTRL 4 10.0 36 22 254,000
RTRL 10 1.0–10.0 144 0 > 5,000,000
RTRL 100 1.0–10.0 10404 0 > 5,000,000
BPTT 100 1.0–10.0 10404 0 > 5,000,000
CH 100 1.0 10506 33 32,400

LSTM 100 1.0 10504 100 5,040

Notes: Table entries refer to means of 18 trials. With 100 time-step delays, only CH and
LSTM achieve successful trials. Even when we ignore the unsuccessful trials of the other
approaches, LSTM learns much faster.

Architectures.

RTRL: One self-recurrent hidden unit, p+ 1 nonrecurrent output units.
Each layer has connections from all layers below. All units use
the logistic activation function sigmoid in [0, 1].

BPTT: Same architecture as the one trained by RTRL.

CH: Both net architectures like RTRL’s, but one has an additional out-
put for predicting the hidden unit of the other one (see Schmid-
huber, 1992b, for details).

LSTM: As with RTRL, but the hidden unit is replaced by a memory cell
and an input gate (no output gate required). g is the logistic sig-
moid, and h is the identity function h : h(x) = x, ∀x. Memory cell
and input gate are added once the error has stopped decreasing
(see abuse problem: solution 1 in section 4).

Results. Using RTRL and a short four-time-step delay (p = 4), 7/9 of all
trials were successful. No trial was successful with p = 10. With long time
lags, only the neural sequence chunker and LSTM achieved successful trials;
BPTT and RTRL failed. With p = 100, the two-net sequence chunker solved
the task in only one-third of all trials. LSTM, however, always learned to
solve the task. Comparing successful trials only, LSTM learned much faster.
See Table 2 for details. It should be mentioned, however, that a hierarchical
chunker can also always quickly solve this task (Schmidhuber, 1992c, 1993).

5.2.2 Task 2b: No Local Regularities. With task 2a, the chunker some-
times learns to predict the final element correctly, but only because of pre-



Long Short-Term Memory 1755

dictable local regularities in the input stream that allow for compressing
the sequence. In a more difficult task, involving many more different pos-
sible sequences, we remove compressibility by replacing the determin-
istic subsequence (a1, a2, . . . , ap−1) by a random subsequence (of length
p − 1) over the alphabet a1, a2, . . . , ap−1. We obtain two classes (two sets
of sequences) {(y, ai1 , ai2 , . . . , aip−1 , y) | 1 ≤ i1, i2, . . . , ip−1 ≤ p − 1} and
{(x, ai1 , ai2 , . . . , aip−1 , x) | 1 ≤ i1, i2, . . . , ip−1 ≤ p − 1}. Again, every next se-
quence element has to be predicted. The only totally predictable targets,
however, are x and y, which occur at sequence ends. Training exemplars
are chosen randomly from the two classes. Architectures and parameters
are the same as in experiment 2a. A successful run is one that fulfills the
following criterion: after training, during 10,000 successive, randomly cho-
sen input sequences, the maximal absolute error of all output units is below
0.25 at sequence end.

Results. As expected, the chunker failed to solve this task (so did BPTT
and RTRL, of course). LSTM, however, was always successful. On average
(mean of 18 trials), success for p = 100 was achieved after 5680 sequence
presentations. This demonstrates that LSTM does not require sequence reg-
ularities to work well.

5.2.3 Task 2c: Very Long Time Lags—No Local Regularities. This is the
most difficult task in this subsection. To our knowledge, no other recur-
rent net algorithm can solve it. Now there are p+ 4 possible input symbols
denoted a1, . . . , ap−1, ap, ap+1 = e, ap+2 = b, ap+3 = x, ap+4 = y. a1, . . . , ap
are also called distractor symbols. Again, ai is locally represented by the
p + 4-dimensional vector whose ith component is 1 (all other components
are 0). A net with p + 4 input units and 2 output units sequentially ob-
serves input symbol sequences, one at a time. Training sequences are ran-
domly chosen from the union of two very similar subsets of sequences:
{(b, y, ai1 , ai2 , . . . , aiq+k , e, y) | 1 ≤ i1, i2, . . . , iq+k ≤ q} and {(b, x, ai1 , ai2 , . . . ,

aiq+k , e, x) | 1 ≤ i1, i2, . . . , iq+k ≤ q}. To produce a training sequence, we
randomly generate a sequence prefix of length q + 2, randomly generate
a sequence suffix of additional elements (6= b, e, x, y) with probability 9/10
or, alternatively, an e with probability 1/10. In the latter case, we conclude
the sequence with x or y, depending on the second element. For a given k,
this leads to a uniform distribution on the possible sequences with length
q+ k+ 4. The minimal sequence length is q+ 4; the expected length is

4+
∞∑

k=0

1
10

(
9
10

)k

(q+ k) = q+ 14.

The expected number of occurrences of element ai, 1 ≤ i ≤ p, in a sequence
is (q+ 10)/p ≈ q

p . The goal is to predict the last symbol, which always occurs
after the “trigger symbol” e. Error signals are generated only at sequence



1756 Sepp Hochreiter and Jürgen Schmidhuber

Table 3: Task 2c: LSTM with Very Long Minimal Time Lags q + 1 and a Lot of
Noise.

p (Number of Number of
q (Time Lag −1) Random Inputs) q

p Weights Success After

50 50 1 364 30,000
100 100 1 664 31,000
200 200 1 1264 33,000
500 500 1 3064 38,000

1000 1,000 1 6064 49,000
1000 500 2 3064 49,000
1000 200 5 1264 75,000
1000 100 10 664 135,000
1000 50 20 364 203,000

Notes: p is the number of available distractor symbols (p+4 is the number of input units).
q/p is the expected number of occurrences of a given distractor symbol in a sequence.
The right-most column lists the number of training sequences required by LSTM (BPTT,
RTRL, and the other competitors have no chance of solving this task). If we let the number
of distractor symbols (and weights) increase in proportion to the time lag, learning time
increases very slowly. The lower block illustrates the expected slowdown due to increased
frequency of distractor symbols.

ends. To predict the final element, the net has to learn to store a represen-
tation of the second element for at least q + 1 time steps (until it sees the
trigger symbol e). Success is defined as prediction error (for final sequence
element) of both output units always below 0.2, for 10,000 successive, ran-
domly chosen input sequences.

Architecture/Learning. The net has p+ 4 input units and 2 output units.
Weights are initialized in [−0.2, 0.2]. To avoid too much learning time vari-
ance due to different weight initializations, the hidden layer gets two mem-
ory cells (two cell blocks of size 1, although one would be sufficient). There
are no other hidden units. The output layer receives connections only from
memory cells. Memory cells and gate units receive connections from input
units, memory cells, and gate units (the hidden layer is fully connected).
No bias weights are used. h and g are logistic sigmoids with output ranges
[−1, 1] and [−2, 2], respectively. The learning rate is 0.01. Note that the min-
imal time lag is q+1; the net never sees short training sequences facilitating
the classification of long test sequences.

Results. Twenty trials were made for all tested pairs (p, q). Table 3 lists
the mean of the number of training sequences required by LSTM to achieve
success (BPTT and RTRL have no chance of solving nontrivial tasks with
minimal time lags of 1000 steps).



Long Short-Term Memory 1757

Scaling. Table 3 shows that if we let the number of input symbols (and
weights) increase in proportion to the time lag, learning time increases very
slowly. This is another remarkable property of LSTM not shared by any
other method we are aware of. Indeed, RTRL and BPTT are far from scaling
reasonably; instead, they appear to scale exponentially and appear quite
useless when the time lags exceed as few as 10 steps.

Distractor Influence. In Table 3, the column headed by q/p gives the ex-
pected frequency of distractor symbols. Increasing this frequency decreases
learning speed, an effect due to weight oscillations caused by frequently
observed input symbols.

