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Your First MLP
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Neural Networks

The brain, made up of
connected neurons, are the
inspirations for artificial
neural networks
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Neural Networks

- A neuron is a node with many
inputs and one output

- A neural network consists of
many interconnected neurons -
a ‘simple’ device that receives
data as the input and provides a
response

- Information are transmitted
from one neuron to another by
electrical impulses and chemical
signals
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Perceptrons

Perceptron is a single layer neural > AN
network w
The perceptron consists of 4 parts : \
- Input values .
- Weights M 2 I
- Weighted sums Tn-1 /
- Threshold / Activation functions /w/
wn
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Perceptrons

- Perceptron is a single layer neural

network
- The perceptron consists of 4 parts
- The perceptron works on the
following steps:
- Multiply all inputs with their
weights
- Add all multiplied values
(weighted sum)
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Perceptrons

- Perceptron is a single layer neural
network
- The perceptron consists of 4 parts
- The perceptron works on the
following steps:
- Multiply all inputs with their
weights
- Add all multiplied values
(weighted sum)
- Apply the weighted sum to
activation function
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Perceptrons

- Perceptron is usually used to classify
the data into two parts

(Linear Binary Classifier)

- Weights shows the strength of
the particular node

- Activation functions are used
to map the input between the
required values
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Multilayer Perceptrons

What if we want to be able to distinguish between more classes?
- Introduce more perceptrons!
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Multilayer Perceptrons
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What do we need to learn?
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How do we learn?

- Actual function that we are trying to model:
- Note: We don't know the actual function

- We only have several sample data points on this function

- Our goal:
- Estimate the function with the given samples
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How do we learn?

- A measurement of error
- How much off is the network output with respect to the

desired output

Network Output

For each MLP
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- Our goal (more specifically): . .
- Minimize the loss W — argmin, L65a(W) Carnegie
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How do we learn?

- Gradient Descent
A

Loss

NEGATIVE SLOPE

POSITIVE SLOPE

GLOBAL !
RINIU M

>

W .
Carnegie

Mellon
University




Forward Pass

- For each single perceptron:
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Forward Pass
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Forward Pass
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Forward Pass
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Forward Pass
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Error
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Backpropagation
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All gradients of weights w.r.t error are calculated
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Colab Exercise: Using MLP - MNIST classification

Using MLP: MNIST classification

Stretching on the recitation OL, we will explore MNIST classification using MLP in this notebook. Most of the contents are adopted from
Recitation OL notebook, but this recitation will focus more on the MLP model implementation part.

We're going to use the MNIST dataset which consists of handwritten digits 0-9 and use a neural network, specifically MLP, to classify them.

!pip install -q torchsummaryX

import torch

import torchvision

import matplotlib.pyplot as plt

from torchsummaryX import summary

import sklearn

import sklearn.metrics

from tgdm.auto import tgdm

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Device: ", device)

Device: cpu

https://colab.research.google.com/drive/1gSjoUsmPxRjH3bzEKkmCZYYhPG_M_rMp?authuser=1#scrollTo=DsNhXR25mCmq Carnegle
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Deep Learning Pipeline

MNIST Dataset

Bx1x28x28=Bx784 {0,1,2. .., 9} =10

Network Arch: MLP
Optimizer: Adam
Loss: Cross Entropy
Output: Arg Max

LibriSpeech Dataset

NxTx26=Bx26

Network Arch: MLP
Optimizer: Adam
Loss: Cross Entropy
Output: Arg Max
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Speech Recognition
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