5.3 Experiment 3: Noise and Signal on Same Channel. This experiment
serves to illustrate that LSTM does not encounter fundamental problems if
noise and signal are mixed on the same input line. We initially focus on
Bengio et al.’s simple 1994 two-sequence problem. In experiment 3c we
pose a more challenging two-sequence problem.

5.3.1 Task 3a (Two-Sequence Problem). The task is to observe and then
classify input sequences. There are two classes, each occurring with proba-
bility 0.5. There is only one input line. Only the first N real-valued sequence
elements convey relevant information about the class. Sequence elements
at positions t > N are generated by a gaussian with mean zero and variance
0.2. Case N = 1: the first sequence element is 1.0 for class 1, and −1.0 for
class 2. Case N = 3: the first three elements are 1.0 for class 1 and −1.0 for
class 2. The target at the sequence end is 1.0 for class 1 and 0.0 for class 2.
Correct classification is defined as absolute output error at sequence end
below 0.2. Given a constant T, the sequence length is randomly selected
between T and T+ T/10 (a difference to Bengio et al.’s problem is that they
also permit shorter sequences of length T/2).

Guessing. Bengio et al. (1994) and Bengio and Frasconi (1994) tested
seven different methods on the two-sequence problem. We discovered, how-
ever, that random weight guessing easily outperforms them all because the
problem is so simple.5 See Schmidhuber and Hochreiter (1996) and Hochre-
iter and Schmidhuber (1996, 1997) for additional results in this vein.

LSTM Architecture. We use a three-layer net with one input unit, one
output unit, and three cell blocks of size 1. The output layer receives connec-
tions only from memory cells. Memory cells and gate units receive inputs
from input units, memory cells, and gate units and have bias weights. Gate

5 However, different input representations and different types of noise may lead to
worse guessing performance (Yoshua Bengio, personal communication, 1996).



1758 Sepp Hochreiter and Jürgen Schmidhuber

Table 4: Task 3a: Bengio et al.’s Two-Sequence Problem.

Number ST2: Fraction
T N Stop: ST1 Stop: ST2 of Weights Misclassified

100 3 27,380 39,850 102 0.000195
100 1 58,370 64,330 102 0.000117

1000 3 446,850 452,460 102 0.000078

Notes: T is minimal sequence length. N is the number of information-conveying
elements at sequence begin. The column headed by ST1 (ST2) gives the number
of sequence presentations required to achieve stopping criterion ST1 (ST2). The
right-most column lists the fraction of misclassified posttraining sequences (with
absolute error> 0.2) from a test set consisting of 2560 sequences (tested after ST2
was achieved). All values are means of 10 trials. We discovered, however, that
this problem is so simple that random weight guessing solves it faster than LSTM
and any other method for which there are published results.

units and output unit are logistic sigmoid in [0, 1], h in [−1, 1], and g in
[−2, 2].

Training/Testing. All weights (except the bias weights to gate units) are
randomly initialized in the range [−0.1, 0.1]. The first input gate bias is
initialized with −1.0, the second with −3.0, and the third with −5.0. The
first output gate bias is initialized with −2.0, the second with −4.0, and the
third with −6.0. The precise initialization values hardly matter though, as
confirmed by additional experiments. The learning rate is 1.0. All activations
are reset to zero at the beginning of a new sequence.

We stop training (and judge the task as being solved) according to the
following criteria: ST1: none of 256 sequences from a randomly chosen test
set is misclassified; ST2: ST1 is satisfied, and mean absolute test set error
is below 0.01. In case of ST2, an additional test set consisting of 2560 ran-
domly chosen sequences is used to determine the fraction of misclassified
sequences.

Results. See Table 4. The results are means of 10 trials with different
weight initializations in the range [−0.1, 0.1]. LSTM is able to solve this prob-
lem, though by far not as fast as random weight guessing (see “Guessing”
above). Clearly this trivial problem does not provide a very good testbed
to compare performance of various nontrivial algorithms. Still, it demon-
strates that LSTM does not encounter fundamental problems when faced
with signal and noise on the same channel.

5.3.2 Task 3b. The architecture, parameters, and other elements are as in
task 3a, but now with gaussian noise (mean 0 and variance 0.2) added to the



Long Short-Term Memory 1759

Table 5: Task 3b: Modified Two-Sequence Problem.

Number ST2: Fraction
T N Stop: ST1 Stop: ST2 of Weights Misclassified

100 3 41,740 43,250 102 0.00828
100 1 74,950 78,430 102 0.01500

1000 1 481,060 485,080 102 0.01207

Note: Same as in Table 4, but now the information-conveying elements are also
perturbed by noise.

information-conveying elements (t <= N). We stop training (and judge the
task as being solved) according to the following, slightly redefined criteria:
ST1: fewer than 6 out of 256 sequences from a randomly chosen test set are
misclassified; ST2: ST1 is satisfied, and mean absolute test set error is below
0.04. In case of ST2, an additional test set consisting of 2560 randomly chosen
sequences is used to determine the fraction of misclassified sequences.

Results. See Table 5. The results represent means of 10 trials with differ-
ent weight initializations. LSTM easily solves the problem.

5.3.3 Task 3c. The architecture, parameters, and other elements are as in
task 3a, but with a few essential changes that make the task nontrivial: the
targets are 0.2 and 0.8 for class 1 and class 2, respectively, and there is gaus-
sian noise on the targets (mean 0 and variance 0.1; S.D. 0.32). To minimize
mean squared error, the system has to learn the conditional expectations of
the targets given the inputs. Misclassification is defined as absolute differ-
ence between output and noise-free target (0.2 for class 1 and 0.8 for class
2) > 0.1. The network output is considered acceptable if the mean absolute
difference between noise-free target and output is below 0.015. Since this
requires high weight precision, task 3c (unlike tasks 3a and 3b) cannot be
solved quickly by random guessing.

Training/Testing. The learning rate is 0.1. We stop training according to
the following criterion: none of 256 sequences from a randomly chosen test
set is misclassified, and mean absolute difference between the noise-free
target and output is below 0.015. An additional test set consisting of 2560
randomly chosen sequences is used to determine the fraction of misclassi-
fied sequences.

Results. See Table 6. The results represent means of 10 trials with dif-
ferent weight initializations. Despite the noisy targets, LSTM still can solve
the problem by learning the expected target values.



1760 Sepp Hochreiter and Jürgen Schmidhuber

Table 6: Task 3c: Modified, More Challenging Two-Sequence Problem.

Number Fraction Average Difference
T N Stop of Weights Misclassified to Mean

100 3 269,650 102 0.00558 0.014
100 1 565,640 102 0.00441 0.012

Notes: Same as in Table 4, but with noisy real-valued targets. The system has to learn the
conditional expectations of the targets given the inputs. The right-most column provides
the average difference between network output and expected target. Unlike tasks 3a and
3b, this one cannot be solved quickly by random weight guessing.

5.4 Experiment 4: Adding Problem. The difficult task in this section is
of a type that has never been solved by other recurrent net algorithms. It
shows that LSTM can solve long-time-lag problems involving distributed,
continuous-valued representations.

5.4.1 Task. Each element of each input sequence is a pair of compo-
nents. The first component is a real value randomly chosen from the interval
[−1, 1]; the second is 1.0, 0.0, or −1.0 and is used as a marker. At the end of
each sequence, the task is to output the sum of the first components of those
pairs that are marked by second components equal to 1.0. Sequences have
random lengths between the minimal sequence length T and T+T/10. In a
given sequence, exactly two pairs are marked, as follows: we first randomly
select and mark one of the first 10 pairs (whose first component we call X1).
Then we randomly select and mark one of the first T/2 − 1 still unmarked
pairs (whose first component we call X2). The second components of all
remaining pairs are zero except for the first and final pair, whose second
components are −1. (In the rare case where the first pair of the sequence
gets marked, we set X1 to zero.) An error signal is generated only at the
sequence end: the target is 0.5 + (X1 + X2)/4.0 (the sum X1 + X2 scaled to
the interval [0, 1]). A sequence is processed correctly if the absolute error at
the sequence end is below 0.04.

5.4.2 Architecture. We use a three-layer net with two input units, one
output unit, and two cell blocks of size 2. The output layer receives connec-
tions only from memory cells. Memory cells and gate units receive inputs
from memory cells and gate units (the hidden layer is fully connected; less
connectivity may work as well). The input layer has forward connections
to all units in the hidden layer. All noninput units have bias weights. These
architecture parameters make it easy to store at least two input signals (a
cell block size of 1 works well, too). All activation functions are logistic with
output range [0, 1], except for h, whose range is [−1, 1], and g, whose range
is [−2, 2].



Long Short-Term Memory 1761

Table 7: Experiment 4: Results for the Adding Problem.

Number of Number of
T Minimal Lag Weights Wrong Predictions Success After

100 50 93 1 out of 2560 74,000
500 250 93 0 out of 2560 209,000

1000 500 93 1 out of 2560 853,000

Notes: T is the minimal sequence length, T/2 the minimal time lag. “Number of Wrong
Predictions” is the number of incorrectly processed sequences (error> 0.04) from a test set
containing 2560 sequences. The right-most column gives the number of training sequences
required to achieve the stopping criterion. All values are means of 10 trials. For T = 1000
the number of required training examples varies between 370,000 and 2,020,000, exceeding
700,000 in only three cases.

5.4.3 State Drift Versus Initial Bias. Note that the task requires storing
the precise values of real numbers for long durations; the system must learn
to protect memory cell contents against even minor internal state drift (see
section 4). To study the significance of the drift problem, we make the task
even more difficult by biasing all noninput units, thus artificially inducing
internal state drift. All weights (including the bias weights) are randomly
initialized in the range [−0.1, 0.1]. Following section 4’s remedy for state
drifts, the first input gate bias is initialized with −3.0 and the second with
−6.0 (though the precise values hardly matter, as confirmed by additional
experiments).

5.4.4 Training/Testing. The learning rate is 0.5. Training is stopped once
the average training error is below 0.01, and the 2000 most recent sequences
were processed correctly.

5.4.5 Results. With a test set consisting of 2560 randomly chosen se-
quences, the average test set error was always below 0.01, and there were
never more than three incorrectly processed sequences. Table 7 shows de-
tails.

The experiment demonstrates that LSTM is able to work well with dis-
tributed representations, LSTM is able to learn to perform calculations in-
volving continuous values, and since the system manages to store continu-
ous values without deterioration for minimal delays of T/2 time steps, there
is no significant, harmful internal state drift.

5.5 Experiment 5: Multiplication Problem. One may argue that LSTM
is a bit biased toward tasks such as the adding problem from the previous
subsection. Solutions to the adding problem may exploit the CEC’s built-in
integration capabilities. Although this CEC property may be viewed as a



1762 Sepp Hochreiter and Jürgen Schmidhuber

Table 8: Experiment 5: Results for the Multiplication Problem.

Minimal Number of Number of Success
T Lag Weights nseq Wrong Predictions MSE After

100 50 93 140 139 out of 2560 0.0223 482,000
100 50 93 13 14 out of 2560 0.0139 1,273,000

Notes: T is the minimal sequence length and T/2 the minimal time lag. We test on a test
set containing 2560 sequences as soon as less than nseq of the 2000 most recent training
sequences lead to error > 0.04. “Number of Wrong Predictions” is the number of test
sequences with error> 0.04. MSE is the mean squared error on the test set. The right-most
column lists numbers of training sequences required to achieve the stopping criterion. All
values are means of 10 trials.

feature rather than a disadvantage (integration seems to be a natural subtask
of many tasks occurring in the real world), the question arises whether LSTM
can also solve tasks with inherently nonintegrative solutions. To test this,
we change the problem by requiring the final target to equal the product
(instead of the sum) of earlier marked inputs.

5.5.1 Task. This is like the task in section 5.4, except that the first com-
ponent of each pair is a real value randomly chosen from the interval [0, 1].
In the rare case where the first pair of the input sequence gets marked, we
set X1 to 1.0. The target at sequence end is the product X1 × X2.

5.5.2 Architecture. This is as in section 5.4. All weights (including the
bias weights) are randomly initialized in the range [−0.1, 0.1].

5.5.3 Training/Testing. The learning rate is 0.1. We test performance twice:
as soon as less than nseq of the 2000 most recent training sequences lead to
absolute errors exceeding 0.04, where nseq = 140 and nseq = 13. Why these
values? nseq = 140 is sufficient to learn storage of the relevant inputs. It is not
enough though to fine-tune the precise final outputs. nseq = 13, however,
leads to quite satisfactory results.

5.5.4 Results. For nseq = 140 (nseq = 13) with a test set consisting of 2560
randomly chosen sequences, the average test set error was always below
0.026 (0.013), and there were never more than 170 (15) incorrectly processed
sequences. Table 8 shows details. (A net with additional standard hidden
units or with a hidden layer above the memory cells may learn the fine-
tuning part more quickly.)

The experiment demonstrates that LSTM can solve tasks involving both
continuous-valued representations and nonintegrative information process-
ing.



Long Short-Term Memory 1763

5.6 Experiment 6: Temporal Order. In this subsection, LSTM solves
other difficult (but artificial) tasks that have never been solved by previ-
ous recurrent net algorithms. The experiment shows that LSTM is able to
extract information conveyed by the temporal order of widely separated
inputs.

5.6.1 Task 6a: Two Relevant, Widely Separated Symbols. The goal is to clas-
sify sequences. Elements and targets are represented locally (input vec-
tors with only one nonzero bit). The sequence starts with an E, ends with
a B (the “trigger symbol”), and otherwise consists of randomly chosen
symbols from the set {a, b, c, d} except for two elements at positions t1
and t2 that are either X or Y. The sequence length is randomly chosen
between 100 and 110, t1 is randomly chosen between 10 and 20, and t2
is randomly chosen between 50 and 60. There are four sequence classes
Q,R, S,U, which depend on the temporal order of X and Y. The rules are:
X,X→ Q; X,Y→ R; Y,X→ S; Y,Y→ U.

5.6.2 Task 6b: Three Relevant, Widely Separated Symbols. Again, the goal
is to classify sequences. Elements and targets are represented locally. The
sequence starts with an E, ends with a B (the trigger symbol), and otherwise
consists of randomly chosen symbols from the set {a, b, c, d} except for three
elements at positions t1, t2, and t3 that are either X or Y. The sequence
length is randomly chosen between 100 and 110, t1 is randomly chosen
between 10 and 20, t2 is randomly chosen between 33 and 43, and t3 is
randomly chosen between 66 and 76. There are eight sequence classes—
Q,R, S,U,V,A,B,C—which depend on the temporal order of the Xs and
Ys. The rules are: X,X,X → Q; X,X,Y → R; X,Y,X → S; X,Y,Y →
U; Y,X,X→ V; Y,X,Y→ A; Y,Y,X→ B; Y,Y,Y→ C.

There are as many output units as there are classes. Each class is locally
represented by a binary target vector with one nonzero component. With
both tasks, error signals occur only at the end of a sequence. The sequence
is classified correctly if the final absolute error of all output units is below
0.3.

Architecture. We use a three-layer net with eight input units, two (three)
cell blocks of size 2, and four (eight) output units for task 6a (6b). Again all
noninput units have bias weights, and the output layer receives connections
from memory cells, only. Memory cells and gate units receive inputs from
input units, memory cells, and gate units (the hidden layer is fully con-
nected; less connectivity may work as well). The architecture parameters
for task 6a (6b) make it easy to store at least two (three) input signals. All
activation functions are logistic with output range [0, 1], except for h, whose
range is [−1, 1], and g, whose range is [−2, 2].



1764 Sepp Hochreiter and Jürgen Schmidhuber

Table 9: Experiment 6: Results for the Temporal Order Problem.

Number of Number of
Task Weights Wrong Predictions Success After

Task 6a 156 1 out of 2560 31,390
Task 6b 308 2 out of 2560 571,100

Notes: “Number of Wrong Predictions” is the number of incorrectly
classified sequences (error > 0.3 for at least one output unit) from a test
set containing 2560 sequences. The right-most column gives the number
of training sequences required to achieve the stopping criterion. The
results for task 6a are means of 20 trials; those for task 6b of 10 trials.

Training/Testing. The learning rate is 0.5 (0.1) for experiment 6a (6b).
Training is stopped once the average training error falls below 0.1 and the
2000 most recent sequences were classified correctly. All weights are initial-
ized in the range [−0.1, 0.1]. The first input gate bias is initialized with−2.0,
the second with−4.0, and (for experiment 6b) the third with−6.0 (again, we
confirmed by additional experiments that the precise values hardly matter).

Results. With a test set consisting of 2560 randomly chosen sequences,
the average test set error was always below 0.1, and there were never more
than three incorrectly classified sequences. Table 9 shows details.

The experiment shows that LSTM is able to extract information conveyed
by the temporal order of widely separated inputs. In task 6a, for instance,
the delays between the first and second relevant input and between the
second relevant input and sequence end are at least 30 time steps.

Typical Solutions. In experiment 6a, how does LSTM distinguish be-
tween temporal orders (X,Y) and (Y,X)? One of many possible solutions
is to store the first X or Y in cell block 1 and the second X/Y in cell block 2.
Before the first X/Y occurs, block 1 can see that it is still empty by means
of its recurrent connections. After the first X/Y, block 1 can close its input
gate. Once block 1 is filled and closed, this fact will become visible to block
2 (recall that all gate units and all memory cells receive connections from all
nonoutput units).

Typical solutions, however, require only one memory cell block. The
block stores the first X or Y; once the second X/Y occurs, it changes its
state depending on the first stored symbol. Solution type 1 exploits the
connection between memory cell output and input gate unit. The following
events cause different input gate activations: X occurs in conjunction with
a filled block; X occurs in conjunction with an empty block. Solution type 2
is based on a strong, positive connection between memory cell output and
memory cell input. The previous occurrence of X (Y) is represented by a



Long Short-Term Memory 1765

Table 10: Summary of Experimental Conditions for LSTM, Part I.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Task p lag b s in out w c ogb igb bias h g α

1-1 9 9 4 1 7 7 264 F −1,−2,−3,−4 r ga h1 g2 0.1
1-2 9 9 3 2 7 7 276 F −1,−2,−3 r ga h1 g2 0.1
1-3 9 9 3 2 7 7 276 F −1,−2,−3 r ga h1 g2 0.2
1-4 9 9 4 1 7 7 264 F −1,−2,−3,−4 r ga h1 g2 0.5
1-5 9 9 3 2 7 7 276 F −1,−2,−3 r ga h1 g2 0.5
2a 100 100 1 1 101 101 10,504 B No og None None id g1 1.0
2b 100 100 1 1 101 101 10,504 B No og None None id g1 1.0

2c-1 50 50 2 1 54 2 364 F None None None h1 g2 0.01
2c-2 100 100 2 1 104 2 664 F None None None h1 g2 0.01
2c-3 200 200 2 1 204 2 1264 F None None None h1 g2 0.01
2c-4 500 500 2 1 504 2 3064 F None None None h1 g2 0.01
2c-5 1000 1000 2 1 1004 2 6064 F None None None h1 g2 0.01
2c-6 1000 1000 2 1 504 2 3064 F None None None h1 g2 0.01
2c-7 1000 1000 2 1 204 2 1264 F None None None h1 g2 0.01
2c-8 1000 1000 2 1 104 2 664 F None None None h1 g2 0.01
2c-9 1000 1000 2 1 54 2 364 F None None None h1 g2 0.01
3a 100 100 3 1 1 1 102 F −2,−4,−6 −1,−3,−5 b1 h1 g2 1.0
3b 100 100 3 1 1 1 102 F −2,−4,−6 −1,−3,−5 b1 h1 g2 1.0
3c 100 100 3 1 1 1 102 F −2,−4,−6 −1,−3,−5 b1 h1 g2 0.1
4-1 100 50 2 2 2 1 93 F r −3,−6 All h1 g2 0.5
4-2 500 250 2 2 2 1 93 F r −3,−6 All h1 g2 0.5
4-3 1000 500 2 2 2 1 93 F r −3,−6 All h1 g2 0.5
5 100 50 2 2 2 1 93 F r r All h1 g2 0.1
6a 100 40 2 2 8 4 156 F r −2,−4 All h1 g2 0.5
6b 100 24 3 2 8 8 308 F r −2,−4,−6 All h1 g2 0.1

Notes: Col. 1: task number. Col. 2: minimal sequence length p. Col. 3: minimal number of
steps between most recent relevant input information and teacher signal. Col. 4: number
of cell blocks b. Col. 5: block size s. Col. 6: Number of input units in. Col. 7: Number of
output units out. Col. 8: number of weights w. Col. 9: c describes connectivity: F means
“output layer receives connections from memory cells; memory cells and gate units receive
connections from input units, memory cells and gate units”; B means “each layer receives
connections from all layers below.” Col. 10: Initial output gate bias ogb, where r stands for
“randomly chosen from the interval [−0.1, 0.1]” and no og means “no output gate used.”
Col. 11: initial input gate bias igb (see Col. 10). Col. 12: which units have bias weights?
b1 stands for “all hidden units”, ga for “only gate units,” and all for “all noninput units.”
Col. 13: the function h, where id is identity function, h1 is logistic sigmoid in [−2, 2]. Col. 14:
the logistic function g, where g1 is sigmoid in [0, 1], g2 in [−1, 1]. Col. 15: learning rate α.

positive (negative) internal state. Once the input gate opens for the second
time, so does the output gate, and the memory cell output is fed back to
its own input. This causes (X,Y) to be represented by a positive internal
state, because X contributes to the new internal state twice (via current
internal state and cell output feedback). Similarly, (Y,X) gets represented
by a negative internal state.

5.7 Summary of Experimental Conditions. Tables 10 and 11 provide an
overview of the most important LSTM parameters and architectural details
for experiments 1 through 6. The conditions of the simple experiments 2a



1766 Sepp Hochreiter and Jürgen Schmidhuber

Table 11: Summary of Experimental Conditions for LSTM, Part II.

(1) (2) (3) (4) (5) (6)
Task Select Interval Test Set Size Stopping Criterion Success

1 t1 [−0.2, 0.2] 256 Training and test correctly pred. See text
2a t1 [−0.2, 0.2] no test set After 5 million exemplars ABS(0.25)
2b t2 [−0.2, 0.2] 10,000 After 5 million exemplars ABS(0.25)
2c t2 [−0.2, 0.2] 10,000 After 5 million exemplars ABS(0.2)
3a t3 [−0.1, 0.1] 2560 ST1 and ST2 (see text) ABS(0.2)
3b t3 [−0.1, 0.1] 2560 ST1 and ST2 (see text) ABS(0.2)
3c t3 [−0.1, 0.1] 2560 ST1 and ST2 (see text) See text
4 t3 [−0.1, 0.1] 2560 ST3(0.01) ABS(0.04)
5 t3 [−0.1, 0.1] 2560 see text ABS(0.04)
6a t3 [−0.1, 0.1] 2560 ST3(0.1) ABS(0.3)
6b t3 [−0.1, 0.1] 2560 ST3(0.1) ABS(0.3)

Notes: Col. 1: task number. Col. 2: training exemplar selelction, where t1 stands for “ran-
domly chosen form training set,” t2 for “randomly chosen from two classes,” and t3 for
“randomly generated on line.” Col. 3: weight initialization interval. Col. 4: test set size.
Col. 5: Stopping criterion for training, where ST3(β) stands for “average training error
below β and the 2000 most recent sequences were processed correctly.” Col. 6: success
(correct classification) criterion, where ABS(β) stands for “absolute error of all output
units at sequence end is below β.”

and 2b differ slightly from those of the other, more systematic experiments,
due to historical reasons.

6 Discussion

6.1 Limitations of LSTM.

• The particularly efficient truncated backpropagation version of the
LSTM algorithm will not easily solve problems similar to strongly
delayed XOR problems, where the goal is to compute the XOR of
two widely separated inputs that previously occurred somewhere in
a noisy sequence. The reason is that storing only one of the inputs will
not help to reduce the expected error; the task is nondecomposable in
the sense that it is impossible to reduce the error incrementally by first
solving an easier subgoal.

In theory, this limitation can be circumvented by using the full gra-
dient (perhaps with additional conventional hidden units receiving
input from the memory cells). But we do not recommend computing
the full gradient for the following reasons: (1) It increases computa-
tional complexity, (2) constant error flow through CECs can be shown
only for truncated LSTM, and (3) we actually did conduct a few exper-
iments with nontruncated LSTM. There was no significant difference
to truncated LSTM, exactly because outside the CECs, error flow tends



Long Short-Term Memory 1767

to vanish quickly. For the same reason, full BPTT does not outperform
truncated BPTT.

• Each memory cell block needs two additional units (input and output
gate). In comparison to standard recurrent nets, however, this does
not increase the number of weights by more than a factor of 9: each
conventional hidden unit is replaced by at most three units in the
LSTM architecture, increasing the number of weights by a factor of 32

in the fully connected case. Note, however, that our experiments use
quite comparable weight numbers for the architectures of LSTM and
competing approaches.

• Due to its constant error flow through CECs within memory cells,
LSTM generally runs into problems similar to those of feedforward
nets’ seeing the entire input string at once. For instance, there are tasks
that can be quickly solved by random weight guessing but not by the
truncated LSTM algorithm with small weight initializations, such as
the 500-step parity problem (see the introduction to section 5). Here,
LSTM’s problems are similar to the ones of a feedforward net with 500
inputs, trying to solve 500-bit parity. Indeed LSTM typically behaves
much like a feedforward net trained by backpropagation that sees the
entire input. But that is also precisely why it so clearly outperforms
previous approaches on many nontrivial tasks with significant search
spaces.

• LSTM does not have any problems with the notion of recency that
go beyond those of other approaches. All gradient-based approaches,
however, suffer from a practical inability to count discrete time steps
precisely. If it makes a difference whether a certain signal occurred
99 or 100 steps ago, then an additional counting mechanism seems
necessary. Easier tasks, however, such as one that requires making a
difference only between, say, 3 and 11 steps, do not pose any problems
to LSTM. For instance, by generating an appropriate negative con-
nection between memory cell output and input, LSTM can give more
weight to recent inputs and learn decays where necessary.

6.2 Advantages of LSTM.

• The constant error backpropagation within memory cells results in
LSTM’s ability to bridge very long time lags in case of problems similar
to those discussed above.

• For long-time-lag problems such as those discussed in this article,
LSTM can handle noise, distributed representations, and continuous
values. In contrast to finite state automata or hidden Markov models,
LSTM does not require an a priori choice of a finite number of states.
In principle, it can deal with unlimited state numbers.



1768 Sepp Hochreiter and Jürgen Schmidhuber

• For problems discussed in this article, LSTM generalizes well, even
if the positions of widely separated, relevant inputs in the input se-
quence do not matter. Unlike previous approaches, ours quickly learns
to distinguish between two or more widely separated occurrences of
a particular element in an input sequence, without depending on ap-
propriate short-time-lag training exemplars.

• There appears to be no need for parameter fine tuning. LSTM works
well over a broad range of parameters such as learning rate, input gate
bias, and output gate bias. For instance, to some readers the learn-
ing rates used in our experiments may seem large. However, a large
learning rate pushes the output gates toward zero, thus automatically
countermanding its own negative effects.

• The LSTM algorithm’s update complexity per weight and time step is
essentially that of BPTT, namely, O(1). This is excellent in comparison
to other approaches such as RTRL. Unlike full BPTT, however, LSTM
is local in both space and time.

7 Conclusion

Each memory cell’s internal architecture guarantees constant error flow
within its CEC, provided that truncated backpropagation cuts off error flow
trying to leak out of memory cells. This represents the basis for bridging
very long time lags. Two gate units learn to open and close access to error
flow within each memory cell’s CEC. The multiplicative input gate affords
protection of the CEC from perturbation by irrelevant inputs. Similarly,
the multiplicative output gate protects other units from perturbation by
currently irrelevant memory contents.

To find out about LSTM’s practical limitations we intend to apply it to
real-world data. Application areas will include time-series prediction, music
composition, and speech processing. It will also be interesting to augment
sequence chunkers (Schmidhuber, 1992b, 1993) by LSTM to combine the
advantages of both.

Appendix

A.1 Algorithm Details. In what follows, the index k ranges over output
units, i ranges over hidden units, cj stands for the jth memory cell block, cv

j
denotes the vth unit of memory cell block cj, u, l,m stand for arbitrary units,
and t ranges over all time steps of a given input sequence.

The gate unit logistic sigmoid (with range [0, 1]) used in the experiments
is

f (x) = 1
1+ exp(−x)

. (A.1)



Long Short-Term Memory 1769

The function h (with range [−1, 1]) used in the experiments is

h(x) = 2
1+ exp(−x)

− 1 . (A.2)

The function g (with range [−2, 2]) used in the experiments is

g(x) = 4
1+ exp(−x)

− 2 . (A.3)

A.1.1 Forward Pass. The net input and the activation of hidden unit i
are

neti(t) =
∑

u
wiuyu(t− 1) (A.4)

yi(t) = fi(neti(t)) .

The net input and the activation of inj are

netinj(t) =
∑

u
winjuyu(t− 1) (A.5)

yinj(t) = finj(netinj(t)) .

The net input and the activation of outj are

netoutj(t) =
∑

u
woutjuyu(t− 1) (A.6)

youtj(t) = foutj(netoutj(t)) .

The net input netcv
j
, the internal state scv

j
, and the output activation ycv

j of
the vth memory cell of memory cell block cj are:

netcv
j
(t) =

∑
u

wcv
j uyu(t− 1) (A.7)

scv
j
(t) = scv

j
(t− 1)+ yinj(t)g

(
netcv

j
(t)
)

ycv
j (t) = youtj(t)h(scv

j
(t)) .

The net input and the activation of output unit k are

netk(t) =
∑

u: u not a gate
wkuyu(t− 1)

yk(t) = fk(netk(t)) .

The backward pass to be described later is based on the following trun-
cated backpropagation formulas.



1770 Sepp Hochreiter and Jürgen Schmidhuber

A.1.2 Approximate Derivatives for Truncated Backpropagation. The trun-
cated version (see section 4) only approximates the partial derivatives,
which is reflected by the ≈tr signs in the notation below. It truncates er-
ror flow once it leaves memory cells or gate units. Truncation ensures that
there are no loops across which an error that left some memory cell through
its input or input gate can reenter the cell through its output or output gate.
This in turn ensures constant error flow through the memory cell’s CEC.

In the truncated backpropagation version, the following derivatives are
replaced by zero:

∂netinj(t)

∂yu(t− 1)
≈tr 0 ∀u,

∂netoutj(t)

∂yu(t− 1)
≈tr 0 ∀u,

and

∂netcj(t)

∂yu(t− 1)
≈tr 0 ∀u.

Therefore we get

∂yinj(t)
∂yu(t− 1)

= f ′inj
(netinj(t))

∂netinj(t)

∂yu(t− 1)
≈tr 0 ∀u,

∂youtj(t)
∂yu(t− 1)

= f ′outj
(netoutj(t))

∂netoutj(t)

∂yu(t− 1)
≈tr 0 ∀u,

and

∂ycj(t)
∂yu(t− 1)

= ∂ycj(t)
∂netoutj(t)

∂netoutj(t)

∂yu(t− 1)
+ ∂ycj(t)
∂netinj(t)

∂netinj(t)

∂yu(t− 1)

+ ∂ycj(t)
∂netcj(t)

∂netcj(t)

∂yu(t− 1)
≈tr 0 ∀u.

This implies for all wlm not on connections to cv
j , inj, outj (that is, l 6∈ {cv

j , inj, outj}):

∂ycv
j (t)

∂wlm
=
∑

u

∂ycv
j (t)

∂yu(t− 1)
∂yu(t− 1)
∂wlm

≈tr 0.

The truncated derivatives of output unit k are:

∂yk(t)
∂wlm

= f ′k(netk(t))

( ∑
u: u not a gate

wku
∂yu(t− 1)
∂wlm

+ δklym(t− 1)

)



Long Short-Term Memory 1771

≈tr f ′k(netk(t))

∑
j

Sj∑
v=1

δcv
j lwkcv

j

∂ycv
j (t− 1)
∂wlm

+
∑

j

(
δinjl + δoutjl

) Sj∑
v=1

wkcv
j

∂ycv
j (t− 1)
∂wlm

+
∑

i: i hidden unit

wki
∂yi(t− 1)
∂wlm

+ δklym(t− 1)

)

= f ′k(netk(t))



ym(t− 1) l = k

wkcv
j

∂y
cv
j (t−1)
∂wlm

l = cv
j∑Sj

v=1 wkcv
j

∂y
cv
j (t−1)
∂wlm

l = inj OR l = outj∑
i: i hidden unit wki

∂yi(t−1)
∂wlm

l otherwise

(A.8)

where δ is the Kronecker delta (δab = 1 if a = b and 0 otherwise), and Sj is
the size of memory cell block cj. The truncated derivatives of a hidden unit
i that is not part of a memory cell are:

∂yi(t)
∂wlm

= f ′i (neti(t))
∂neti(t)
∂wlm

≈tr δli f ′i (neti(t))ym(t− 1) . (A.9)

(Here it would be possible to use the full gradient without affecting constant
error flow through internal states of memory cells.)

Cell block cj’s truncated derivatives are:

∂yinj(t)
∂wlm

= f ′inj
(netinj(t))

∂netinj(t)

∂wlm

≈tr δinjl f ′inj
(netinj(t))y

m(t− 1) . (A.10)

∂youtj(t)
∂wlm

= f ′outj
(netoutj(t))

∂netoutj(t)

∂wlm

≈tr δoutjl f ′outj
(netoutj(t))y

m(t− 1) . (A.11)

∂scv
j
(t)

∂wlm
=

∂scv
j
(t− 1)

∂wlm

+ ∂yinj(t)
∂wlm

g
(

netcv
j
(t)
)
+ yinj(t)g′

(
netcv

j
(t)
) ∂netcv

j
(t)

∂wlm

≈tr

(
δinjl + δcv

j l

) ∂scv
j
(t− 1)

∂wlm
+ δinjl

∂yinj(t)
∂wlm

g
(

netcv
j
(t)
)

+ δcv
j lyinj(t)g′

(
netcv

j
(t)
) ∂netcv

j
(t)

∂wlm



1772 Sepp Hochreiter and Jürgen Schmidhuber

=
(
δinjl + δcv

j l

) ∂scv
j
(t− 1)

∂wlm

+ δinjl f ′inj
(netinj(t)) g

(
netcv

j
(t)
)

ym(t− 1)

+ δcv
j l yinj(t) g′

(
netcv

j
(t)
)

ym(t− 1) . (A.12)

∂ycv
j (t)

∂wlm
= ∂youtj(t)

∂wlm
h(scv

j
(t))+ h′(scv

j
(t))

∂scv
j
(t)

∂wlm
youtj(t)

≈tr δoutjl
∂youtj(t)
∂wlm

h(scv
j
(t))

+
(
δinjl + δcv

j l

)
h′(scv

j
(t))

∂scv
j
(t)

∂wlm
youtj(t) . (A.13)

To update the system efficiently at time t, the only (truncated) derivatives
that need to be stored at time t− 1 are

∂scv
j
(t− 1)

∂wlm
,

where l = cv
j or l = inj.

A.1.3 Backward Pass. We will describe the backward pass only for the
particularly efficient truncated gradient version of the LSTM algorithm. For
simplicity we will use equal signs even where approximations are made
according to the truncated backpropagation equations above.

The squared error at time t is given by

E(t) =
∑

k: k output unit

(
tk(t)− yk(t)

)2
, (A.14)

where tk(t) is output unit k’s target at time t.
Time t’s contribution to wlm’s gradient-based update with learning rate

α is

1wlm(t) = −α ∂E(t)
∂wlm

. (A.15)

We define some unit l’s error at time step t by

el(t) := − ∂E(t)
∂netl(t)

. (A.16)

Using (almost) standard backpropagation, we first compute updates for
weights to output units (l = k), weights to hidden units (l = i) and weights



Long Short-Term Memory 1773

to output gates (l = outj). We obtain (compare formulas A.8, A.9, and A.11):

l = k (output) : ek(t) = f ′k(netk(t))
(

tk(t)− yk(t)
)

, (A.17)

l = i (hidden) : ei(t) = f ′i (neti(t))
∑

k: k output unit

wkiek(t) , (A.18)

l = outj (output gates) :

eoutj(t) = f ′outj
(netoutj(t))

 Sj∑
v=1

h(scv
j
(t))

∑
k: k output unit

wkcv
j
ek(t)

 . (A.19)

For all possible l time t’s contribution to wlm’s update is

1wlm(t) = α el(t) ym(t− 1) . (A.20)

The remaining updates for weights to input gates (l = inj) and to cell
units (l = cv

j ) are less conventional. We define some internal state scv
j
’s error:

escv
j

:= − ∂E(t)
∂scv

j
(t)

= foutj(netoutj(t)) h′(scv
j
(t))

∑
k: k output unit

wkcv
j
ek(t) . (A.21)

We obtain for l = inj or l = cv
j , v = 1, . . . ,Sj

− ∂E(t)
∂wlm

=
Sj∑

v=1

escv
j
(t)
∂scv

j
(t)

∂wlm
. (A.22)

The derivatives of the internal states with respect to weights and the
corresponding weight updates are as follows (compare expression A.12):

l = inj (input gates) :
∂scv

j
(t)

∂winjm
=
∂scv

j
(t− 1)

∂winjm
+ g(netcv

j
(t)) f ′inj

(netinj(t))y
m(t− 1) ; (A.23)

therefore, time t’s contribution to winjm’s update is (compare expression A.8):

1winjm(t) = α
Sj∑

v=1

escv
j
(t)
∂scv

j
(t)

∂winjm
. (A.24)



1774 Sepp Hochreiter and Jürgen Schmidhuber

Similarly we get (compare expression A.12):

l = cv
j (memory cells) :

∂scv
j
(t)

∂wcv
j m
=
∂scv

j
(t− 1)

∂wcv
j m

+ g′(netcv
j
(t)) finj(netinj(t))y

m(t− 1) ; (A.25)

therefore time t’s contribution to wcv
j m’s update is (compare expression A.8):

1wcv
j m(t) = αescv

j
(t)
∂scv

j
(t)

∂wcv
j m

. (A.26)

All we need to implement for the backward pass are equations A.17 through
A.21 and A.23 through A.26. Each weight’s total update is the sum of the
contributions of all time steps.

A.1.4 Computational Complexity. LSTM’s update complexity per time
step is

O(KH + KCS+HI + CSI) = O(W), (A.27)

where K is the number of output units, C is the number of memory cell
blocks, S > 0 is the size of the memory cell blocks, H is the number of hidden
units, I is the (maximal) number of units forward connected to memory cells,
gate units and hidden units, and

W = KH + KCS+ CSI + 2CI +HI = O(KH + KCS+ CSI +HI)

is the number of weights. Expression A.27 is obtained by considering all
computations of the backward pass: equation A.17 needs K steps; A.18 needs
KH steps; A.19 needs KSC steps; A.20 needs K(H+C) steps for output units,
HI steps for hidden units, CI steps for output gates; A.21 needs KCS steps;
A.23 needs CSI steps; A.24 needs CSI steps; A.25 needs CSI steps; A.26 needs
CSI steps. The total is K + 2KH + KC + 2KSC + HI + CI + 4CSI steps, or
O(KH+KSC+HI+CSI) steps. We conclude that LSTM algorithm’s update
complexity per time step is just like BPTT’s for a fully recurrent net.

At a given time step, only the 2CSI most recent ∂scv
j
/∂wlm values from

equations A.23 and A.25 need to be stored. Hence LSTM’s storage complex-
ity also is O(W); it does not depend on the input sequence length.

A.2 Error Flow. We compute how much an error signal is scaled while
flowing back through a memory cell for q time steps. As a by-product, this
analysis reconfirms that the error flow within a memory cell’s CEC is indeed
constant, provided that truncated backpropagation cuts off error flow trying
to leave memory cells (see also section 3.2). The analysis also highlights a



Long Short-Term Memory 1775

potential for undesirable long-term drifts of scj , as well as the beneficial,
countermanding influence of negatively biased input gates.

Using the truncated backpropagation learning rule, we obtain

∂scj(t− k)

∂scj(t− k− 1)
= 1+ ∂yinj(t− k)

∂scj(t− k− 1)
g
(
netcj(t− k)

)
+ yinj(t− k)g′

(
netcj(t− k)

) ∂netcj(t− k)

∂scj(t− k− 1)

= 1+
∑

u

[
∂yinj(t− k)
∂yu(t− k− 1)

∂yu(t− k− 1)
∂scj(t− k− 1)

]
×g

(
netcj(t− k)

)
+ yinj(t− k)g′

(
netcj(t− k)

)
×
∑

u

[
∂netcj(t− k)

∂yu(t− k− 1)
∂yu(t− k− 1)
∂scj(t− k− 1)

]
≈tr 1. (A.28)

The ≈tr sign indicates equality due to the fact that truncated backpropaga-
tion replaces by zero the following derivatives:

∂yinj(t− k)
∂yu(t− k− 1)

∀u and
∂netcj(t− k)

∂yu(t− k− 1)
∀u.

In what follows, an error ϑj(t) starts flowing back at cj’s output. We re-
define

ϑj(t) :=
∑

i
wicjϑi(t+ 1) . (A.29)

Following the definitions and conventions of section 3.1, we compute
error flow for the truncated backpropagation learning rule. The error occur-
ring at the output gate is

ϑoutj(t) ≈tr
∂youtj(t)
∂netoutj(t)

∂ycj(t)
∂youtj(t)

ϑj(t) . (A.30)

The error occurring at the internal state is

ϑscj
(t) = ∂scj(t+ 1)

∂scj(t)
ϑscj
(t+ 1)+ ∂ycj(t)

∂scj(t)
ϑj(t) . (A.31)

Since we use truncated backpropagation we have

ϑj(t) =
∑

i:i no gate and no memory cell

wicjϑi(t+ 1);



1776 Sepp Hochreiter and Jürgen Schmidhuber

therefore we get

∂ϑj(t)
∂ϑscj

(t+ 1)
=
∑

i
wicj

∂ϑi(t+ 1)
∂ϑscj

(t+ 1)
≈tr 0 . (A.32)

Equations A.31 and A.32 imply constant error flow through internal
states of memory cells:

∂ϑscj
(t)

∂ϑscj
(t+ 1)

= ∂scj(t+ 1)

∂scj(t)
≈tr 1 . (A.33)

The error occurring at the memory cell input is

ϑcj(t) =
∂g(netcj(t))

∂netcj(t)

∂scj(t)

∂g(netcj(t))
ϑscj
(t) . (A.34)

The error occurring at the input gate is

ϑinj(t) ≈tr
∂yinj(t)
∂netinj(t)

∂scj(t)

∂yinj(t))
ϑscj
(t) . (A.35)

A.2.1 No External Error Flow. Errors are propagated back from units l to
unit v along outgoing connections with weights wlv. This “external error”
(note that for conventional units there is nothing but external error) at time
t is

ϑ e
v(t) =

∂yv(t)
∂netv(t)

∑
l

∂netl(t+ 1)
∂yv(t)

ϑl(t+ 1) . (A.36)

We obtain

∂ϑ e
v(t− 1)
∂ϑj(t)

= ∂yv(t− 1)
∂netv(t− 1)

(
∂ϑoutj(t)

∂ϑj(t)

∂netoutj(t)

∂yv(t− 1)

+ ∂ϑinj(t)

∂ϑj(t)

∂netinj(t)

∂yv(t− 1)
+ ∂ϑcj(t)

∂ϑj(t)

∂netcj(t)

∂yv(t− 1)

)
≈tr 0 . (A.37)

We observe that the error ϑj arriving at the memory cell output is not back-
propagated to units v by external connections to inj, outj, cj.

A.2.2 Error Flow Within Memory Cells. We now focus on the error back-
flow within a memory cell’s CEC. This is actually the only type of error flow
that can bridge several time steps. Suppose error ϑj(t) arrives at cj’s output



Long Short-Term Memory 1777

at time t and is propagated back for q steps until it reaches inj or the memory
cell input g(netcj). It is scaled by a factor of

∂ϑv(t− q)
∂ϑj(t)

,

where v = inj, cj. We first compute

∂ϑscj
(t− q)

∂ϑj(t)
≈tr


∂ycj (t)
∂scj (t)

q = 0
∂scj (t−q+1)
∂scj (t−q)

∂ϑscj
(t−q+1)

∂ϑj(t)
q > 0

. (A.38)

Expanding equation A.38, we obtain

∂ϑv(t− q)
∂ϑj(t)

≈tr
∂ϑv(t− q)
∂ϑscj

(t− q)

∂ϑscj
(t− q)

∂ϑj(t)

≈tr
∂ϑv(t− q)
∂ϑscj

(t− q)

(
1∏

m=q

∂scj(t−m+ 1)

∂scj(t−m)

)
∂ycj(t)
∂scj(t)

≈tr youtj(t)h′(scj(t))

{
g′(netcj(t− q)yinj(t− q) v = cj

g(netcj(t− q) f ′inj
(netinj(t− q)) v = inj

.(A.39)

Consider the factors in the previous equation’s last expression. Obvi-
ously, error flow is scaled only at times t (when it enters the cell) and t − q
(when it leaves the cell), but not in between (constant error flow through
the CEC). We observe:

1. The output gate’s effect is youtj(t) scales down those errors that can be
reduced early during training without using the memory cell. It also
scales down those errors resulting from using (activating/deactivating)
the memory cell at later training stages. Without the output gate, the
memory cell might, for instance, suddenly start causing avoidable er-
rors in situations that already seemed under control (because it was
easy to reduce the corresponding errors without memory cells). See
“Output Weight Conflict” in section 3 and “Abuse Problem and Solu-
tion” (section 4.7).

2. If there are large positive or negative scj(t) values (because scj has
drifted since time step t − q), then h′(scj(t)) may be small (assuming
that h is a logistic sigmoid). See section 4. Drifts of the memory cell’s
internal state scj can be countermanded by negatively biasing the input
gate inj (see section 4 and the next point). Recall from section 4 that
the precise bias value does not matter much.

3. yinj(t− q) and f ′inj
(netinj(t− q)) are small if the input gate is negatively

biased (assume finj is a logistic sigmoid). However, the potential sig-



1778 Sepp Hochreiter and Jürgen Schmidhuber

nificance of this is negligible compared to the potential significance of
drifts of the internal state scj .

Some of the factors above may scale down LSTM’s overall error flow,
but not in a manner that depends on the length of the time lag. The flow
will still be much more effective than an exponentially (of order q) decaying
flow without memory cells.

Acknowledgments

Thanks to Mike Mozer, Wilfried Brauer, Nic Schraudolph, and several anony-
mous referees for valuable comments and suggestions that helped to im-
prove a previous version of this article (Hochreiter and Schmidhuber, 1995).
This work was supported by DFG grant SCHM 942/3-1 from Deutsche
Forschungsgemeinschaft.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. In IEEE 1st International Conference on
Neural Networks, San Diego (Vol. 2, pp. 609–618).

Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillator. Neural
Computation, 3, 526–545.

Bengio, Y., & Frasconi, P. (1994). Credit assignment through time: Alternatives to
backpropagation. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances
in neural information processing systems 6 (pp. 75–82). San Mateo, CA: Morgan
Kaufmann.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157–166.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state
automata and simple recurrent networks. Neural Computation, 1, 372–381.

de Vries, B., & Principe, J. C. (1991). A theory for neural networks with time
delays. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in
neural information processing systems 3, (pp. 162–168). San Mateo, CA: Morgan
Kaufmann.

Doya, K. (1992). Bifurcations in the learning of recurrent neural networks.
In Proceedings of 1992 IEEE International Symposium on Circuits and Systems
(pp. 2777–2780).

Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-
time backpropagation learning. Neural Networks, 2, 375–385.

Elman, J. L. (1988). Finding structure in time (Tech. Rep. No. CRL 8801). San Diego:
Center for Research in Language, University of California, San Diego.

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural infor-
mation processing systems 3 (pp. 190–196). San Mateo, CA: Morgan Kaufmann.



Long Short-Term Memory 1779

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München. See http://www7.informatik.tu-muenchen.de/˜hochreit.

Hochreiter, S., & Schmidhuber, J. (1995). Long short-term memory (Tech. Rep.
No. FKI-207-95). Fakultät für Informatik, Technische Universität München.

Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight
guessing and “long short-term memory.” In F. L. Silva, J. C. Principe, &
L. B. Almeida (Eds.), Spatiotemporal models in biological and artificial systems
(pp. 65–72). Amsterdam: IOS Press.

Hochreiter, S., & Schmidhuber, J. (1997). LSTM can solve hard long time lag
problems. In Advances in neural information processing systems 9. Cambridge,
MA: MIT Press.

Lang, K., Waibel, A., & Hinton, G. E. (1990). A time-delay neural network archi-
tecture for isolated word recognition. Neural Networks, 3, 23–43.

Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term de-
pendencies in NARX recurrent neural networks. IEEE Transactions on Neural
Networks, 7, 1329–1338.

Miller, C. B., & Giles, C. L. (1993). Experimental comparison of the effect of order
in recurrent neural networks. International Journal of Pattern Recognition and
Artificial Intelligence, 7(4), 849–872.

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal se-
quence recognition. Complex Systems, 3, 349–381.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In J. E. Moody,
S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing
systems 4 (pp. 275–282). San Mateo, CA: Morgan Kaufmann.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural
networks. Neural Computation, 1(2), 263–269.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural net-
works. Physical Review Letters, 19(59), 2229–2232.

Pineda, F. J. (1988). Dynamics and architecture for neural computation. Journal
of Complexity, 4, 216–245.

Plate, T. A. (1993). Holographic recurrent networks. In S. J. Hanson, J. D. Cowan,
& C. L. Giles ( Eds.), Advances in neural information processing systems 5 (pp. 34–
41). San Mateo, CA: Morgan Kaufmann.

Pollack, J. B. (1991). Language induction by phase transition in dynamical rec-
ognizers. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in
neural information processing systems 3 (pp. 619–626). San Mateo, CA: Morgan
Kaufmann.

Puskorius, G. V., and Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynam-
ical systems with Kalman filter trained recurrent networks. IEEE Transactions
on Neural Networks, 5(2), 279–297.

Ring, M. B. (1993). Learning sequential tasks by incrementally adding higher
orders. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neu-
ral information processing systems 5 (pp. 115–122). San Mateo, CA: Morgan
Kaufmann.



1780 Sepp Hochreiter and Jürgen Schmidhuber

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation
network (Tech. Rep. No. CUED/F-INFENG/TR.1). Cambridge: Cambridge
University Engineering Department.

Schmidhuber, J. (1989). A local learning algorithm for dynamic feedforward and
recurrent networks. Connection Science, 1(4), 403–412.

Schmidhuber, J. (1992a). A fixed size storage O(n3) time complexity learning
algorithm for fully recurrent continually running networks. Neural Compu-
tation, 4(2), 243–248.

Schmidhuber, J. (1992b). Learning complex, extended sequences using the prin-
ciple of history compression. Neural Computation, 4(2), 234–242.

Schmidhuber, J. (1992c). Learning unambiguous reduced sequence descriptions.
In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural infor-
mation processing systems 4 (pp. 291–298). San Mateo, CA: Morgan Kaufmann.

Schmidhuber, J. (1993). Netzwerkarchitekturen, Zielfunktionen und Kettenregel. Ha-
bilitationsschrift, Institut für Informatik, Technische Universität München.

Schmidhuber, J., & Hochreiter, S. (1996). Guessing can outperform many long time
lag algorithms (Tech. Rep. No. IDSIA-19-96). Lugano, Switzerland: Instituto
Dalle Molle di Studi sull’Intelligenza Artificiale.

Silva, G. X., Amaral, J. D., Langlois, T., & Almeida, L. B. (1996). Faster training of
recurrent networks. In F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Spa-
tiotemporal models in biological and artificial systems (pp. 168–175). Amsterdam:
IOS Press.

Smith, A. W., & Zipser, D. (1989). Learning sequential structures with the real-
time recurrent learning algorithm. International Journal of Neural Systems, 1(2),
125–131.

Sun, G., Chen, H., & Lee, Y. (1993). Time warping invariant neural networks. In
S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information
processing systems 5 (pp. 180–187). San Mateo, CA: Morgan Kaufmann.

Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state languages using
second-order recurrent networks. Neural Computation, 4, 406–414.

Werbos, P. J. (1988). Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1, 339–356.

Williams, R. J. (1989). Complexity of exact gradient computation algorithms for re-
current neural networks (Tech. Rep. No. NU-CCS-89-27). Boston: Northeastern
University, College of Computer Science.

Williams, R. J. & Peng, J. (1990). An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural Computation, 4, 491–501.

Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Y. Chauvin, &
D. E. Rumelhart (Eds.), Back-propagation: Theory, architectures and applications.
Hillsdale, NJ: Erlbaum.

Received August 28, 1995; accepted February 24, 1997.


